

NVIDIA Corporation | 1

NVIDIA nfiniteFX Engine:
Programmable Vertex Shaders

NVIDIA Corporation | 2

The NVIDIA nfiniteFX Engine:

The NVIDIA® nfiniteFX? engine gives developers the ability to program a virtually infinite number
of special effects and custom looks. Instead of every developer choosing from the same hard-
coded palette of effects and ending up with the same generic look and feel, developers can
specify personalized combinations of graphics operations and create their own custom effects.
Games and other graphics-intensive applications are differentiated and offer more exciting and
stylized visual effects. Two patented architectural advancements enable the nfiniteFX engine’s
programmability and its multitude of effects: Vertex Shaders and Pixel Shaders. This paper
covers the engine’s programmable Vertex Shaders.

Programmable Vertex Shaders:
The Next Generation of Geometry Processing
The advancement of graphics processing technology continues to provide users with increasingly
realistic and detailed real-time 3D graphics. With the introduction of NVIDIA’s groundbreaking
nfiniteFX engine, programmable Vertex and Pixel shaders were unleashed on the graphics
community. Programmable Vertex Shaders are a prime example of the new functionality in graphics
processor units (GPUs) that enables a virtually unlimited palette of real-time visual effects.
Requiring complex computations, these effects were previously possible only with “offline” rendering
using server farms. The addition of programmable Vertex Shaders to consumer graphics processors
ushers in stunning PC graphics.

What is a Vertex Shader?
A Vertex Shader— a graphics processing function— adds special effects to objects in a 3D graphics
scene. A programmable Vertex Shader lets developers adjust effects by loading new software
instructions into the Vertex Shader memory. Vertex Shaders perform mathematical operations on
the vertex data for objects. Each vertex is defined by a variety of data variables. At a minimum,
each vertex has associated with it x, y, and z coordinates that define its location. A vertex may also
include data for color, alpha-channel, texture, and lighting characteristics such as specular color.
See Figure 1 for a visual example of a vertex and some of its associated data.

NVIDIA Corporation | 3

Figure 1 A Vertex and Vertex Data

Example: Vertex Data
position: {X, Y, Z, W}
color: {R,G,B,A}
texture1: {S, T, R, Q}
texture2: {S, T, R, Q}
.....
texture-n: {S, T, R, Q}
fog: {R,*,*,*}
Specular color {P,*,*,*}

R = red
G = green
B = blue
F = fog intensity
P = point size
S,T,R,Q = texture parameters

a vertex

two more vertices

Example: Vertex Data
position: {X, Y, Z, W}
color: {Red, Green, Blue, Alpha}
texture1: {S, T, R, Q}
texture2: {S, T, R, Q}
.....
texture-n: {S, T, R, Q}
fog: {F}
specularity: {P}

a vertex

two more vertices

A Vertex Shader can be considered a magic box— vertex data is fed into the box and different vertex
data comes out. Every vertex that goes in comes out, but it may have changed while it was in the
Vertex Shader box. Vertex Shaders do not create or delete vertices, but simply operate on, and
change the values of, the data that describe each vertex. The vertex that emerges has a different
position in space, a different color, is more or less transparent than it was before, or has different
texture coordinates. All of these vertex changes, computed one vertex at a time, create the special
effect for the overall object.

A specific vertex doesn’t have to change as it goes through the Vertex Shader. A Vertex Shader
may be programmed to change only vertices that have certain properties or it may be programmed
to change every vertex in the same way. Programmers have the flexibility to use a Vertex Shader in
one way on one object (creating one effect), and then reprogram the same Vertex Shader to apply
an entirely different effect on the next object. (See Figure 2.) This programmability is discussed in
more depth later in this paper.

NVIDIA Corporation | 4

Figure 2 A Programmable Vertex Shader

Vertex
Shader

Vertex 1
Vertex 2
.....
Vertex N

Vertex 1a
Vertex 2a
.....
Vertex Na

Load a
Vertex Program for Special Effect “A”

Vertex
Shader

Load Next
Set of

Vertices

New
Vertices

Out

Load Next Vertex Program
(for Special Effect “B”)

Why Haven't Vertex Shaders Been
Available Before Now?
Until now, Vertex Shaders were too complex to be included in GPUs. However, with the introduction
of the NVIDIA nfiniteFX engine, programmable Vertex Shaders are now available, for the first time,
in a GPU. Vertex Shaders are most powerful when combined with a programmable Pixel Shader.
Pixel Shaders are discussed in a separate NVIDIA technical brief, NVIDIA nfiniteFX Engine:
Programmable Pixel Shaders. For more information on the 3D graphics pipeline, readers may refer
to Appendix A in this paper for a brief overview. Together, Vertex Shaders and Pixel Shaders offer
software developers an unprecedented level of control and flexibility over the entire graphics
pipeline.

