On the Translatability of View Updates

Enrico Franconi and Paolo Guagliardo

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
<surname>@inf.unibz.it

Abstract We revisit the view update problem and the abstract func-
tional framework by Bancilhon and Spyratos in a setting where views and
updates are exactly given by functions that are expressible in first-order
logic. We give a characterisation of views and their inverses based on the
notion of definability, and we introduce a general method for checking
whether a view update can be uniquely translated as an update of the
underlying database under the constant complement principle. We study
the setting consisting of a single database relation and two views defined
by projections and compare our general criterion for translatability with
the known results for the case in which the constraints on the database
are given by functional dependencies. We extend the setting to any num-
ber of projective views, full dependencies (that is, egd’s and full tgd’s) as
database constraints, and classes of updates rather than single updates.

1 Introduction

Updating a database by means of a set of views is a challenging task that requires
updates performed on the views to be “translated” into suitable updates of the
underlying database, in order to consistently propagate the changes on the views
to the base relations over which the views are defined.

A general and precise understanding of the view update problem is due to
the seminal work [2] by Bancilhon and Spyratos (B&S), who devise a functional
framework in which they formalise the problem and provide an elegant solution
to it. They introduce the notion of view complement, representing what is missing
from a view to have the same informative content of the underlying database.
Moreover, they introduce the constant complement principle, establishing that
the changes made on a view must not influence the content of its complement.
B&S do not provide actual methods for checking the translatability of updates
and computing their translations, asserting that “computational algorithms (if
they exist) must be sought in specific problems”.

In the context of SQL databases, Lechtenborger [12] gives a characterisation
of the constant complement principle in terms of “undo” operations, showing
that view updates are translatable under constant complement precisely if users
have the chance to undo all effects of their updates by using further view updates.
It is then argued that testing whether this holds could be an alternative to
checking whether users can observe all effects of their updates in the view schema.

Gottlob et al. [9] extend the results of [2] to the class of so-called consistent
views, which properly contains the views translating under constant complement.

154

The main difference is that, during the translation of an update on a consistent
view, the complement is not required to remain invariant, but it is allowed to
“decrease” according to a suitable partial order. Indeed, when the partial order
is the equality, the framework coincides with the one in [2].

Cosmadakis and Papadimitriou [6] consider a restricted setting that consists
of a single database relation and two views defined by projections. They provide
necessary and sufficient conditions for the translatability of insertions, deletions
and replacements under constant complement w.r.t. a specific database instance
and when the constraints on the database are given by functional dependencies
(fd’s). To the best of our knowledge, [6] is the only comprehensive work in which
the framework by B&S is applied to a relational setting. We discuss in detail
this application scenario in Sec. 4, where we extend the setting to any number of
views defined by projections, rather than just two, and more expressive database
constraints, namely full dependencies (egd’s and full tgd’s), and to classes of up-
dates rather than single updates.

In [2], the view update problem is formalised at a high level of abstraction,
where views and updates are arbitrary functions, of which no constructive char-
acterisation is given, as indeed one might not even be possible. In this paper, we
consider the view update problem at a lower level of abstraction, by revisiting
B&S’ framework in a setting where views and updates are exactly given by func-
tions that are expressible in first-order logic (FOL). Under certain conditions,
this class of functions can be constructively characterised through the notion of
logical definability, in terms of which we introduce a general method for checking
the translatability of arbitrary FO-expressible view updates. With this work we
mainly contribute the following:

— a general framework for view updating that is based on the notion of de-
terminacy and constructively revisits [2] in a setting with constraints;

— a general method, applicable whenever the inverse of a view mapping can
be constructively characterised, for checking whether a view update can be
propagated to the underlying database in a unique way;

— a practical application setting consisting of projective views of a single data-
base relation, that, although still very limited, extends the known existing
results [6] to more expressive database constraints, any number of acyclic
projective views and more general view updates.

The paper is organised as follows: in Sec. 2 we introduce some notation and
basic definitions; in Sec. 3 we present our logic-based framework and characterise
when and whether a FO-expressible view update is uniquely translatable under
constant complement; in Sec. 4 we study the case considered in [6] and generalise
the results to a more general setting; we conclude in Sec. 5 by pointing out some
future research directions. Proofs and more detailed examples are given in the
full version [7].

2 Preliminaries

An n-ary relation on a set A, where n € Ny denotes the arity of the relation, is
a subset of the Cartesian product A™, that is, a set of n-tuples of elements of A.

