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Abstract

While benchmark datasets have been proposed for testing computer
vision and 3D shape retrieval algorithms, no such datasets have yet
been put forward to assess the relevance of these techniques for en-
gineering problems. This paper presents several distinctive bench-
mark datasets for evaluating techniques for automated classification
and retrieval of CAD objects. These datasets include (1) a dataset
of CAD primitives (such as those common in constructive solid ge-
ometry modeling); (2) two datasets consisting of classes generated
by minor topological variation; (3) two datasets of industrial CAD
models classified based on object function and manufacturing pro-
cess, respectively; (4) and a dataset of LEGO c© models from the
Mindstorms c© robotics kits. Each model in the datasets is available
in three formats – ACIS SAT, ISO STEP, and as a VRML mesh
(some models are available under several different fidelity settings).
These are all available through the National Design Repository.

Using these datasets, we present comprehensive empirical results
for nine (9) different shape and solid model matching and retrieval
techniques. These experiments show, as expected, that the qual-
ity of precision-recall performance can significantly vary on dif-
ferent datasets. These experiments reveal that for certain object
classes and classifications, such as those based on manufacturing
processes, all existing techniques perform poorly. This study re-
veals the strengths and weaknesses of existing research in these ar-
eas, introduces open challenge problems, and provides meaningful
datasets and metrics against which the success of current and future
work can be measured.
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1 Introduction

Research on searching, classifying and comparing CAD models is
an active research area, having produced a rich set of computational
techniques. Existing research includes algorithms that work with
photo images, projected profiles, feature interactions, and shape
functions. In most cases, these techniques or systems were often
presented and evaluated with their own particular datasets – datasets
that contain mostly general shape models and few real CAD ar-
tifacts. This makes it very difficult to assess how effective these
different techniques would be at managing CAD data.

The objective of this paper is to assist the evaluation of 3D search
techniques for CAD data and engineering problems with two con-
tributions. First, we introduce sets of classified CAD objects
representing realistic engineering problems. Second, using these
datasets we conduct a comprehensive assessment of nine (9) differ-
ent techniques for matching CAD data.

CAD artifacts and their engineering domains introduce several
challenges not adequately addressed by existing research:

• Engineering artifacts each have a physical realization.
CAD models in the actual artifacts dataset (Section 4.2) pre-
sented in this paper are of manufacturable physical parts. Ex-
isting shape matching techniques, for the most part, empha-
size the comparison of the gross shape of coarse artificial ob-
jects. The datasets (e.g. trees, airplanes, and boats) studied in
most existing shape retrieval systems do not represent actual,
or even acquired models of physical artifacts.

• Engineering classifications are not subjective. In exist-
ing shape retrieval literature, datasets are pre-classified based
mostly on human intuition (i.e., boats get grouped with boats;
airplanes with airplanes). In contrast, engineering classifica-
tions are usually not so subjective. For example, a part is
machinable on a 3-axis machining center; a part has four sym-
metrically spaced holes for fastening with bolts.

• Different valid classifications exist for the same objects.
The fact that an object may have several valid classifications
is one of the fundamental problems in the field of pattern
recognition. However, in engineering domains the differences
across classifications can be large and the feature set for dis-
criminating these differences are very hard to isolate.

To address these challenges, the datasets introduced in this paper
includes both synthetic models and CAD models of actual artifacts.
Synthetic models enable specific tests of topologic and geometric
sensitivity of model retrieval techniques. Datasets of actual arti-
facts present several realistic scenarios where there are multiple
valid classifications. For instance, one can classify based on (a)
the subjective appearance of the part, (b) the objective manufac-
turing process for creating the physical artifact, or (c) the function
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of the part. Hence, the dataset is of actual artifacts under multi-
ple classifications, including manufacturing process classification
and functional classification. To enable an objective comparison of
both CAD models classifications and retrieval systems, all of the
datasets introduced in this paper are freely available at
http://www.designrepository.org/datasets/.

The remainder of this paper will be organized as follows: we will
review related work in CAD model representation and comparison,
discuss the relations of CAD model attributes and classification,
and then present synthetic and actual artifact datasets. Evaluation
with various CAD matching and searching techniques demonstrates
the use of the datasets as a common benchmark.

2 Related Research

Before introducing benchmark datasets of classified CAD models,
we briefly review the research work on representing and comparing
CAD models. Additionally, present a survey of some benchmark
datasets from closely related disciplines like computer graphics and
vision.

