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Abstract

Recent advancements in the contextual understanding and generation capabilities of Large Language Models (LLMs) have sparked
increasing interest in the application of Retrieval-Augmented Generation (RAG) in specific domains and industry documents. Retrieving
and understanding tables within these documents is crucial for generating correct answers in RAG systems. This study focuses on
documents containing large and complex tables, such as statistical and industry reports and these presents two major challenges: 1)
processing the large tables and 2) understanding complex tables. Previous studies faced challenges as they considered elements of tabular
data such as cells, headers, and titles. In contrast, we designed the Table Header for Retrieval and Refinement (THoRR) method to address
the aforementioned issues. THoRR performs two tasks: table retrieval and table refinement. In the table retrieval phase, we propose
a table header representation approach that uses headers and titles, without considering cells. In the refinement phase, the model
selects relevant table headers from the retrieved tables and processes them into refined tables containing the necessary information to
answer the questions. This approach aids in understanding complex tables without chunking, by reorganizing information. Our models
outperform existing approaches such as DTR and DPR-table. Moreover, we experimentally demonstrate that our refinement model can
reduce hallucinations. To the best of our knowledge, our table refinement approach for RAG system is the first of its kind in the field.
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1. Introduction
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Question : what were the percentages of urban and
rural metis who cited location as the reason for not
having hunted, fished or trapped respectively?

Answer : ['18.0', '6.0']
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[ORIGINAL] : The percentage of urban Metis who cited
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20 18 31

Figure 1: Example of tableQA with gpt-3.5-turbo. Comparing

the result of the original complex table (top) and the refined table
(bottom).

fished or trapped is 18%. The percentage of rural
Metis who cited location as the reason is 6%

Recent advancements in the contextual understanding
and generative capabilities of Large Language Models
(LLMs) have heightened interest in Retrieval-Augmented
Generation (RAG)[1, 2] for specific domains such as open
domain or industry-specific documents. Industry or finance
domain documents often contain large and complex tables.
The understanding of which is critical for a RAG system to
produce accurate responses. However, this task presents
several challenges. Our research seeks solutions to two
primary challenges.
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The first challenge involves processing large and complex
tables. Previous studies, such as DTR[3], and DPR-table[4],
were designed with relatively simple open-domain tables in
mind, such as those found in the nq-table[5] dataset, thus
de-emphasizing the processing of large tables. Similar to the
processing of text documents, previous methods involved
dividing data tables into fixed-length segments (chunking),
or even cutoff parts that exceeded a maximum input length.
The chunking method complicates data retrieval by not only
increasing the number of retrieval targets but also making
it challenging to compare values across segmented tables.
Moreover, disregarding overflow sections risks losing table
information, diminishing the probability of obtaining a suf-
ficient table representation. These problems can ultimately
affect table retrieval performance.

The second challenge is the difficulty in understanding ta-
bles due to their complex structure. Complex tables typically
feature hierarchical headers and numerous values, present-
ing a challenge for generator to consider vast amounts of
information. Insufficient table comprehension can lead to in-
correct answers (hallucinations). Figure 1 demonstrates an
example where GPT-3.5-turbo[6] is used to perform tableQA
on a hierarchical table. It showcases how the original table
leads to incorrect responses, whereas the refined table, as
processed by our proposed model, yields the correct an-
SWers.

In this paper, we propose Table Header For Retrieval and
Refinement (THoRR) to solve this problem. These method
is grounded in a heuristic assumption that, when finding
and understanding tables, headers are more critical than
values. THoRR has two models, a retriever and a refine-
ment model, performed sequentially. Each is different from
the previous one. THoRR: Retriever uses a table header
representation. It performs table retrieval using only the
header without considering the cells of the table. THoRR:
Refinement performs relevant table header detection in the
retrieved table to select table headers that are relevant to the
question, and refines them into a simple table that contains
only the necessary information, reducing the amount of
information the generator needs to consider.