155

A signature is a finite set S of relation symbols and each symbols S € S has an
associated arity denoted by arity(S). A relational structure s over a signature S
is a pair (A®, %) where A® is a (possibly infinite) domain of objects and -* is an
interpretation function that associates each symbol S € S with a relation S® on
A% called the extension of S, of appropriate arity. For two relational structures
s = (A,-*) and t = (A, ') over two disjoint signatures S and &', respectively,
sWt= (A, -5U-! is a relational structure over SUS’. A constraint is a closed
formula ¢ in (some fragment of) FOL. The set of relation symbols occurring in
¢ is denoted by sig(¢) and ¢ is said to be over a signature S if sig(¢) C S. We
extend sig(+) to sets of constraints in the natural way. Sequences (i.e., tuples) are
denoted with an overline, e.g., Z, and Z[k] denotes the k-th element in Z. The
number of elements in T is denoted by |Z| and, when T is a sequence of variables,
var(Z) denotes the set of variables occurring in it.

A renaming over a signature S is a bijective function ren : § — &', where &’ is
a signature disjoint with S. We extend ren(-) to signatures, relational structures
and (sets of) constraints in the natural way. For instance, given a constraint ¢,
ren(y) is obtained from ¢ by replacing every occurrence of each relation symbol
r € sig(p) with ren(r). Clearly, for a set X' of constraints over S and a relational
structure s over ren(S), we have that s = ren(X) iff ren=1(s) = X.

A database schema is a signature R of database symbols and a database state
is a relational structure over R. A view schema is a signature V of view symbols
not occurring in R and a view state is a relational structure over V. We denote
the set of all database (resp., view) states by S (resp., T). For a database state
s € S and a view state ¢t € T having the same domain, the relational structure
sWtis called a global state over R UV. We consider a satisfiable finite set X of
global constraints over the signature RUV. A database state s (resp., view state
t) is X-consistent iff there exists a view state ¢ (resp., database state s) with the
same domain such that the global state s Wt is a model of 3. We denote the set
of X-consistent database states (resp., view states) by Sy (resp., Tx). When
X’ is understood from the context, we refer to X-consistent states generically as
globally consistent states or states that are consistent with the global constraints.

Definition 1 (View under constraints). A view from R to V under con-
straints X' is a total mapping f: Sy — Tx s.t. sW f(s) E X for every s € Sx.

Since R and V are disjoint, every model of X' has the form sWt, where s € S
and t € T are (globally consistent) states with the same domain. We say that
V' € Vis implicitly defined by the symbols in R under X if for every pair of global
states s Wt and s Wt satisfying X, it is the case that V't = V. In other words,
every two models of X (with the same domain) agreeing on the interpretation
of the symbols in R also agree on the interpretation of V.

Definition 2. R defines V under X (written R —x V) iff, for every s € S and
t,t' € T, it is the case that t = t' whenever sWt = X and sWt' |E X.

In particular, R — 5 V means that every V € V is implicitly defined by R under
Y. Weuse V-5 R, R+ Vand V4, R with the obvious meaning.

156

Person

{disjoint, complete}

Male Female

Figure1l: A UML class diagram where each class is implicitly defined by the
others (e.g., knowing all the persons and who the males are, we also implicitly
know who the females are).

A fundamental result by Beth [4] states that in FOL, whenever V is implicitly
defined by R under constraints X, there always exists an explicit definition of
V in terms of R, that is, a formula ¢ equivalent to V' under X with sig(y) C R.

Ezxample 1. Consider the UML class diagram depicted in Figure 1, stating that
(1) “a Male is a Person”, (2) “a Female is a Person”, (3) “Male is disjoint with
Female” (4) “a Person is Male or Female”. This can be expressed as a first-order
logic theory X over { Male, Female, Person} consisting of the following formulae:

(1)
) (2)

V. Male(z) — — Female(z) ; (3)
Vx . Person(xz) — Male(x) V Female(x) . (4)

. Male(z) — Person(z) ;
;

()
V. Female(m — Person(x)
((

Under the constraints in X, whenever we “fix” who the persons and the males
are, we also implicitly determine who the females are. Indeed, when Person(x)
and Male(z) are considered database predicates, Female(z) is explicitly defined
as the view Person(z) A = Male(x). That is, under the given constraints, a female
is exactly a person who is not male.

In general, there might exist more than one view mapping satisfying a given
set of constraints. An important connection between definability and views under
constraints is that the mapping is unique exactly when each view symbol can be
defined in terms of the database symbols under the given constraints.

Theorem 1. R —x V iff there is one and only one view from R to V under X.

The above theorem gives a characterisation of the views that are expressible by
means of constraints in FOL. In what follows, we write R —»]; V to indicate that
R —x Vand f is the (one and only) view induced by the constraints X from R to
V in light of Theorem 1. The surjection induced by (or surjective restriction of) a
function f is the surjective function obtained from f by restricting its codomain
to its image. We use concatenation to indicate composition, e.g., fg denotes the
composition of f with g.