2.1 Representation of CAD Models

Most CAD models are solid models defined parametrically. How-
ever, approximated shape models represented by a polygonal mesh
are becoming another useful representation thanks to the develop-
ment of rapid prototyping from approximated models and the ac-
quisition of shape models through 3D scanning.

2.1.1 Solid Model Representations

CAD models are traditionally exact representations of 3D solids,
which are suitable for creating physical models. In commercial
CAD systems like Pro/Engineer and I-DEAS, models are domi-
nantly represented by exact parametric or different kinds of engi-
neering features. Objects are represented by a data structure that
gives information about each of the object’s faces, edges, vertices,
and how they are joined together. For example, under boundary
representation (B-Rep), two types of information are recorded: (1)
a topology record of the connectivity of faces and edges; (2) and
a set of parametric equations that describes the geometry and the
location of vertices, faces, and edges (e.g. NURBS). Solid models
give a complete and compact representation for design, simulation,
and manufacturing purposes. Yet these models are usually stored
in proprietary data formats between different CAD/CAM systems.
Thus, for example, comparing models generated on I-DEAS against
Pro/Engineer involves some lossy data exchange process, through
conversion from STEP to IGES, or approximated shape models.

2.1.2 Shape Model Representations

3D shape models are approximated models characterized by a mesh
of polygons for presentation or rendering purposes in computer
graphics. Rather than exact parametric equations, polygons are
used to approximately curved surfaces. Only the geometry of tri-
angles are stored without any topological information. In contrast
to proprietary solid model formats, open mesh file formats such
as VRML and STL, are widely available. Although shape mod-
els are not suitable for modeling physical properties or simulations
in CAD/CAM systems, polygonal meshes can serve as the lowest

common denominator in comparing CAD models, by faceting solid
models generated by different modeling systems. Shape models of
objects can also be acquired easily by using laser scanners or CT to
enable comparison of digital and physical artifacts.

2.2 Comparing 3D CAD Models

This research aims to provide a benchmark for information retrieval
in CAD database systems. Enabling them to test the indexing and
query mechanisms, in a manner similar to multimedia databases
and knowledge management systems. Some of the past work in this
area, is reviewed; in addition to the work from computer graphics
and computer vision that are related to efforts of this paper.

There are two basic types of approaches for matching and retrieval
of 3D CAD data: (1) feature-based techniques and (2) shape-based
techniques.

2.2.1 Comparing Solid Models

Feature-based techniques [Han et al. 2000; Shah et al. 2001], dat-
ing from late 1970s [Kyprianou 1980], extract engineering features
(e.g. machining features, form features) from a solid model of a
mechanical part for use in database storage, automated GT coding.
Elinson et al. [Elinson et al. 1997] used feature-based reasoning
for retrieval of solid models for use in variant process planning.
Cicirello and Regli [Cicirello and Regli 1999] examined how to
develop graph-based data structures and create heuristic similarity
measures among artifacts; this work was extended in [Cicirello and
Regli 2002] to a manufacturing feature-based similarity measure-
ment. McWherter et al. [McWherter et al. 2001] have integrated
these ideas with database techniques to enable indexing and clus-
tering of CAD models based on shape and engineering properties.
Cardone et al. [Cardone et al. 2004] compared machining features
of solid models for manufacturing cost estimation.

2.2.2 Comparing Shape Models

The shape-based techniques are more recent, owing to research
contributions from computational geometry, computer vision, and
computer graphics. From the polygon mesh, different transforma-
tion invariant attributes can be extracted as the means of similarity
among 3D models. Thompson et al. [W.B.Thompson et al. 1999]
examined the reverse engineering of designs by generating sur-
face and machining feature information off of range data collected
from machined parts. Hilaga et al. [Hilaga et al. 2001] present a
method for matching 3D topological models using multi-resolution
reeb graphs. The method of Osada et al. [Osada et al. 2002] cre-
ates an abstraction of the 3D model as a probability distribution
of samples from a shape function acting on the model. Novotni
and Klein [Novotni and Klein 2004] demonstrated the use of 3D
Zernike descriptors. Kazhdan et al. [Kazhdan et al. 2003] com-
pares 3D models with spherical harmonics. For further information,
Velkamp and Tangelder [Veltkamp and Tangelder 2004] published
a recent survey on shape retrieval methods. While these techniques
target to compare general 3D models, Ip et al. [Ip et al. 2002; Ip
et al. 2003] and Bespalov et al. [Bespalov et al. 2003] are focused
on comparing shape models of CAD with shape distributions and
scale-space representations. Iyer et al. [Iyer et al. 2003a; Iyer et al.
2003b] presented a CAD oriented search system. Surveys of shape
comparison for engineering parts were published by Iyer et al. [Iyer
et al. 2005] and Cardone et al. [Cardone et al. 2003].
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2.3 Other Benchmark Datasets