We compare THoRR with DTR[3] and DPR-table[4] and
show that it has better retrieval performance in fine-tuning
and zero-shot experiments on the HiTab[7] and AIT-QA[8]
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THoRR : Refinement Generator
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Figure 2: Architecture of the RAG system with LLM for table data, featuring our proposed THoRR method.

datasets while reducing the information (number of cells)
needed to input the generator. Furthermore, our proposed
methodology enables an efficient reduction in the number
of tokens required for table inputs in the generator.

2. Method

In this section, we present the Table Header For Retrieval
and Refinement (THoRR) method, designed to retrieve and
refine tables within the RAG system [2]. THoRR is divided
into two phases, retrieval and refinement, as shown in Figure
2. These two phases are separately trained and serve distinct
purposes. The retrieval phase is utilized for embedding and
indexing tables. Subsequently, as a question is input, it
retrieves the pre-indexed tables. In the refinement phase,
the retrieved tables are processed to extract the necessary
information, refining them into smaller tables.

The goal of this method is to obtain the Top_K refined
Tables T, relevant to the given M target Tables T when a
question Q is provided. We denote the components of T as
title, header,,,, and header,,, representing the row headers,
column headers, and title, respectively. The comparative
experiments between THoRR and the existing table retrieval
baseline are explained in Section 3.1

2.1. Table Retriever

Given M target tables T, Our THoRR:retrieval model aims to
retrieve the Top_K candidate tables containing information
relevant to the question Q. In this paper, we follow the struc-
ture of DPR[9] for comparison with DPR-table[4]. we use
two different encoders (the table header encoder (Ency) and
the question encoder (Encp), both utilizing the base model
of [10]. Encr maps target M tables to table header repre-
sents t and builds an index t that will be used for retrieval.
The input x; to Encr is defined in equation 1. When given
a question Q, obtain a question representation q using the
Encp, and then select the Top_K closest candidate tables for
indexed ¢ from it. The similarity between t and q is defined
by using the dot product, as in [9] (equation 2), and the
encoder uses the base model of [10].

x; = {[CLS] title [SEP] header,, [SEP] header,, [SEP]}
1)
Sim(q,t) = Ean(Q)T - Encr(xy) (2)

In this process, a difference aspect of our retriever compared
to previous research lies in the table header representation

t. Our method, which utilizes the table’s header and title
without considering every cell, is relatively free from the
input limitations of the encoder. The chunking method and
our comparative experiments are explained in Section 3.2

The objective of the training is to minimize the dis-
tance between questions q and positive table £ while
maximizing the distance between queries and the num-
ber of n negative tables # in a given training dataset
D ={(g. 1", .t tfn)}f\ﬁl The loss function, optimized
as Negative Log Likelihood (NLL) :

+ . — —
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2.2. Table Refinement Model

This paper introduces a new task called Table Refinement,
defined as simplifying a table while preserving specific infor-
mation. Accordingly, our THoRR:refinement model aims to
obtain refined tables, denoted as t,, for the Top_K candidate
tables from the retrieval phase. The input x; is defined by
equation 4, where the header € [header,,,, header,,]. Simi-
lar to equation 5, x; is input to the refinement encoder Encp
to obtain hidden states. And then, the linear layer takes in
these hidden states and outputs the relevant header score,
denoted as h. Using h, we obtain the Top_C relevant column
headers indices (I.) and Top_R relevant row header indices
(I,) as specified in Equation 6. Subsequently, we refine candi-
date tables using selected row and column indices to obtain
.

x- = {[CLS] Q [SEP] header [SEP]} (4)
h = Encp(x,) (5)

Low = argmax(h,q,, Top_R)

6
Lo = argmax(heop, Top_C) ©)

The learning objective aims to identify the index of the
question and relevant header, with the goal of increasing
the score of the answer’s header index h;. The loss function
is as described in Equation (5), We optimized Cross Entropy
Loss. Where, N represents the number of tokens in input x,
and yis the gold relevant header index.

exp(hy)
Lrefinement(ha y) = —logN—y )
Yonm1 = explhy)



Table 1

Comparison of retrieval accuracy performance of our THoRR method and the baselines. Fine-tuning denotes training with the
HiTab dataset and Zero-shot denotes evaluation of AIT-QA using fine-tuned model.