The framework we will present in the next section is based on the notion of
logical definability, and relies on the fact that whenever something is implicitly

157

defined it is possible to find its explicit definition as a view in FOL [8]. Unfortu-
nately, Beth’s result [4] holds when instances are unrestricted (i.e., allowed to be
possibly infinite), while it fails [10] when considering finite instances only, which
is the usual case of interest in database applications. Clearly, when something
holds for unrestricted models it also holds in particular for finite models, there-
fore our framework is sound. On the other hand, if something holds on finite
models, it does not necessarily hold on all models, hence our approach might in
general be incomplete, in the sense that we may fail to discover invertible view
mappings and translatable view updates that are such only on finite models,
because our techniques require these properties to hold on unrestricted models.
We say that a problem is finitely controllable iff it holds true for unrestricted
models whenever it holds true for finite ones (the vice versa is always true). We
will prove that the implicit definability problem in the application scenario we
discuss in detail in Sec. 4 is finitely controllable; so, in this case, our results are
going to be sound and complete.

3 A Logic-Based Framework for View Updates

In this section, we present our framework for view updating based on the notion
of definability in logic. We first revisit some of the formal definitions given in [2],
adapting them to our logic-based setting. Next, we show that a view induced by
a set of constraints is invertible exactly when each database symbol is implicitly
defined by the view symbols under the same constraints. We then give a general
criterion for translatability in terms of a special set of view constraints that are
satisfied exactly by each and every FO-expressible translatable view update. We
conclude by discussing the notion of view complement and show how the results
on translatability extend to the case of translation under constant complement.

A database update (resp., view update) is a function d: S — S (resp., u: T —
T) associating each database state (resp., view state) with another one having
the same domain. The sets of all the database and view updates are denoted by
Ur and Uy, respectively.

Given a view under constraints and a view update, we want to find a suitable
database update that propagates the changes to the base relations in a consistent
way. More precisely, the view update should be translated as a database update
that brings the database to a new state from which, through the view mapping,
we reach exactly the updated view state. In addition, unjustified and unnecessary
changes in the database are to be avoided, in the sense that if the view update
does not modify the view state, then the database update must not modify the
corresponding database state either.

Definition 3 (Translation). Let f be a view from R to V under X, let d € Ug
and u € Uy. The database update d is a translation of u (w.r.t. f) if and only
if 1) uf = fd and 2) Vs € Sx, uf(s) = f(s) = d(s) =s.

A translation can only exist if the updated view state lies in the image of f;
otherwise, there would be no chance of reaching the new view state by means of

158

f from some database state. A view update that can be translated into a suitable
database update, i.e., for which there exists a translation, is called translatable.

Definition 4 (Translatability). Let f: Sy — Tx be a view from R to V
under X. A view update u € Uy is translatable (w.r.t. f) if and only if for each
s € Sy, there exists s’ € Sy such that f(s") = uf(s).

Translatability of view updates ensures that there exists a translation, but
does not rule out the possibility that there might be more than one. To avoid
ambiguity, we are only interested in view updates that are uniquely translatable,
that is, for which there exists one and only one translation. For injective views,
a view update is translatable if and only if it is uniquely translatable, and the
following theorem [2] gives a characterisation of the unique database update into
which a translatable view update can be translated when the view is injective.

Theorem 2. Let f be an injective view under X, let w € Uy be translatable and
let d € Ug. Let f denote the surjection induced by f and let & be obtained from
u by restricting its domain and codomain to f(Ssx).! Then, d is a translation of
u if and only if d = le{Lf.

It is possible to invert a view induced by a set of constraints iff the database
symbols are implicitly defined by the view symbols under the same constraints,
in which case the inverse is also effectively computable. In such a situation, the
constraints induce two mappings, one from the database states to the view states
and one in the opposite direction, which are indeed one the inverse of the other.

Lemma 1. Let R —»fZ V. Then, f is surjective; and f is injective iff V -5 R.
Theorem 3. Let R —% V. Then, f is invertible iff V —"% R, and h = f~'.

Given X over RUV, we denote by impl-def(R, V), X)) the problem of checking
whether R € R is implicitly defined by the symbols in ¥ under X, which amounts
to checking whether the following entailment holds:

Y Uren(X) EVZ (R(T) « R (2)) .

where ren is a renaming over R and R’ = ren(R). Note that, as R’ is simply a
renaming of R, for symmetric reasons it is sufficient to check the entailment of
only one of the implications on the r.h.s. of (3). Given a view f from R to V
induced by X, we denote by invert(), X) the problem of determining whether
f is invertible, which amounts to checking whether impl-def(R,V, Y) for each
R € R (where R is given by sig(X) \ V).

In the following, we provide an interesting characterisation of when a view
update is translatable. The idea consists essentially in imposing additional con-
straints on the view schema so that every legal view update is translatable and
vice versa. Whenever V — 5 R there exists an explicit definition for each of the

! As u is assumed to be translatable, u(f(Sx)) C f(Sx).