There are many benchmark datasets comprised of synthetic and re-
alistic data in the domain of computer vision and computer graph-
ics. The Columbia Object Image Library (COIL-100) [Nene et al.
1996] aimed to assist object recognition from 2D photos. It con-
tains 7200 photos of 100 objects in different poses. In face recogni-
tion research, the Yale face database provides 5760 images from 10
people each seen under 576 viewing conditions for testing. A num-
ber of synthetic image sequences are provided to test optical flow
and motion analysis applications. Recently, the Princeton Shape
Benchmark [Shilane et al. 2004] has provided 1,814 3D polygonal
models, collected from the web for evaluating shape-based retrieval
and analysis algorithms. The models were chosen from heteroge-
neous categories ranging from animals, furniture, and airplanes.

3 Classifying CAD Data

To outline the important attributes for computers to classify CAD
models, we investigate the relationship between information pro-
vided by the model representations and various themes in CAD
classifications.

A typical classification of CAD models is by their appearance, this
is similar to the goal of computer vision and computer graphics,
retrieving models that look similar for humans. Moreover, one im-
portant distinction in between CAD models and general 3D models
is that CAD models are designed to be physically constructed. The
manufacturing processes and the use of artifacts are important prop-
erties of CAD. CAD models can be objectively classified by their
manufacturing processes and functions, in addition to their subjec-
tive appearance.

Automatic classification of CAD models consists of two steps. (1)
Abstract the models by extracting relevant attributes to support their
classification target. (2) Compare the attributes across the dataset
and group similar models together. For the purpose of a CAD
dataset, the following three criteria illustrate common CAD clas-
sification targets.

3.1 Appearance

Classifying parts by their visual appearance is a natural target. Nu-
merous research efforts in computer vision attempted to classify
engineering artifacts from their 2D photo images. With respect to
3D models, the computer graphics community used approximated
shape models to perform shape matching. Related research focused
on comparing meshes of polygons to one another. Attributes re-
lated to geometry (locations of vertices and edges of triangles) of
the mesh are sampled and have become the focus of representing
the model’s appearance.

3.2 Manufacturing Processes

One interest in computer aided engineering is computer aided man-
ufacturing, automating the generation of manufacturing process
plans from CAD models. Classification of CAD models according
to different classes of manufacturing processes has become an im-
portant interest. Recently, Yao et al [Yao et al. 2003]. investigated
in milling processes from 3D scan data. Cardone et al. [Cardone
et al. 2004] estimated cost of prismatic machined parts by match-
ing machining feature information. Apart from the recent effort,

automated process planning is traditional derived from recognized
manufacturing features on CAD models. Feature recognition inter-
prets a part in terms of manufacturing features, such as slots, holes,
and pockets. Popular approaches to this problem include graph-
based, volumetric decomposition, and hint-based feature recogni-
tion. All of them utilize exact topology and geometry provided by
solids to generate manufacturing features. Graph based approaches
extract the topology of the model as a graph (faces as vertices and
edges as edges), then recognize subgraphs that compose features.
Hint based approach search for features through the set of hints on
the models, and then employ a completion procedure according to
the nearby geometry and topology to generate manufacturing fea-
tures. Topology and geometry of solid models directly influence
the manufacturing process based classifications.

3.3 Functional

Functional classification describes how engineering artifacts are
used. This classification ties a part directly to its application. High
level semantics of parts becomes the key attributes for compari-
son and classification. Kopena et al. [Kopena and Regli 2003],
Szykman et al. [Szykman et al. 1999] and Wood et al. [Wood and
Verma 2003] attempted to model the semantics of parts formally
with knowledge representation technologies. However, it is unclear
if there is a mapping between the low level attributes (e.g. topology,
geometry and tolerance) of a CAD model and its function. Current
functional classification of CAD models are highly dependent on
human labeling. To make a connection in between the semantics
and CAD model attributes, it is essential to construct a set of la-
beled CAD models that permits one to data mine the associations
between low level model attributes and functionalities.

