
Improving Control Flow Verification in a
Business Process using an Extended Petri Net

Ganna Monakova, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{monakova, kopp, leymann}@iaas.uni-stuttgart.de

Abstract. In a business process, control flow decisions are based on the
evaluation of conditions. Thus, conditions must be considered for control
flow verification. This paper shows how the Petri nets based control flow
verification can be improved by analysing conditions and logical relations
between them. We outline a Petri net extension with predicate transitions,
which are responsible for conditions evaluation based on the collected
knowledge, and effect places, which contain fact tokens representing the
effects of certain operations and decisions made.

1 Introduction

Motivating Example: Verifying constraints,

x ≤ 100x > 100
if

y := 10*x

B

x ≤ 100x > 100

switch
x>1000x>100

A

y := 20*x

if y ≤ 50y > 50

A B

BPEL switch execution semantic:
C D - B will never be executed

- The whole switch will be skipped if x <= 100

The rule C must always be executed if A has

The data conditions constrain the set of possible markings

The rule C must always be executed if A has
been executed is satisfied for this process

The data conditions constrain the set of possible markings
Assign, receive produce facts
Currently the data conditions in the petri net can b evaluated to the runtime,
b t t t th d i ti

4

but not to the design time

Fig. 1. Example process
fragment

As the complexity of business processes grows,
the need for automatic verification becomes more im-
portant. We show an approach for verification for
processes modelled with Petri nets. The properties
to verify represent the constraints on possible execu-
tion traces. An example of such a constraint is “the
payment must always be followed by a shipment”,
which can be expressed using LTL as G(Payment→
FShipment). To show that this constraint is fulfilled,
it must be proved that there is no possible execu-
tion path that contains a payment before a shipment
(temporal dependency) and that there is no execution
path that contains payment without shipment (causal
dependency). Note that the above constraint allows the execution of shipment
without payment.

The process fragment depicted in Fig. 1 shows why the data relations should
be considered for the control flow verification. The fragment presents two if-
construcrts, each having two branches. We define an acivity execution condition
as a Boolean expression that is constructed recursively by analyzing all conditions
that have to be satisfied to enable the execution of this activity [1]. For example,
the execution condition of activity A from Fig. 1 is (x > 100) and the execution
condition of B is (x ≤ 100).

Assume that the constraint “A must always be followed by C” must be
satisfied for a process containing this fragment. This constraint is always satisfied,

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

since the execution condition of C is implied by the execution condition of A
and the fact that y becomes equal to 10 ∗ x if the left branch of the first if is
executed. Current Petri net based verification approaches abstract from the data
and their relations and therefore make non-deterministic choice in both of the
switch-constructs, which makes the phantom execution path (A;D) possible.

This paper shows how a Petri net can collect knowledge and use the collected
knowledge to reason about the next step. Sect. 2 presents related work in this
field. The proposed extensions are shown in Sect. 3. Sect. 4 describes how the
process knowledge is collected during the Petri net analysis and Sect. 5 shows
how the collected knowledge is used for the predicate transitions evaluation.
Sect. 6 demonstrates the analysis of the process fragment shown in Fig. 1 using
the presented approach before Sect. 7 concludes.

2 Background and Related Work

A number of non-deterministic decisions take place during the analysis of a
Petri net: selection of a specific if-branch, skipping or executing an activity, and
entering or exiting a loop. In the business process the decisions depend on the
evaluation of the corresponding conditions: branching condition, join condition,
loop condition. A join condition is a starting condition of a branch and is a
Boolean formula over the states of all incoming links [2]. Typically, the translation
of a business process to a Petri net ignores these conditions. The justification is
that the actual data coming into the process is not known at static validation
and therefore the conditions cannot be evaluated. The process model, however,
contains read-write dependencies between the activities, which can be used for
an advanced verification [3]. Logical relations between variables can be captured
by execution conditions as described in [1]. In this paper, we show how logical
relations can be used for a more precise Petri nets based control flow verification.
The technique presented in this paper can be used as extension to the mapping
of a BPEL process to the corresponding Petri net [4].