159

database symbols in terms of the view symbols. By substituting every occurrence
in X' of each R € R with its explicit definition we obtain a set 3, of constraints
over V which we call X\, the V-embedding of X.

Theorem 4. Let V —x R and let t € T. Then, t is X-consistent iff t = i‘y.

The V-embedding of a set X of global constraints is a set of view constraints
having the same “restrictiveness” of the whole X, but with the advantage that
they can be checked locally on the view schema. This is of particular relevance
for surjective views, in which case it turns out that such constraints ensure the
translatability of every view update satisfying them and enforce every translat-
able view update to be legal with respect to them.

Theorem 5. Let f be a surjective view from R to V under X, let V -5 R and
let w € Uy. Then, u is translatable if and only if u(t) |E Xy for everyt € Tsx.

In other words, when updating a view state that is legal w.r.t. Xy, we need to
make sure that we always end up in another legal view state.

Let ren be a renaming over RUV and let = be a set of constraints over VUV’
s.t. V —»= V', where V' = ren(V). Let =) be obtained from = by replacing, for
each symbol V' € V' every occurrence of the predicate V'(T) with its explicit
definition in terms of V. Then, the function ¢ induced by = erpresses a view
update u: T — T iff 5y is valid.? Indeed, in such a case, & takes a view state
t over V and returns an updated view state £(t) over V'. The view update u
expressed by Z is then the function associating each t € T with ren™!(£(t)).
Note that every set of constraints = over VUV’ that expresses a view update is
equivalent to a set of constraints over V U)’ consisting of exactly one formula
for each V € V of the form Vz (V(Z) <+ ¢v(T)), with sig(¢v(z)) C V.

For a view symbol V', insertion and deletion of a tuple T are represented by
the following open formulae:

inserty (Z) =Vy [V'(7) « (V(y)vy=1)] ;
deletey (Z) =Vy [(V'@) = V@) A (V@) = [V @) vi=Z]) A=V (@)] .
Any update that does not modify V' can be represented by the closed formula

noopy, = VT (V’(T) > V(T)), while the replacement of a tuple T with a tuple ¥
is expressed by the open formula replacey, (Z,y) defined by:

[(=V@)vZ=7) = noopy| A [(V(@Z) AT #£7) — deletey (T) A inserty (7)) .

In our formalism we can also directly express transactional updates, in the sense
of sequences of updates that are applied one after the other. For instance, suppose
we want to insert a tuple @ into the extension of V and then delete tuple b from
it. Note that the update inserty (@) A deletey (b) implies V' (@) and -V’ (b) (where
V' represents V after the update), hence it is inconsistent if a = b. The correct
way to represent the two sequential updates as a transaction is to consider the

2 This is needed to ensure that = does not impose constraints on the view schema.

160

update inserty (@) A deletey (b), where deletey (b) is applied on V', which is the
result of applying inserty (@) on V.

From Theorem 5, we get the following characterisation of the translatability
of those view updates that are expressible, as described, in FOL.

Theorem 6. Let f be a surjective view from R to V under X, let V -5 R and
let uw € Uy, be expressed by =. Then, u is translatable iff Xy U = = ren(Zv).

Under the assumptions of the above theorem, the view f is injective by Lemma 1.
Hence, by Theorem 2 every translatable view update u has the unique translation
f~'uf. However, we might not be able to actually compute f~! unless R —»x V,
in which case Theorem 3 ensures that the inverse of f is the view from V to R
induced by . When R -5 V, V —» 5 R and = expresses a translatable view
update u, we have that V —= ren(V) and ren(V) — en(x) ren(R), therefore the
unique translation of u is the database update expressed by the set 7" such that
R —7 ren(R), obtained by replacing in ren(X') every occurrence of ren(V') with
its definition in terms of V and, in turn, every occurrence of V' with its definition
in terms of R.

Given the V-embedding ¥y of a set of constraints X over R UV inducing
an invertible view, and given a set of constraints = expressing a view update
u € Uy, translat(=, X)) is the problem of determining whether w is translatable,
that is, from Theorem 6, whether Xy, U = = ren(Zy). Note that a view update
which is not translatable in general might still be translated when it is applied
on a given view state. For example, the insertion of a specific tuple of values is
unlikely to be translatable for all possible view states, but it might be such for a
given (legal) view state. This related problem, indicated with translat(¢, =, X)),
of checking whether the update is translatable w.r.t. a view state ¢ satisfying
Xy, that is, whether u(t) = Xy. Clearly, translat(=, Xy,) amounts to checking
translat(t, =, fy) for each t € T such that ¢ = E’v.