4 The Datasets

Synthetic models and models of actual artifacts are provided in the
proposed CAD dataset. To assist classification, datasets are de-
signed to test the sensitivity with regards to geometry, topology,
relevant attributes to appearance, and manufacturing classification.
Synthetic models are artificial models tailored for testing behaviors
of classification systems to a particular geometry or topology. Ac-
tual artifacts are sampled and classified from the National Design
Repository. This dataset consists of manufacturing and functional
classified models. Furthermore, a LEGO c© dataset presents an ex-
ample of a homogeneous model set. All models are provided in
ACIS SAT, STEP, and VRML formats. Each dataset will be pre-
sented with a sample view and statistics showing the average size
of a model in the dataset under different file formats, average face
counts for for solid representations (SAT and STEP), as well as,
average polygon counts for shape representations (VRML).

4.1 Synthetic Datasets

Synthetic models are provided to test the behaviors of model re-
trieval systems towards specific topological attributes in the interest
of CAD/CAM. These synthetic models are created by the ACIS
solid modeler in both SAT and STEP formats. The corresponding
VRML shape models are then faceted by Sat2VRML 1. The Syn-
thetic Datasets combine two sets of data: Primitive Dataset which

1http://gicl.cs.drexel.edu/sat2vrml/
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contain models with variations of geometry; and Minor Topologi-
cal Variation Dataset that includes objects with minor variations of
topology.

4.1.1 Primitive Dataset

Cubes, cylinders, tori, and spheres with various deformations are
created to test retrieval systems’ behavior on topological and geo-
metrical classifications among the same models. To distort just the
geometry, but retaining topology, unit primitives are blended and
scaled in x,y,z directions to create 296 models. The set consists of
101 cubes, 141 cylinders ,29 tori, 29 spheres. Two different classi-
fications are produced:

• Group models by their types (Topologically similar group-
ings, e.g. groups: Cubes, Cylinders, Tori, and Spheres)

• Group models by their deformations (Geometrically similar
groupings. e.g. groups: 1×1×1, 2×1×2 and 1×1×4 )

Table 1: Statistics of the Primitive Dataset.
#Models Avg. #Faces Avg. #Polygons

Tori 29 1 2356
Spheres 29 1 1146

Cylinders 141 5 1000
Cubes 101 22 848
Total 300

Avg. SAT size Avg. STEP size Avg.VRML size
Tori 23KB 37KB 144KB

Spheres 12KB 20KB 72KB
Cylinders 21KB 47KB 48KB

Cubes 27KB 39KB 40KB

Groupings Tori Spheres Cylinders Cubes

1×1×1

2×1×1

Figure 1: Examples of Models from the Primitive Models Dataset.

Figure 1 gives a sample view of this dataset, and Table 1 shows a
brief summary of this dataset it is available at:
http://www.designrepository.org/datasets/primitives.tar.

gz.

4.1.2 Minor Topological Variation Dataset

This dataset consists of rectangular boxes with a differing numbers
of holes. They are designed to test the behavior of retrieval systems
under minor topological variations. It evaluates the effect of varying
simple features, such as holes on rectangular boxes.

Figure 2 gives a sample view of the dataset and Table 2 shows a
brief summary of this dataset it is available at:
http://www.designrepository.org/datasets/bricks.tar.gz

and
http://www.designrepository.org/datasets/cubes.tar.gz.

Cubes-Holes Sixteen (16) cubes were modeled with a different
numbers of holes (1, 2, 3, or 4 holes). Holes were made with a
different radii, in addition, each model is constructed with holes
with the same radii. The models are organized into four groups by
the number of holes in each model. Figure 2(a) shows an example
of a cube model from the dataset.

Brick-Holes Eleven (11) rectangular box models with zero to
four holes of the same size in different locations were created: one
model with no holes, four models with one hole, three models with
two holes, two models with three holes, and one model with four
holes, as shown in Figure 2(b). Similar to the previous dataset, the
models were grouped by their respective number of holes.

Table 2: Statistics of the Minor Topological Variation Dataset.
#Models Avg. #Faces Avg. #Polygons

Bricks 11 8 194
Cubes 16 9 263
Total 27

Avg SAT size Avg STEP size Avg VRML size
Bricks 6KB 17KB 10KB
Cubes 6KB 19KB 12KB

(a) A two holed
cube from the
Cubes-Holes
dataset.

(b) One and three holed bricks
from Brick-Holes dataset.

Figure 2: Examples of Models from the Minor Topological Varia-
tion Dataset.