NVIDIA Corporation | 5

Figure 3 The Graphics Pipeline Greatly Simplified

Pgrmble
Vertex
Shader Triangle

Setup

Hardwired
T&L

Pixel
Rendering

Texturing

Mathematically, Vertex Shaders are a natural extension of the hardwired transformation and lighting
engines of previous GPUs. The output of the Vertex Shader is a fully transformed and lit vertex. If a
specific GPU has a hardwired transformation and lighting engine in addition to the programmable
Vertex Shader, the hardwired engine will be idle when the Vertex Shader is used. This may seem
extravagant, but it ensures better compatibility for legacy applications on the new hardware. GPUs
that do not combine the fixed-function transformation and lighting engine with the Vertex Shader
may suffer from incompatibility problems. Figure 3 shows the parallel relationship of the Vertex
Shader and the traditional, hardwired transformation and lighting (T&L) engine.

The addition of Vertex Shaders to high-volume consumer and professional GPUs gives users access
to this functionality for the first time. Vertex Shader operations are computationally complex and
require such specific hardware structures that it is inefficient to use a microprocessor for these
functions. If attempted on a microprocessor, performance is several times slower than on a GPU
with a programmable Vertex Shader. That performance difference relegates Vertex Shader
operations on microprocessors to offline rendering applications such as movie special effects. For
users who demand fluid, interactive frame rates, the use of Vertex Shader operations requires a
GPU with that capability.

User Benefits and Effects Possible
From a Programmable Vertex Shader
Programmable Vertex Shaders enable a virtually infinite list of visual effects without sacrificing real-
time frame rates. While general-purpose microprocessors avoid specialization, GPUs with Vertex
Shaders are architected to optimally process graphics functions. Specialized graphics processing
units are superior to general purpose CPUs for graphics operations, measured in terms of pure
performance, or architectural efficiency. The key categories of effects made practical by Vertex
Shaders are described in the following sections, with many specific picture examples, grouped by the
high-level user benefits.

NVIDIA Corporation | 6

Complex Character Animation
Vertex Shaders create skin and clothing
more realistically. They stretch and
crease properly at the joints like elbows
and shoulders.

Facial animation can now include
dimples or wrinkles that appear when
the character smiles, and disappear
when the smile disappears.

Lots of bones and muscles can be used
to model characters as programmable
Vertex Shaders allow up to 32 control
matrices. That means up to 32
individual bones and muscles can be
used to define individual components of
a character’s skeleton, with the
possibility of hundreds or even
thousands of total bones per character.

Keyframe animation uses a collection of
control points whose locations are
specified at various time intervals. The
frame of animation at those specified
moments in time are the keyframes.
Vertex Shaders calculate all of the
animation in between the keyframes in
real time— the animation is smooth and
blends seamlessly with the pre-defined
keyframes. Faster hardware will render
more interim frames, creating smoother
animation, but won't finish the animation
sequence any sooner than slower
hardware. This differentiates keyframe
animation from morphing, which is
described later in this paper.

NVIDIA Corporation | 7

Environmental Effects
Elevation fog or smoke can mimic the
thick fog that forms in valleys and other
low-lying areas or even heavy smoke in
a room. Large objects like hills, or
smaller objects like a table and chairs,
can stick up out of the fog/smoke
because a Vertex Shader can apply
effects selectively based on the height
or elevation of each vertex in the object.

Image courtesy of Microsoft

Whether your scene includes a pond or
an ocean, caustics and other refraction
effects are essential for creating
realistic water in a 3D scene. Note the
pattern of light refracted from the
unseen surface of the water above.
Vertex Shaders can model the light
refraction and/or project a texture in 3D
space so that the light pattern falls on
the objects realistically.

Heat-wave effects are another example
of environmental effects enabled by
Vertex Shaders. Imagine being in
Death Valley, Arizona in August— you
might hallucinate a stegosaurus like the
picture at right.

NVIDIA Corporation | 8

Procedural Deformation

Procedural deformation, calculated by
Vertex Shaders, can add movement to
otherwise static objects. For example, a
flag can wave in the breeze, or an animal’s
chest can expand and contract to simulate
breathing.