We conclude the section by briefly discussing the notion of complement and
the principle of translation under constant complement introduced in [2]. Lack
of injectivity in a view f causes loss of information, due to the fact that distinct
database states are mapped to the same view state. A complement of f is a view g
operating on the same domain of f and capable of distinguishing between distinct
database states which f maps to the same view state. If g is a complement of f,
then f is a complement of g (that is, the notion of complement is symmetric),
therefore we sometimes simply say that two views f and g are “complementary”.

A view complement provides additional information that, together with the
original view, allows to reconstruct the entire database. Two views f and g under
constraints X’ and I', respectively, can be combined in a natural way into a single
view under X' U I, which we call the union of f and g, written as f W g. It turns
out that there is a close connection between complementarity and injectivity of
views, given by the fact that two views under constraints and with the same
domain are complementary if and only if their union is injective.

Thus, by means of a view complement we can recover information missing
from a lossy view and gain injectivity, which gives us the possibility of using the

161

results presented earlier. However, following the rationale that the only purpose
for which a view complement is made available is that of allowing for a lossy view
to be updatable, we demand that the information it provides be invariant dur-
ing the update process. In other words, view updates must never modify, neither
directly nor indirectly, any data that belongs to the view complement. For com-
plementary views f and g, a view update on f is g-translatable (or translatable
under constant complement g), if it is translatable (in the sense of Definition 4)
and in addition does not modify the extension of the symbols belonging to the
complement g. In general, there might be more than one complement of a given
view, and an update is g-translatable or not depending on the particular com-
plement g we consider. Therefore, the choice of a complement defines an “update
policy”, assigning unambiguous semantics to the view updates.

Given updates u and v on f and g, respectively, with some abuse of notation
we denote by u W v the combined update on f W g. Then, the following theorem
establishes the relationship between translatability w.r.t. a view under constant
complement and translatability w.r.t. the union of a view and its complement.

Theorem 7. Let f and g be complementary, let u € Uy and let v be the identity.
Then, u is g-translatable w.r.t. f if and only if uWv is translatable w.r.t. fYg.

This essentially means that, in general, given an injective view f from R to V and
a set C C YV of view symbols whose extension is required to remain constant, we
need to check for the translatability of view updates u € Uy such that V't = V#(®)
for every V € C and every t € T.

4 Translatable Updates on Projective Views

In this section, we discuss in some detail a setting consisting of a single database
relation and views defined by projections. It turns out that, when the database
constraints are full dependencies, the view mapping defined by the projections
is invertible iff the database relation can be reconstructed by their natural join.
We point out that invertibility of views under constraints is finitely controllable
in this case, which is a generalisation of the setting studied in [6] where only two
views are considered, and that our general criterion for translatability of updates
w.r.t. an instance under egd’s and full tgd’s subsumes the conditions given in [6]
for the case in which the database constraints are fd’s only.

The general setting we consider here consists of a single database relation
over a universal set of attributes U and views defined by projections on subsets
Xq,..., X, of U. We assume w.l.o.g. that U is a totally ordered set and denote
by apos(A) the position of attribute A within U. For a subset X of U, apos(X)
denotes the set {apos(4) | A € X}. Let R = {R} and V = {V4,...,V,}, where
R and each V; € V have arities |U| and | X;|, respectively. Each position p in R is
associated with the (one and only) attribute A € U for which apos(A) = p. Then,
a projection on X C U is expressed by the open formula project (%) = Iy R(w),
where Z, § and W are sequences of distinct variables such that var(Z) N var(y)
= @, var(w) = var(T) Uvar(y) and |[@| = [Z| + [7]|. In addition, all variables from

162

var(Z) are required to appear in W at positions apos(X) and in the same order
in which they appear in .

The set of global constraints we consider is X' = X'z U Xy, where X5 is a
set of constraints over R and X'y consists of a formula of the form Vz (VZ(T) >
project . (E)) for each V; € V. Let f: Sy — Ty be the view induced by X and
observe that, since there are no constraints on the view schema, every database
state that satisfies X'z is X-consistent, therefore S coincides with the set of legal
database states. Moreover, being a view induced by constraints, f is surjective,
and it is invertible iff impl-def(R,V, X).

We denote by pos(V;, p) the position of R corresponding to the p-th position
of V; and pos(V;) denotes the set {pos(V;,p) | 1 < p < arity(V;)}, that is, the set
of positions of R on which V; projects. As an example, for V;(x1,x2) defined as
Jy1 R(y1, z1,22), pos(V;,2) = 3 because the variable x5 in the second position
of V; occurs in R at position 3, and pos(V;) = {2,3}. We say that V is acyclic if
the hypergraph with {1,...,arity(R)} as set of nodes and {pos(V;) | V; € V} as
set of hyperegedes contains no cycles (see Section 6.4 in [1]).