4.2 Actual Artifacts Dataset

In addition to synthetic models, models of actual artifacts are also
provided, namely, mechanical engineering parts available from the
National Design Repository and LEGO c© pieces. The National De-
sign Repository models were sampled from industrial CAD data
and grouped under multiple classification schemes. LEGO c© parts
and assemblies are provided as an example of homogeneous part
families with repeating features. In addition, models with various
settings of fidelity are provided for benchmarking the retrieval tech-
niques that operate on models in polyhedral representation.

4.2.1 The National Design Repository Dataset

CAD models in this dataset are collected from industry, and can
be obtained through the publicly available National Design Repos-
itory. Two sets of models are hand classified under two classifi-
cation schemes: (1) Manufacturing classification, a binary classi-
fication for prismatic machined or cast-then-machined parts. (2)
Functional classification, a multi-category classification of brack-
ets, gears, screws, springs, nuts, housing, and linkage arms. A sam-
ple view of the National Design Repository CAD models is shown
in Figure 3.
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Figure 3: Examples of Models from the National Design Repository.

Manufacturing Classification Dataset This dataset was
classified by hand into (1) prismatic machined parts and (2) parts
that are first cast and then have their finishing features machined.
The engineering rationale in this classification is that parts that
are exclusively machined are usually high-precision parts, or parts
made in small batches (i.e., for custom jobs). Cast-then-machined
parts are typically from larger production runs and generally have
much looser tolerance considerations for the non-machined sur-
faces of the object. In this case the investment of the physical plant
is larger, as is the manufacturing production plan (i.e., one needs to
machine a mold with which to do casting). Figure 4 shows a sample
of this dataset, and Table 3 shows a brief summary of this dataset it
is available at:
http://www.designrepository.org/datasets/machined.tar.bz2

and
http://www.designrepository.org/datasets/cast.tar.bz2.

Table 3: Statistics of the Manufacturing Classification Dataset.
#Models Avg. #Faces Avg. #Polygons

Prismatic Machined 56 106 3600
Casted-then-Machined 54 80 3447

Total 110

Avg. SAT size Avg. STEP size Avg. VRML size
Prismatic Machined 146KB 233KB 162KB

Casted-then-Machined 277KB 314KB 159KB

Functional Classification Dataset This dataset consists of
seven groups of models. Seventy (70) models are hand classified
by their role in mechanical systems. For instance, brackets
are overhanging members that project from a structure and are
usually designed to support a vertical load or to strengthen an

PRISMATIC
MACHINED

CAST-THEN-
MACHINED

Figure 4: Examples of Models from the Manufacturing Classifica-
tion Dataset.

angle. Linkage arms are motion transferring components from the
spectrometer assembly. Nuts, Screws, and Blots are commonly
used fasteners. Figure 5 shows a sample of this dataset, and Table 4
shows a brief summary of this dataset it is available at:
http://www.designrepository.org/datasets/functional.tar.

bz2.

4.2.2 LEGO c© Dataset

The LEGO c© dataset aims to provide a benchmark for a part fam-
ily composed of homogeneous features. This dataset consists of
LEGO c© pieces from the popular LEGO c© Mindstorms c© robotics
kit. The remarkable characteristic of this dataset is that all LEGO c©

components are composed with a fixed set of features. In addition,
these features exhibit explicit interactions between one another. For

279

http://www.designrepository.org/datasets/machined.tar.bz2
http://www.designrepository.org/datasets/cast.tar.bz2
http://www.designrepository.org/datasets/functional.tar.bz2
http://www.designrepository.org/datasets/functional.tar.bz2


Table 4: Statistics of Functional Dataset.
#Models Avg. #Faces Avg. #Polygons

Brackets 9 45 911
Gears 12 169 4045

Housings 6 218 5141
Linkage Arms 13 30 1282

Nuts 7 8 518
Screws and Blots 18 15 431

Springs 5 161 7933
Total 70

Avg. SAT size Avg. STEP size Avg. VRML size
Brackets 56KB 100KB 41KB

Gears 458KB 525KB 191KB
Housings 300KB 450KB 250KB

Linkage Arms 62KB 100KB 57KB
Nuts 13KB 19KB 31KB

Screws and Blots 18KB 30KB 21KB
Springs 620KB 960KB 440KB

FUNCTIONAL
CLASSIFICA-

TION
Linkage Arms Housings Brackets

Nuts Gears Screws Springs

Figure 5: Examples of Models from the Functional Classification
Dataset.

instance, a pin on the top of the plate can fit in a hole on another
piece. Forty seven (47) LEGO c© components were modeled in
ACIS and classified into four categories according to their appear-
ance. The groups are named as follows: plates, wheels and gears,
cylindrical parts and X-shape axles. Figure 6 gives a sample view
of the dataset, and Table 5 shows a brief summary of this dataset it
is available at:
http://www.designrepository.org/datasets/legos.tar.gz.