An overview of existing BPEL formalizations and verification approaches is
provided in [5]. We presented in [1] a summary of the presented approaches and
showed that none of them includes the interplay between previous and following
decisions. Thus, all of the approaches include the phantom path (A;D) in their
analysis. The work of [1] put loops and scopes as future work. In the work
presented here, we include loops and scopes, since the mapping of BPEL to Petri
nets is complete [4].

3 An Extension for Petri Nets

The conditions constrain the execution of the business process. In addition, the
control flow decisions made in the past can influence the decisions in the future,
as the example of Fig. 1 illustrates: if the left branch of the first if-activity is
taken, then y is set to 10 ∗ x, where x > 100 according to the branch condition.
This will influence the branch selection of the second if-activity. This implies
that the execution trace, which contains activity A and activity D, is impossible.
It will, however, be considered as possible during the Petri net analysis if the data

conditions are neglected. Such phantom execution trace can only be detected if
the relation between decisions leading to the execution of the activities A and D
are known.

Each decision is bound to a certain condition. If a decision has to be made,
the condition is evaluated and, depending on the evaluation result, a certain path
in a workflow is chosen. During process runtime, the evaluation of the condition
is simple, since instance data is available. At design time, however, instance data
is not available and thus only relations between process variables and between
conditions can be analysed. If a certain path in a workflow is chosen, then the
condition of this path is true (e.g. x > y). Thus, even if we do not know the
actual data, we know that the data relations captured in the path condition (e.g.
x > y) are in force. We also say that the decision produces an effect relations.

Switch Extension

if

A B

C1 C2

A B

(¬ C1 ∧ C2)==trueC1==truePT1 PT2

D1 D2

A B
C2 = trueC1 = trueP1 P2

8

Fig. 2. if activity in an extended Petri
net

We add a predicate transition to
decide whether a certain path can be
executed. A predicate transition is re-
sponsible for the evaluation of the con-
dition for a certain execution trace
based on the collected knowledge. A
decision transition is the transition
responsible for selecting the actual ex-
ecution trace from all possible execu-
tion traces. A trace is considered to
be an alternative if the corresponding
condition was evaluated to true or un-
known by the predicate transition, see
Sect. 5. We record the effect of the decision made by producing a token for an
effect place added after each fired decision transition. This token means that the
condition on this path is true and thus the relation represented by this condition
is in force.

Effect places, predicate and decision transitions for an if -activity with two
branches are shown in Fig. 2. The predicate transitions PT1 and PT2 are respon-
sible for the evaluation of the branch conditions: C1 for the left and C2 for the
right branch. If the corresponding condition evaluates to true, the token will be
produced in the outgoing place, which in its turn will enable the selection of the
corresponding branch. If the condition evaluates to false, then the token from
the incoming place will be consumed and no token for the outgoing place will be
produced. Note, that the branch conditions are adjusted in such a manner that
only one of the conditions can simultaneously evaluate to true. This complies with
the if-activity execution semantic [6]. If evaluation of both conditions returns
unknown, both predicate transitions will produce a token and the if-branch will
be chosen non-deterministically. As soon as the branch selection decision has been
made by a decision transition, the relations between process variables represented
by the recorresponding branch condition come in force. This is indicated by a
token in the corresponding effect place: P1 for the left and P2 for the right branch.
Note that the effect places cannot be put directly after the decision transitions,

Join Extension

Li1, ...Lin

A
Li1 Lin...

Join control flow

Lo1, ...Lok

JC(A)==true JC(A)==falsePT3 PT4

The activity has a join condition on
links Li1, ... Lin: Join(1...n)

Execute A
JC(A)=falseJC(A)=true

Skip A
P3 P4

D3 D4

For each join condition add a rule to
Jena for dead path elimination :

Join(1...n) ->Lo1 = false,

Split control flow

Lo1 Lok...() ,
...Lok = false

Where Lo1...Lok are outgoing links of
this activity

9

y

(a) flow ac-
tivity

Join Extension

Li1, ...Lin

A
Li1 Lin...