Let us first consider the case, studied in [6], in which there are only two view
symbols, that is, V = {V3,V2}. Rephrasing the definition given in [6], we say
that the view symbols V; and V5 are complementary if for every two legal finite
database states s and s’ for which ;1) = Vlf(s/) and Vo) = ng(s/) it is the
case that R® = R*". Note that the notion of complementarity is equivalent to the
implicit definability of R from V; and V5 under X’ when considering finite states
only. In other words, V; and V5 are complementary iff impl-defg, (R, V, X)), where
impl-defg,, is impl-def restricted to finite models. It is shown in [6] that, when X'z
consists of functional and join dependencies, V7 and V5 are complementary if and
only if X'z finitely implies the jd >1[X7, X5], that is, the extension of R can always
be reconstructed from the extensions of V; and V, by means of natural join.
Now, since unrestricted and finite implication of a jd from a set of fd’s and jd’s
coincide [1], complementarity in the finite case implies complementarity in the
unrestricted case, and the same goes for implicit definability. Therefore, when X'x
consists only of fd’s and jd’s, impl-def (R, V, X) and impl-defg, (R, V), X) coincide,
that is, impl-def(R, V), X') is finitely controllable and, in turn, also invert(}V, X).

The above results can be extended to the more general setting where V =
{V1,...,V,} with n > 2 and X'x consists of full dependencies, provided that V is
acyclic. Indeed, in [3] it is shown that under full dependencies the decomposition
of a database relation into a set of acyclic projections is lossless if and only if the
reconstruction operator is the natural join. Losslessness (of vertical decomposi-
tions) and complementarity (of projective views) are equivalent notions, hence
the result in [3] properly generalizes the one in [6], as fd’s and jd’s are a special
case of egd’s and full tgd’s, respectively, and two projections are always acyc-
lic. Since for full dependencies finite and unrestricted implication coincide [1],
impl-def (R, V), X)) is finitely controllable also in this extended setting. Moreover,
we know that whenever R is implicitly defined by V under X, the extension of
R can be reconstructed from the extensions of the n symbols in ¥V by natural
join, that is, X entails the equivalence VZ (R(T) <+ Vi(T1) A -+ AV, (Ty)) where

163

T and Ty,...,T, are sequences of variables such that var(z) = (J_, var(z;),

Z;[p] = T;[q] iff pos(Vi, p) = pos(Vj, q), and Z[p] = T;[q] iff p = pos(V;, ¢). In other
words, variables corresponding to the same position in R must coincide. Note
that the above equivalence is well-defined iff {1,...,arity(R)} = J;_, pos(V;),
that is, the projections cover the positions of R entirely.

We now turn to the problem of checking translatability under constant com-
plement w.r.t. a view state in the extended setting with n complementary pro-
jective views. Thus, let V = {Vi,...,V,,} with n > 2 and let C C V be the set
of symbols constituting the complement, that is, whose extension must remain
invariant during the update. In general, here X'z is a set of full dependencies.
In our approach, testing whether a view update u is translatable w.r.t. a finite
legal view state t can be done in PTIME in the size of u(t),® provided that wu(t)
is also finite, by checking that u(t) satisfies the V-embedding X, of X, which is
obtained by replacing every occurrence of R(Z) in X' with its explicit definition,
that is, the formula Vi (Z1) A -+ A Vo (Tp).

For the special case when n = 2, necessary and sufficient conditions for the
translatability w.r.t. an instance of insertions, deletions and replacements in the
extension of V3 while keeping the extension of V, constant are given in [6], with
the further restriction that Xz consists of fd’s only. As an exercise, it is easy to
check that the conditions given separately in [6] for the translatability w.r.t. an
instance of insertions, deletions and replacements can be obtained by spelling
out in each case our general criterion for translatability w.r.t. a view state, which
subsumes all of them, modulo the fact that we allow for more general database
constraints rather than just fd’s and that we consider insertions (deletions) of
possibly (non-)existing tuples and replacements of a tuple with possibly the same
one.* We give an idea of how our criterion corresponds to the conditions of [6]
in the case of insertions by means of an example.

Ezample 2. Let U = {E, D, P, S, M}, where E stands for Employee, D for De-
partment, P for Position, S for Salary and M for Manager. Let < be a total order
onUst. E<D<P<S < M, thus apos(E) = 1, apos(D) = 2, apos(P) = 3,
apos(S) = 4 and apos(M) = 5. Let V = {V;, V2} and Xry consist of:
Vaoy,xg,x3 (Vi(zy, @2,23) ¢ Jyi, y2 Rz, 22, 3,91, 42)) (5a)
V$1,$2,1'3,$4 (VQ(xla‘Tan:%xﬁl) (—>E|y1 R(x1,$2,y1,$3,x4)) ; (5b)

that is, the two view symbols are defined by projections on EDP and EDSM.
Let Xr consists of the following constraints:

3) (6a)
b s (6b)
5) (6c)

3 This is the data complexity of testing whether a finite relational structure is a model
of a FOL theory.

* For instance, condition (b) of Theorem 3 in [6] is necessary only due to the assump-
tion that the tuple to be inserted is not already present in the view extension.