Table 5: Statistics of the LEGO c© Dataset.
#Models Avg. #Faces Avg. #Polygons

Plates 30 69 3328
Wheels-Gears 4 256 2536

Cylindrical Parts 6 30 886
X-Shape Axles 7 10 204

Total 47

Avg. SAT size Avg. STEP size Avg. VRML size
Plates 40KB 130KB 146KB

Wheels-Gears 40KB 63KB 14KB
Cylindrical Parts 43KB 94KB 57KB
X-Shape Axles 8KB 24KB 10KB

The performance of retrieval systems on the models with homoge-
neous features can be assessed by the LEGO c© dataset. This dataset
is designed to be especially useful for systems employing feature
extraction in the process of retrieval.

(a) Deep
Plate 2X3

(b) Wheels-
Gears

(c) Cylindri-
cal Parts

(d) X-Shape
Axles

Figure 6: Examples of the LEGO c© Dataset.

4.2.3 Variable Fidelity Dataset

Lastly, a set of models with various fidelity settings is included to
test the robustness of shape based retrieval systems. Polygon mesh
representation of the CAD data can serve as a means to compare
CAD models between different file formats. This allows shape
based model techniques to compare CAD models created by dif-
ferent CAD systems without complex data exchange. Due to the
approximated nature of shape models, the fidelity of shape models
depends on the granularity of the faceting process.

To create this dataset, 40 CAD models classified by part families
were used. Each of them was faceted by ACIS for three instances
with different normal tolerances (50, 15, 5), resulting in 120
models. Figure 7 shows the mesh of an example model under
different fidelity settings. Lowering the normal tolerance will cause
the faceting component to approximate a parametric surface with
more polygons, hence increasing the fidelity of the resulting shape
model. Ideally, a robust retrieval system should be indifferent
to fidelity variations of meshes. Models in this dataset are only
provided in VRML format, because fidelity only affects the
approximated mesh representation of a model. Table 6 shows a
brief summary of this dataset it is available at:
http://www.designrepository.org/datasets/refinement.tar.

gz.

Table 6: Statistics of Variable Fidelity Dataset.
# Models Avg. # Polygons Avg VRML size

High 40 18416 850KB
Normal 40 5908 275KB

Low 40 2699 117KB
Total 120

5 Evaluation Procedure

The datasets is used to show and compare characteristics of differ-
ent retrieval techniques. The following experiments aim to show
how the proposed dataset does test retrieval techniques in the inter-
est of CAD/CAM.

5.1 Experimental Protocol

Nine solid and shape based comparison techniques were evaluated.

• Shape based techniques

– Shape distributions (SD). [Osada et al. 2002]

– Shape distributions with point pair classifications (SD-
Class). [Ip et al. 2002]
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(a) Low Fidelity,Normal Tolerance = 50

(b) Normal Fidelity, Normal Tolerance = 15

(c) High Fidelity, Normal Tolerance = 5

Figure 7: Variable Fidelity Dataset. Three Copies of the Same
Model under Different Fidelity settings.

– Reeb graph comparison (Reeb). [Hilaga et al. 2001]

– Shape distributions with weights learning (SD-
Learn). [Ip et al. 2003]

– Scale-Space comparison (Scale-Space). [Bespalov et al.
2003]

• Solid based techniques

– B-Rep based techniques

∗ Invariant topological vector (ITV). [McWherter
et al. 2001]

∗ Eigenspace indexing on B-Rep graphs
(Eigen-BRep). [Peabody 2002]

– Feature based techniques

∗ Model dependency graph approximate matching
(MDG). [Cicirello and Regli 2002]

∗ Eigenspace indexing on machining feature inter-
action graphs (Eigen-Feat). [Peabody 2002]

Note that feature based techniques are only applicable to models of
actual artifacts with explicit machining feature interactions. Fea-
ture based experiments were not performed on synthetic datasets
nor LEGO c© dataset, as they either contain no machining feature
(primitive datasets) or the features do not interact (Minor topologi-
cal variation dataset, LEGO c© datasets).