Join control flow

Lo1, ...Lok

JC(A)==true JC(A)==falsePT3 PT4

The activity has a join condition on
links Li1, ... Lin: Join(1...n)

Execute A
JC(A)=falseJC(A)=true

Skip A
P3 P4

D3 D4

For each join condition add a rule to
Jena for dead path elimination :

Join(1...n) ->Lo1 = false,

Split control flow

Lo1 Lok...() ,
...Lok = false

Where Lo1...Lok are outgoing links of
this activity

9

y

(b) flow activity extended Petri net

Fig. 3. flow activity
to honor the fact that both branch conditions can evaluate to unknown and thus
the actual decision will be made by the decision transition.

Fig. 3(a) shows an activity in a BPEL flow. The activity has n incoming
links and a join condition defined on the status of these links. Fig. 3(b) shows
an extended Petri net for this activity. Here, the predicate transitions PT3 and
PT4 are responsible for evaluation of the join condition, which helps the decision
transitions D3 and D4 to decide whether the activity A is to be executed or
skipped. The extension required for loop constructs is similar to the if -activity
extension and is not shown in this paper due to the space limitations. An assign-
activity establishes relations between process variables which are come in force
after the activity has been executed. Therefore, an additional effect place is added
after the transition representing an assign activity. The next section presents how
the produced effects can be stored to enable reasoning on the colected knowledge.

4 Collecting Knowledge

The variable and condition relations currently in force are represented by the
tokens in the effect places. The effect places, and thus the knowledge about the
data relations, may either result from a decision effect or from a relation between
process variables introduced by an assign activity. A decision effect is a result of a
decision made for transition conditions, join conditions, if and pick branches. Let
C be the condition of the path selected by the decision transition. Then a new fact
C = true is added to the knowledge base. The relations between process variables
captured in the assign statements can also influence decisions. For example, if an
assignment y := x+ a was executed and it is known that a > 0, then it can be
derived that y > x. If an assign activity x := f(y1, . . . , yn) is executed, then the
statement x = f(y1, . . . , yn) becomes a fact and is added to the knowledge base.
Thereby, every occurrence of the same variable on the left side of assignment
gets a new index each time an assignment fact is added to the knowledge base.
If a variable occurs on the right side of the assignment, the variable with the
highest index currently available in the knowledge base is used. Note that this is
different to the CSSA approach [7], as in this case there is no need to consider the

exclusive or concurrent read-write accesses to the same variable (expressed with
the φ and π-functions in CSSA). The reason for this is the step-by-step analysis
considered in this paper, which implies that the knowledge base cannot contain
contradictory information: only the relations captured in the assign statements
on the chosen branch are added to the knowledge base and the order of the
concurrent assignments is the one selected by the Petri net navigator. A receive,
pick and invoke activity can be considered to contain an implicit assign of the
message content to the process variables.

5 Reasoning on the Collected Knowledge

A predicate transition represents an invocation of a reasoner. A reasoner evaluates
the transition condition based on the current knowledge in the knowledge base.
This section shows how the evaluation of the condition can be reduced to the
satisfiability problem. Let F1, . . . , Fn be the current facts in the knowledge base,
let C be the condition to be evaluated. The condition evaluates to true if it
can be proved that C can be derived from the current facts in the knowledge
base. Formally speaking, the following must hold: F1, . . . , Fn ` C. To prove
this, the following formula is checked for its satisfiability:

(∧
i∈{1,...,n} Fi

)
∧ ¬C.

If this above formula is unsatisfiable, then C will always evaluate to true for
this execution path and therefore a token will be produced by the predicate
transition responsible for the evaluation of the condition C. If the above formula
is satisfiable, the following formula is checked:

(∧
i∈{1..n} Fi

)
∧C. If this formula

is unsatisfiable, then C will always evaluate to false for this execution path. In
this case the transition will not produce any token. If both formulas are satisfiable,
then the decision can only be made based on the concrete data and therefore both
cases should be considered for the analysis. In this case, the predicate transition
produces a token which will compete with other tokens. The actual decision will
be made non-deterministically by the decision transition in the same way as for
the non-extended Petri net: one of the tokens will be consumed, the others will
remain in their places and wait for the backtracking and selection/consumption
of the next token. The collected facts in the knowledge base represent the logical
relations between process variables currently in force. The satisfiability of the
above formulas based on the current relations is checked using the Satisfiability
Modulo Theories (SMT) solver Yices [8]. An SMT solver solves satisfiability
problems for Boolean formulas containing predicates of underlying theories. Such
theories can be, for example, theories of arrays, lists and strings [9]. In addition,
an SMT solver can be extended with new theories as shown in [10].