Refinement HiTab Fine-tuning AIT-QA Zero-shot
Model Top.C Top R | HIT@1 HIT@5 HIT@10 HIT@20 HIT@50 | HIT@1 HIT@5 HIT@10 HIT@20 HIT@50
DTR[3] - - 19.00 40.97 51.96 64.27 77.53 8.74 20.39 28.16 41.75 71.07
DPR-table[4] - - 40.40 69.51 77.15 84.03 90.66 19.61 41.75 55.15 71.26 89.51
THoRR 5 - 45.39 74.75 82.83 87.31 91.60 22.52 47.38 6291 74.95 92.82
(Ours) 5 10 43.50 71.84 79.55 84.03 88.07 21.75 44.27 59.03 69.51 84.85
7 - 45.77 75.51 83.59 88.07 92.49 23.50 48.54 64.47 76.89 94.76
7 10 43.88 72.60 80.30 84.79 88.95 22.72 45.44 60.58 71.46 86.80

3. EXPERIMENTS

Dataset We conduct experiments on two complex table
benchmark datasets. HiTab[7] is a Table QA dataset with
a hierarchical structure. This dataset consists of questions
that require complex numerical calculations, including ta-
bles from Wikipedia and statistical reports. It contains a
total of 10,672 question-answer pairs, with 7,417 for train-
ing, 1,671 for validation, and 1,584 for testing. There are
a total of 3,597 tables in this dataset. We use this dataset
for fine-tuning. AIT-QA[8] is a Table QA dataset specific to
the Airline industry, composed of tables extracted from the
U.S. public SEC filings. It includes specialized vocabulary
terms for a specific domain and also has a hierarchical struc-
ture like HiTab([7]. It consists of 515 questions and answers,
with a total of 116 tables. In this paper, this dataset is used
to evaluate the zero-shot performance of the fine-tuning
model.

Baseline In order to demonstrate the performance of our
method, we compare it with baseline methods. DTR[3] is
a table encoder that uses a table-specific structure. DPR-
table[4], on the other hand, processes tables linearly, similar
to understanding text passages. Both of these baselines
have been trained on the nq-dataset[5] and their pretrained
models are publicly available. We fine-tune these pre-train
models as backbones and compare them with our model.

3.1. Main Result: THoRR

The experiments in this paper evaluate the proposed mod-
els, THoRR, in a two-phase process as shown in Figure 1
(THoRR:retrieval and THoRR:refinement). The performance
of the models is evaluated using the "Hits accuracy’ as the
main evaluation metric. This metric measures the ratio of
correct answers included in the Top_K selected tables by
the models. Where, Top_K takes values 1, 5, 10, 20, 50 to
evaluate the accuracy of the models.

Fine-tuning To compare fine-tuning experiments on the
complex table dataset, we train THoRR and baselines using
the HiTab [7] training set. Table 1 presents the performance
of the THoRR method compared to baseline models. The
experimental results indicate that the proposed models out-
performed baselines in most cases. When Top_C = 7 and
Top_K <= 10, the proposed models exhibit an accuracy
improvement of more than 5% compared to the baseline’s
best accuracy. The superior performance at a small Top_K
indicates the importance in the RAG system, as it indicates
effective utilization of a limited number of reference pieces
of information, which is common when the Top_K is less
than 10.

Zero-shot The zero-shot experiment intend to observe
how the model performs on complex table data from a new

domain. In this process, a fine-tuned model using the HiTab
[7] dataset is used to make predictions on the AIT-QA[8]
dataset without any additional training, and the results are
evaluated. Through this experiment, we aim to demonstrate
that the proposed models can handle complex table retrieval
in previous unseen domains. Table 1 presents the results of
this experiment, showing superior performance compared
to the baselines and indicating well THoRR works on com-
plex tables in different domains.

3.2. Retrieval Result
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Figure 3: (a) Retriever accuracy with DPR-table’s chunking

method vs THoRR:retrival’s table header representation method.
(b) Comprison between the number of chunks by the max token
length.