VT (R(x1, w2, 23, 24, 25) A R(x1, 22, 5,), 1) — 23 =

8

8

A (R(xl,zg,xg,x4,x5) A R(x), T, T3, Ty, T5) — Ty =

VT (R(z1, x2, T3, 4, 05) A R(), 2o, b, @), %) = x5 = @

164

where T is the sequence of all the variables appearing in each case. Equations
(6a), (6b) and (6¢) express the fd’s ED — P, P — S and D — M, respectively.
It can be verified that X' = X'z U X'z implies the jd <x[EDP, EDSM], that is:

VT (R(w1, 2, T3, 24, T5) > Vi(@1, T2, w3) A Va(@1, T2, T4, 75)) (7)

By substituting every occurrence of R(x1, z2,x3,z4) in (5a), (5b), (6a), (6b) and
(6¢) with the explicit definition Vi (z1, 22, 23) A Va(x1, 22, 24, 25) we obtain:

Vay,xo, w3 (Vi(wy, o, @) — Jy1,y2 Va(or, @2,51,2)) 5 (8a)
Yy, wg, w3, x4 (Va1 22,03, 24) = 31 Vi, x2,91)) 5 (8b)
VT (Vi(21, 22, 23) A Vi(21, 20, 2%) — a3 =1%) ; (8¢)

1(
(
(
VT (Vi(a1, 22, 23) A Va(
(
(

) x1,$2,x4,x5) (Sd)
AV (&), oh, 3) A Va(ah, b, @y, af) — x4 = @) ;
VT (Va(w1, w2, T3, 14) A Va (@), 22, @5, 2)) — 4 = 7)) ; (8e)

together constituting the V-embedding Z\; of X. Note that, while the fd’s (6a)
and (6¢) on R are preserved as the fd’s (8c) and (8e) on V; and Va, respectively,
the fd (6b) becomes a genuine egd, namely (8d), on V; and V5.

Let @ = (e,d,p,s) and consider the view update u, expressed by {noopy,
inserty, (@)}, that inserts the tuple @ into the extension of V5 while the extension
of V1 remains unchanged. Given a view state ¢ satisfying g‘y, u is translatable
w.r.t. ¢ iff u(t) satisfies 2y too, where u(t) is such that V5" = V4t U {@} and
Vi4® = Vit As Vj is invariant, u(t) trivially satisfies (8a), but it satisfies (8b) iff
V1! contains a tuple agreeing with @ on the first two elements. In other words, we
can insert @ into V5" only if there is a tuple (e, d, p), for some p, in the extension
of V1. This corresponds to condition (a) of Theorem 3 in [6] for the translatability
of insertions, while condition (b) is necessary only if we assume that @ does not
belong to V5!, that is, the tuple we want to insert is not already present in the
extension of Va before the update. Finally, checking that w(t) satisfies all of the
edg’s in X, namely (8¢), (8d) and (8¢), corresponds to condition (c).

It should appear clear that with ‘QV‘ choices for the complement symbols,
stating conditions & la [6] for the translatability w.r.t. an instance for each pos-
sible view update when |V| > 2 could be quite tedious. Fortunately such condi-
tions are subsumed by our general criterion and, if needed, can be derived from
it in each case.

Ezample 3. Let U and Y'r as in Example 2, but let V = {V, V5, V5} and Tgy
consist of the formulae defining V7, V5 and V3 as projections on EDP, PS and
DM, respectively. It is easy to verify that V is acyclic and that X implies the
jd = [EDP, PS, DM)]. By substituting the explicit definition of R in terms of
V in X, we obtain Xy consisting of the inclusion dependencies V;[D] C V3[D],
V3[D] C V1[D], V1[P] C V;[P] and V,[P] C V;4[P], and of the fd’s V;: ED — P,
Vo: P— Sand V3: D — M.

165

Let C = {V5}. The update u; expressed by {inserty, ({e,d, p)), inserty, ((p, s)),
noopy, } is translatable w.r.t. a legal view state ¢ iff there is a tuple (d, m) in V3"
for some m (which corresponds to satisfying the ind Vi[D] C V3[D], while the
other ones are trivially satisfied) and u; (£) satisfies all the fd’s in X, involving V4
and V5. The view update uy expressed by {inserty, ((¢’,d’,p’)), noopy,, noopy, }
is translatable w.r.t. ¢ iff there are tuples (p/, s) € Vo' and (d’,m) € V3" for some
s and m, respectively, and us(t) satisfies all the fd’s in Xy, involving V4.