Machining features and feature interactions of actual artifacts were
extracted by Honeywell FM&T’s FBMach feature recognition sys-
tem. FBMach decomposes an ACIS part into STEP AP 224 vol-

umetric machining features. These features are typically used for
process planning and for programming CNC machine tools. Fea-
ture interaction graphs and model dependency graphs used by, re-
spectively, the Eigen-Feat and MDG techniques, are constructed by
using these FBMach features. The recognized machining features
map to the graph’s vertices. Interactions between the features were
detected by testing intersections among the feature volumes. These
interactions map to the edges and complete the respective graphs.

The performance of various techniques are evaluated by the k-
nearest neighbor classification (kNN), and conventional recall and
precision measures for evaluating information retrieval systems.
The recall and precision values at different thresholds are computed
as follows:

recall =
Retrieved and Relevant models

Relevant models

precision =
Retrieved and Relevant models

Retrieved models

The kNN classification labels a query model with the categories
of its k closest neighbors, where k is the threshold for classification.
The numbers of labeled categories potentially increase and decrease
with respect to k.

Under this experimental setting, the factors of recall and precision
computation become:

• Relevant models: The number of models that fall in to same
category as the query model.

• Retrieved models: The number of models returned by a query.

• Retrieved and Relevant models: The number of models re-
turned and that fell into the same category as the query model.

Recall and precision values were first computed per model at dif-
ferent k values. For each k, the arithmetic mean of the recall and
precision between all models in a dataset was used as a represen-
tative value. To illustrate the results, precision is plotted against
recall on different datasets and comparison techniques.

Ideally, a retrieval system should retrieve as many relevant models
as possible, both high precision as well as high recall are desirable.
A precision-recall graph plots precision against recall. It shows the
trade-off between precision and recall. Trying to increase recall,
typically, introduces more irrelevant models into the retrieved set,
thereby reducing precision. Rightward and upward precision-recall
curves indicates a better performance.

5.2 Experimental Results

Rather than having a competitive evaluation to demonstrate one
retrieval technique outperforming the others, experimental results
show each retrieval technique possesses different strengths produc-
ing satisfactory performance on some but not all synthetic model
evaluations. Under the manufacturing classification dataset of ac-
tual artifacts, all evaluated techniques produced unsatisfactory per-
formance, indicating there is a need for further research in the in-
terest of CAD/CAM models retrieval.

5.2.1 Synthetic Datasets

Cube-Holes and Brick-Holes Dataset On this topologically
invariant synthetic datasets, graph and solid model based ITV and
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Eigen-BRep performed the best on the Cube-Holes, Figure 8(a),
and Brick-Holes, Figure 8(b). However, reeb graph technique per-
formed better than the other shape based techniques. In these two
datasets, models are composed with either holes in different loca-
tions or different diameters exclusively. The results demonstrated
the difference in topological sensitivity in between solid, graph and
shape based techniques. Solid and graph based ITV and Eigen-
BRep captured better invariant topology. Among shape based tech-
niques, the reeb graph technique produced a better precision recall
than the other shape based techniques.

Primitive Dataset Under deformation classifications, shape-
based techniques, and namely the shape distribution technique was
the most effective one, as shown in Figure 8(d), whereas ITV and
Eigen-BRep performed the best on type classification of the primi-
tives, Figure 8(c).

The deformation classification grouped models based on their ge-
ometry. For instance, unit primitives were grouped together, long
cylinders, and long bricks formed another group. Shape distribution
technique performed best on this classification as it was sensitive to
gross geometric similarities between models.

Type classification grouped models together according to their
topology. For example, bricks, cylinders and ellipsoids formed
different categories. ITV, Eigen-BRep capture similar topological
structures and are the most effective techniques for this classifica-
tion.

The primitive dataset demonstrated that the performance of retrieval
techniques depends on the model classification schema. Moreover,
the performance of retrieval techniques can vary drastically.

5.2.2 Actual Artifacts Datasets

Manufacturing Classification Dataset All retrieval tech-
niques performed similarly on manufacturing classification dataset,
Figure 9(a). However, Eigen-Feat and MDG show slightly better
performance than the rest of the techniques. The precision fell to
50%, which is close to random for binary classifications, at a low
recall rate, showing the techniques are not able to classify the mod-
els properly. The result questions the discrimination power of the
tested techniques on prismatic machined and cast-then-machined
classifications, indicating that there is a need for further work for
this classification.