The effect of procedural deformation can
also be static rather than dynamic, like the
bumps formed in a metal object from the
impact of high-caliber bullets. Imagine a
shooting game where the bullets leave
lasting impressions, or a driving simulation
that models realistic damage to your car
after a collision.

NVIDIA Corporation | 9

NVIDIA Corporation Confidential 10

Morphing
Morphing is another animation technique similar to keyframe animation. Using different
versions of an object, the Vertex Shader blends the positions of each vertex on two images.
For example, with the dolphins below, the Vertex Shader blends the position of each vertex
in dolphin #1 with the positioning of the same vertices in dolphin #2 to create the middle,
morphed dolphin. The middle dolphin exists only as a temporary blend of the other two.
The morphed dolphin’s geometry is never stored permanently. It is recreated immediately
before it is needed. The result is a smooth animation sequence as the dolphin morphs from
one tail position to the next. A morphing animation is usually not keyed to real-time events,
so faster graphics hardware will result in more dolphin kicks per minute rather than more
rendered frames per kick. Changing the blending parameters will affect the number of
intermediate dolphins that are created between the tail-down and the tail-up versions. The
speed of the animation can be controlled to make the dolphin's pace appear natural.

Dolphin #1 Morphed Dolphin Dolphin #2

 Images courtesy of Microsoft

Motion Blur

Vertex Shaders can be used to create a
variety of motion effects. Blurring an
object creates an impression of super-
speed like an action hero that moves at the
speed of light or a space ship that is
accelerating to warp speed.

NVIDIA Corporation Confidential 10

Lens Effects
Custom transforms can be programmed into Vertex Shaders to produce the effects associated with
optical lenses. Note the effect below: a normal transform on the left, and the fish-eye lens transform
on the right. Whether simulating a view through a virtual security peephole in a front door, or the
viewfinder for an international spy scooping out an enemy compound, a fish eye lens effect can
heighten the realism of the 3D scene.

Other custom transform operations could simulate the thick glass of a World War II bomber's
cockpit, the lens characteristics of a pool of water, and a variety of other visual effects.

Custom lighting effects
Two-sided lighting is another effect realistically
delivered by Vertex Shaders. Not all GPUs are
capable of lighting the back side of a triangle;
the inside of any hollow object just doesn't show
up on the screen. To solve this problem, artists
must model the inside of the object to be
displayed. That requires twice as many
triangles for the same object. Two-sided
lighting provides a better solution by allowing a
single surface to have different lighting
characteristics on either side

NVIDIA Corporation Confidential | 11

Programmability
The most powerful Vertex Shaders are programmable, with a complete instruction set and registers that a
programmer can tailor to specific needs. Programmability is required to meet the Microsoft® DirectX™ 8
application programming interface (API) specification, and it enhances a Vertex Shader by enabling
extensibility and re-configurability.

A programmable Vertex Shader is extensible because a programmer can write a new vertex program and
achieve a new and unique result. An analogy would be ordering a meal in restaurant— do you choose your
meal from a menu of standard fare or do you ask the chef to create something unique? A programmable
Vertex Shader does not have specific effects hard-coded, like a fixed menu. It does have the proper
ingredients— instructions and registers— so the chef (or programmer) can create a unique experience for the
user.

Programmability in a Vertex Shader also increases the total computational power that can be applied to any
specific task, because it is re-configurable. A programmable Vertex Shader can be programmed to process
multiple tasks in parallel or to focus all of its computational capability on a single task for a fraction of a
second before moving on to the next task. This is like having a team of people that can be divided up in two
ways. Either each person performs a specific task, or the entire team can be applied to a single task in order
to achieve something impossible to be done by one person. For example, imagine several people unloading
several trucks. Each person might be responsible for unloading a single truck, but if there are objects that
require multiple people to lift them, a single person could never unload a whole truck without help from
others. The total amount of work done doesn’t depend on how many people are applied to the task, but
having enough people is essential. Likewise, some graphics operations such as 32-matrix skinning are so
computationally complex that they are impractical to accomplish with dedicated hardware. It takes so many
transistors to process the function, that if those same transistors can't be reconfigured (or reprogrammed) for
other functions, the feature won't be implemented and won't be available. If your Vertex Shader is not
programmable, you won’t be able to do 32-matrix skinning. If your Vertex Shader is programmable, it can be
dedicated entirely to a 32-matrix skinning operation because a split second later it can be re-configured for a
different vertex processing function. This versatility is crucial for enabling the most complex special effects
while keeping the overall graphics solution affordable.