6 Example

Fig. 4 illustrates the analysis of the process fragment from Fig. 1. Fig. 4(a) shows
the first invocation of the reasoner on the current knowledge base. Since no
previous information is available, the knowledge base is empty and therefore
returns unknown for both conditions. Fig. 4(b) shows the status after the left
branch was non-deterministically taken. This decision transition produces a token

Petri net simulation – Example

x≤100x>100

x≤100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A Buknown

y 10 x y 20 x

y≤50>50 y≤50y>50

15

C D

y ≤ 50y>50

(a)

Petri net simulation – Example

x ≤ 100x>100

x ≤ 100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A B

y 10 x y 20 x

y≤50>50

x[0] > 100

y≤50y>50

16

C D

y ≤ 50y>50

(b)Petri net simulation – Example

x ≤ 100x>100

x ≤ 100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A B

y=10 x y 20 x

y ≤ 50>50

x[0] > 100
y[0] = 10*x[0]

true falsey ≤ 50y>50true false

17

C D

y ≤ 50y>50

(c)

Petri net simulation – Example

x ≤ 100x>100

x ≤ 100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A B

y=10 x y 20 x

y ≤ 50>50

x[0] > 100
y[0] = 10*x[0]

y ≤ 50y>50

18

C D

y ≤ 50y>50

(d)

Fig. 4. Analysis using knowledge base and a reasoner

in the effect place x > 100 and the corresponding relation is added as a fact to
the knowledge base. Fig. 4(c) shows the next invocation of the reasoner. There,
the condition y > 50 evaluates to true and y ≤ 50 evaluates to false. Fig. 4(d)
shows the status after the firing of the predicate transitions for the second if

statement. The predicate transition of the right branch consumes the token on
its input place, but does not produce an output token, since y ≤ 50 evaluates to
false, while the predicate transition of the left branch produces an output token.
Thus, only the left branch of second if activity is enabled.

7 Conclusions and Outlook
This paper showed how a Petri net based verification of a business process
can be enhanced by adding effect places and predicate transitions. We showed
how the conditions on the predicate transitions can be evaluated using the
knowledge collected during the Petri net analysis. This enables resolving the non-
deterministic decisions if the current decision strongly depends on the previously
made decisions. Thus the “phantom” paths can be removed from the reachability
graph which makes the analysis more effective and precise.

The presented approach can also be used to analyze compositions of business
processes, called choreographies. In this case, the knowledge base is shared by all
processes and thus each process is aware of the constraints on the input data.

Our future work is to investigate the impacts of our work on current Petri
net reduction techniques. We are going to integrate the presented approach in
LoLA [11] to prove the applicability of the approach.

References

1. Monakova, G., et al.: Verifying Business Rules Using an SMT Solver for BPEL
Processes. In: BPSC. (2009)

2. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques. Prentice
Hall PTR (2000)

3. Moser, S., et al.: Advanced Verification of Distributed WS-BPEL Business Processes
Incorporating CSSA-based Data Flow Analysis, IEEE Computer Society (2007)
98–105

4. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In:
WS-FM. (2007)

5. Breugel, F.v., Koshkina, M.: Models and Verification of BPEL. http://www.cse.

yorku.ca/~franck/research/drafts/tutorial.pdf (2006)
6. OASIS: Web Services Business Process Execution Language Version 2.0. (2007)
7. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent Static Single Assignment Form and

Constant Propagation for Explicitly Parallel Programs. In: International Workshop
on Languages and Compilers for Parallel Computing, Springer (1997)

8. Dutertre, B., de Moura, L.: The YICES SMT Solver (2008) Available at http:

//yices.csl.sri.com/.
9. Beckert, B., et al.: Intelligent Systems and Formal Methods in Software Engineering.

IEEE Intelligent Systems 21(6) (2006) 71–81
10. Nelson, G., D., O.: Simplification by Cooperating Decision Procedures. ACM

Transactions on Programming Languages and Systems 1(2) (1979) 245–257
11. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN. (2000) 465–474

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://yices.csl.sri.com/
http://yices.csl.sri.com/