We compare our proposed table header representation
method and chunking method in terms of retrieval accuracy.
Figure 3(a) illustrates the performance of [4] with the chunk-



ing method and our method. ("inf” refers to the use of the
original table without chunking.) As shown in Figure 3(b),
we observe a decrease in retrieval accuracy as the lower max
token length, indicating that the number of retrieval targets
affects the performance significantly in retrieval tasks. Our
approach demonstrates superior performance compared to
methods that consider all values. This highlights the effec-
tiveness of our method, which relies solely on table headers
for table representation, especially in retrieving large and
complex tables. Moreover, our method demonstrates su-
perior performance compared to existing approaches that
consider all values, thereby experimentally validating our
heuristic assumption that headers are crucial elements in
table retrieval.

3.3. Refinement Result
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Figure 4: Comparison of human evaluation performance on
TableQA and the number of refined table cells.

In this section, we experiment with our refinement model
to reduce cell information in mitigating hallucinations. In
Figure 4, the green line indicates a decreasing trend in the
number of cells in tables when using our model. Further-
more, Figure 4 illustrates the human evaluation accuracy on
the results obtained by input refined tables into Llama2[11]
7B-Chat. Where, ”(-,-)” denotes the original table. We ran-
domly sample 300 questions from the HiTab test dataset for
human evaluation. Llama2[11] 7B-Chat takes a gold table as
input to generate responses. If the generated response con-
tains exactly the answer and is correct, we mark it as correct.
Otherwise, we consider it as a hallucination. Three master’s
students in the field of Al evaluated the generated results.
To ensure the reliability of the evaluations, one evaluator
and two validators were assigned roles in the evaluation
process. As a result, by setting Top_C = 7 and Top_R = 10,
we demonstrate that our refinement model reduces the num-
ber of table cells from 153.88 to 58.03, resulting in a 62.2%
decrease compared to the original table. Additionally, we
observe a 9.33% improvement in the reduction of halluci-
nations. This validates the superiority of our refinement
approach.

4. Related Works

Research on table encoders has been focused on pre-training
tabular data with table-specific architectures[12, 13, 14, 15,
16, 17]. TAPAS[12] introduces a pre-training method using
Masked-Language-Modeling for the cells of tabular data.
TaBERT[13] introduces a pre-training model that jointly

learns over 26 million natural language questions and ta-
bles. TURL[18] introducing a structure-aware Transformer
encoder and Masked Entity Recovery (MER) objective for
pre-training. StruG[14] proposes a semi-supervised learn-
ing framework for learning the connection between text
and SQL. MATE[15] demonstrates the efficient restriction of
Transformer attention flow on tabular data, enabling train-
ing with larger sequence lengths. Tableformer[16] learns
from tables using attention biases, making it better at un-
derstanding tabular data. TABBIE[17] introduces a method
to improve performance on table-based prediction tasks by
pre-training only tabular data.

Research on table retrieval includes methodologies such
as [19, 3, 4, 20, 21]. Table2vec[19] proposes a method for
obtaining table embeddings by considering various table el-
ements such as captions, headers, cells, and entities. DTR[9]
introduces a table-specific model suitable for open-domain
table question answering. DPR-table[4] linearizes tables
to handle them similar to text passages, instead of using
table-specific models. GTR[20] introduces a model that
transforms tables into graphs, capturing both cell and lay-
out structures. [21] introduces a method for enhancing
the similarity between queries and tables for table retrieval,
employing various semantic spaces and similarity measure-
ment methods.

5. Conclusion

We propose the THoRR method, which uses the table head-
ers to retrieve and help understand the complex and large
tables. We use the table header representations in the re-
triever that can retrieve tables without chunking them. Ad-
ditionally, we propose a novel methodology for refining
tables by detecting the table headers that are relevant to the
questions within the table. This approach aims to simplify
the tables in which an excessive amount of information is
present, particularly in complex tables. THoRR is capable
of handling large and complex tables without dividing them
into smaller chunks, reducing the information required for
preventing hallucinations in LLM generator. Furthermore,
the Table Refinement task is the first of its kind in this field,
therefore, it is expected to contribute significantly to the
future research in this field. Our future work involves ex-
ploring methods to detect the table headers. Additionally,
we aim to prevent potential information loss in questions
by selecting fewer relevant headers during the refinement
phase.
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