Conclusion
The addition of programmable Vertex Shaders to consumer graphics processors shakes up the PC graphics
market--visual quality takes a quantum leap forward. The NVIDIA nfiniteFX engine delivers a fully
programmable vertex (and pixel) shading solution for real time 3D graphics. With the introduction of
programmable Vertex Shaders, real-time 3D graphics content takes a major step towards cinematic realism,
by offering content developers the ability to create their own programs, essentially special effects, to define
new realities, and push the boundaries of image quality. Game players and other application users can enjoy
stunning visual effects that were previously limited to pre-rendered video clips or movie screens, further
blurring the line between the linear world of the movie, and the dynamic and interactive world of the
interactive experience. Graphics and gaming will never be the same.

NVIDIA Corporation Confidential | 12

Appendix: The 3D Graphics Pipeline
The mathematical functions that must be performed to display 3D graphics are referred to as the 3D graphics
pipeline. The complete 3D graphics pipeline is complex, but the major steps include:

Step 1: Scene Database Management

This step is not part of the 3D graphics pipeline, but it is mentioned here since it must be performed
before all the other steps. Scene database management includes many application-level tasks (meaning
they are done by the 3D application) such as knowing which objects should be in the scene and where
they should be relative to other objects. The application is responsible for sending the necessary
information about objects on the screen to the software driver for the GPU. Once the information has
been sent to the GPU’s driver, it can be thought of as having entered the 3D graphics pipeline and will
proceed through the following steps. The driver then sends the information to the graphics hardware
itself.

Step 2: Higher-order Surface Tessellation

Most objects in a 3D scene are constructed of triangles because triangles are easy for GPUs to process.
Some other polygon types, such as straight lines or quadrilaterals, can be used but triangles are the most
common. Some objects are defined using curved lines. These curved lines can be very complex
mathematically because they require high-order formulas to describe them. A high-order formula is one
that has a variable that is raised to a power, such as x2. Examples of linear formulas would be y = x+1
or y = 2x+1. A similar example of a high-order formula would be y = x2+1. Objects that are defined by
high-order surfaces must be broken down into triangles before they can be sent to the next functional unit
in the GPU. For this reason, the Surface Engine in a GPU is the first hardware function. Its purpose is
to break higher-order lines and surfaces down into triangles.

Step 3: Vertex Shading including Transform and Lighting

Once an object is defined as a set of triangles (triangles are defined by specifying their vertices or the
corners), the Vertex Shader function of the GPU is ready to do its job by applying custom transform and
lighting operations. Because vertex shading is the subject of this paper, it is not described any further in
this section other than the following general descriptions of transform and lighting.

Transform. As objects move through the 3D pipeline, they often need to be scaled, rotated or moved
(translated) to make them easier to process or simply put them in the right place relative to other objects.
The transform engine mathematically performs these scaling, rotation and translation chores using
matrix multiplication.

Lighting. The lighting step is the calculation of lighting effects at each vertex of each triangle. This
includes the color and brightness of each light in the scene and how it reacts with the color and
specularity (glossiness) of the objects in the scene. These calculations are performed for every vertex in
the 3D scene, so they are sometimes referred to as “vertex lighting.”

NVIDIA Corporation Confidential | 13

Step 4: Triangle Setup

Triangle setup involves taking vertices and triangles and breaking them down mathematically into pixels
or fragments. Note that fragments can be pixels or can be smaller than pixels. The sole purpose of this
function is to take data as it comes out of the transform and lighting engine and convert it mathematically
so the pixel shading engine can understand it.

Step 5: Pixel Shading and Rendering (including texturing)

Pixel shading and rendering include all of the complex pixel-level calculations to determine what the final
color of each pixel should be. Information from the transform and lighting engine is used to determine
what the pixel color should be based on the object color and the various lights in the scene. Next, the
pixel shading and rendering functions must consider the additional changes to the pixel color based on
what textures should be applied. These textures can describe color changes, lighting changes,
reflections from other objects in the scene, material properties, and lots of other changes. For more
detail on pixel shading technology, see the NVIDIA technical brief on the subject. The final task of the
pixel rendering engine is to store the pixel in the frame buffer memory.

Step 6: Display

For the last stage in the 3D graphics pipeline, the display controller reads the information out of the
frame buffer and sends it to the driver for the selected display (CRT, television display, flat-panel display,
etc.).