Functional Classification Dataset In contrast to manufac-
turing classification dataset, the performance of retrieval techniques
remained steady, with the exception of scale-space and MDG re-
trieval, Figure 9(b). A steep slope of the precision-recall curve
shows the technique’s precision was low even under low recall set-
tings.

LEGO c© Dataset The Scale-space technique performed slightly
better on the LEGO c© dataset than the other techniques with a high
recall settings, Figure 9(c). The LEGO c© dataset provides an exam-
ple of models comprised of repeating features. This special prop-
erty allows the scale-space technique to extract the repeating fea-
tures during its decomposition process.

Variable Fidelity Dataset The precision-recall performance of
shape based techniques remained stable, despite the variable fidelity
of mesh models. In the evaluations of this dataset, the performance

of each technique was compared against itself across meshes of dif-
ferent fidelity settings, Figure 10. In addition, the performance of
the techniques was compared against one another for each fidelity
setting, Figure 11. In Figure 10, no significant performance degra-
dation is noticed among reeb graph and shape distribution tech-
niques, where scale-space retrieval improved as the mesh fidelity
increased. Figure 11 shows that the techniques maintained relative
performance across different fidelity settings. However, there was
a slight change in performance for scale-space and reeb graph tech-
niques: scale-space was relatively less accurate on lower fidelity
meshes while reeb graph gains in relative accuracy on low fidelity
meshes. (Solid based techniques using parametric models as input
are irrelevant for this test.)

6 Discussion

While the results, as expected, reveal a wide variability in the per-
formance of the different techniques across different datasets, some
observations can be made.

• Boundary Representations are very useful. In Figures 8(a-
c), techniques based on the boundary representation data
structure of the CAD object dominate techniques based on
a mesh-based representation. Much of the current literature
chooses to ignore the traditional CAD representation and at-
tempt to perform matching and search using only low level
voxel or faceted representations. This data would indicate that
reverting to a VRML mesh when a boundary representation is
available creates uniformly poorer results. All CAD objects
have a boundary representation inside the CAD environment,
hence this data argues for improving how the boundary rep-
resentation, whenever it is available, can be better used for
matching.

• Manufacturing classifications are an open challenge prob-
lem. Figure 9(a) shows that all of the techniques perform un-
acceptably when asked to classify objects as cast or prismat-
ically machined parts. Readers may feel that this distinction
is too subtle, in actuality this distinction is readily identifiable
in the micro-geometry of the objects themselves. Further, this
a binary classification—the simplest possible. Considerable
research needs to be performed before classifiers will be able
to distinguish among objects across a wider variety of manu-
facturing processes.

• Functional classifications are an open challenge problem.
Figure 9(b) shows mediocre results when the techniques are
asked to discriminate among objects of different functional
classes. It is a common maxim that shape follows function in
engineering, not vice versa. Hence, it is not surprising that try-
ing to distinguish functional classes from shape would prove
hard. However, it is surprising that these techniques would
perform so poorly when given a set of functional classes (Fig-
ure 5) that are so distinct in shape.

• Develop more feature-based techniques. The bright spot in
Figure 9(a) is that the two techniques that compare objects
based on machining features performed the best at discrim-
inating across manufacturing processes. We believe this in-
dicates that a more fine-tuned feature set and feature recog-
nition method could produce significantly better discrimi-
nation across classes. Further, if we could be given fea-
tures that related to engineering function, we would expect
the feature-based techniques to dominate in example of Fig-
ure 9(b) as well.
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Figure 8: Precision-Recall Graphs on Synthetic Datasets.

It is important to note that the experiments in this paper look at
only those techniques that operate on topology and geometry data.
Techniques based on voxelization (Zernikie descriptors, spherical
harmonics, etc) are not suitable for these datasets.

7 Conclusions

This paper introduced several datasets for use in comparing the per-
formance of 3D search techniques in the domain of CAD models.
Based on these datasets, the paper presents a study of nine (9) dif-
ferent 3D shape and solid model matching techniques and their per-
formances on these datasets. In general, most of the technique per-
formed poorly on CAD objects. Based on these results, the authors
offer several challenges for future work in Section 6.

A contribution of this research is the establishment standard
datasets for evaluating model retrieval techniques on CAD/CAM
artifacts. Additionally, we provided datasets that test the topolog-
ical and geometrical sensitivity of retrieval techniques, as well as
those that illustrate the challenges of multiple classifications. It is
our belief that these CAD datasets can provide a standard and acces-
sible testbed to facilitate the development, comparison, and evalu-
ation of model retrieval techniques of interest in the CAD/CAM

domain.
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