Note that the view update u; in Example 3 requires the simultaneous insertion of
tuples into the extension of both V; and Va, which in practise (e.g., in SQL) would
be achieved by means of a transaction consisting of two successive insertions.

Another difference between our general criterion for translatability (w.r.t. a
view state) and the approach followed in [6] is that, while the latter requires
some tests on the view instance and some other at the database level, the former
can be checked entirely at the view level.

We conclude the section with a note about the problem of checking translat-
ability of view updates w.r.t. every view state, and not just a given one. This is
indeed the problem on which Bancilhon and Spyratos were originally focus in [2],
but it is ignored in [6]. The characterisation we gave in our Theorem 6 provides
a method that, even though possibly incomplete, allows to check whether a view
update is translatable w.r.t. every view state. Apart from the trivial update con-
sisting of noopy,, for each V; € V, a view update which is always translatable in
Example 3 is expressed by:

{(FzVi(z,d,p) — inserty, (e,d,p)) A (Bz Vi(x,d, p) — noopy,), noopy, , noopy, }

that is, insert tuple (e, d, p) into the extension of V; only if there exists already
another tuple with the same value for attributes Department and Position, oth-
erwise do nothing.

5 Conclusion and Future Work

We presented a framework, based on the notion of view under constraints, which
is an instance of B&S’ abstract one, in that we consider only view mappings that
are expressible by means of FOL constraints. By using the notion of definability,
we gave a constructive characterisation of when and whether a view induced by
a set of constraints is invertible, and we provided a general criterion, based on
the idea of “embedding” of the constraints, for testing whether a FO-expressible
view update is translatable. We studied an application setting, which extends the
one considered in [6] and in which our framework is complete, and we compared
our general criterion for translatability of updates w.r.t. an instance with the
conditions given in [6] for insertions, deletions and replacements. Although our
approach might not be suitable for every application setting, we believe that it
can provide some guidance in a field which remains still largely unexplored.

For what concerns future work, the following directions seem worth of further
investigation:

166

1.

identify other fragments where implicit definability is finitely controllable
(e.g., views defined by selections) and explore the potential of languages in
the Datalog® family [5] in this sense;

. in particular, further extend the setting presented in Sec. 4 to multiple data-

base relations and views defined by projections over joins, allowing also some
form of non-full tgd’s as database constraints (possible candidates are acyclic
inclusion dependencies and non-key-conflicting tgd’s);

. study the connection with logical abduction with respect to the possibility

of finding view complements and (classes of) translatable updates.
We conjecture that implicit definability in the setting of point 2 is finitely

controllable, but that the inverse mapping might not necessarily be given by the
join operator in this case, hence the explicit definitions of each database symbol
in terms of the view symbols should be obtained through rewriting techniques
like the ones described, e.g., in [11,8].

References

10.

11.

12.

. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley

(1995)

Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557-575 (Dec 1981)

Beeri, C., Vardi, M.Y.: On acyclic database decompositions. Information and Con-
trol 61(2), 75-84 (1984)

Beth, E:-W.: On Padoa’s method in the theory of definition. Indagationes Math-
ematicae 15, 330-339 (1953)

Cali, A., Gottlob, G., Lukasiewicz, T.: Datalog®: a unified approach to ontologies
and integrity constraints. In: Proceedings of the 12th International Conference on
Database Theory. pp. 14-30. ICDT ’09, ACM, New York, NY, USA (2009)
Cosmadakis, S.S., Papadimitriou, C.H.: Updates of relational views. Journal of the
Association for Computing Machinery 31(4), 742-760 (Oct 1984)

Franconi, E., Guagliardo, P.: On the translatability of view updates. Tech. Rep.
KRDB12-1, KRDB Research Centre, Free University of Bozen-Bolzano (Mar 2012),
http://wuw.inf .unibz.it/krdb/pub/TR/KRDB12-2.pdf

Franconi, E., Kerhet, V., Ngo, N.: Exact query reformulation with expressive on-
tologies and databases. Tech. Rep. 12158, KRDB Tech research group, Free Uni-
versity of Bozen-Bolzano (Mar 2012), http://www.inf.unibz.it/krdb/pub/TR/
KRDB-Tech-12158.pdf

Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486-524 (Dec 1988)
Gurevich, Y.: Toward logic tailored for computational complexity. In: Computation
and Proof Theory, Lecture Notes in Mathematics, vol. 1104, pp. 175-216. Springer
Berlin / Heidelberg (1984)

Huang, G.: Constructing Craig interpolation formulas. In: Computing and Com-
binatorics, Lecture Notes in Computer Science, vol. 959, pp. 181-190. Springer
Berlin / Heidelberg (1995)

Lechtenborger, J.: The impact of the constant complement approach towards view
updating. In: Proceedings of PODS 2003. pp. 49-55. San Diego, CA (Jun 2003)

167

