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ABSTRACT
This paper presents the submission of our RU-DS team to the Pixel
Privacy Task 2020. We propose to fool the blind image quality
assessment model by transforming images based on optimizing
a human-understandable color filter. In contrast to the common
work that relies on small, 𝐿𝑝 -bounded additive pixel perturbations,
our approach yields large yet smooth perturbations. Experimental
results demonstrate that in the specific context of this task, our
approach is able to achieve strong adversarial effects, but has to
sacrifice the image appeal.

1 INTRODUCTION
High-quality images shared online can be misappropriated for pro-
motional goals. The Pixel Privacy Task [15] this year is focused on
developing adversarial techniques to decrease the predicted quality
scores of an automatic Blind Image Quality Assessment (BIQA)
model [10], which effectively camouflages images from being pro-
moted. A key requirement of such adversaries is that the adversarial
image should remain its original quality or become more appealing
to the human eye. Conventional work on generating adversarial
images has been focused on small additive perturbations, mostly
bounded by 𝐿𝑝 distance [2, 3, 9, 16], or othermore visual-perception-
aligned metrics [4, 18, 19, 21]. In this way, the adversarial image
is only designed to maintain its original appearance as much as
possible, instead of enhancing the image appeal.

In contrast, recent studies [1, 6, 7, 13, 14, 17, 20] have started to
explore non-suspicious adversarial images that accommodate larger
perturbations without arousing suspicion because they transform
groups of pixels along dimensions consistent with human interpre-
tation of images. Among them, the Adversarial Color Enhancement
(ACE) [20] can simultaneously achieve the adversarial effects and
image enhancement by optimizing a human-understandable para-
metric color filter. Its effectiveness has been originally validated in
the domain of image classification and segmentation.

Onemay argue that it is easier to separately conduct the optimiza-
tion for adversarial effects and image enhancement. However, we
note that the joint optimization can yield larger perturbations that
enjoy two important practical properties: robustness against com-
mon image processing operations and transferability to a black-box
target model [1, 17, 20]. In this paper, specifically, we will explore
the usefulness of ACE in this Pixel Privacy Task for decreasing the
BIQA score while enhancing the image appeal.
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Figure 1: A 4-piece color filter in ACE ( from [20]).

2 APPROACH
In this section, we firstly recall the general formulation of Adversar-
ial Color Enhancement (ACE) as proposed by [20], and then present
the modifications for applying it in our specific Pixel Privacy Task.

2.1 Parametric Image Enhancement
Most advanced automatic photo enhancement algorithms have
proposed to parameterize the image editing process by the DNNs,
which however suffers from high computational cost and low inter-
pretability [8, 12, 22]. In contrast, recent work [5, 11] has proposed
to parameterize the process as human-understandable image filters.
Such methods have far fewer parameters to optimize, and can be
applied independently of the image resolution.

Specifically, ACE adopts the approximation of the color filter
in [11], which is formulated as a simple monotonic piecewise-linear
mapping function:

𝐹𝜽 (𝑥𝑘 ) =
𝑘−1∑
𝑖=1

𝜃𝑖

𝜃sum
+ (𝐾 · 𝑥𝑘 − (𝑘 − 1)) · 𝜃𝑘

𝜃sum
,

𝜃sum =

𝐾∑
𝑘=1

𝜃𝑘 ,

(1)

where 𝐾 demotes the total number of pieces. In this case, an input
image pixel 𝑥𝑘 falling in the 𝑘-th piece will be filtered using the
parameter 𝜃𝑘 , and 𝐹𝜽 (𝑥𝑘 ) is its corresponding output. By doing this,
pixels with similar colors will be filtered with the same parameter,
leading to smooth color transformation. Specifically, the three RGB
channels are processed independently. An example of this function
with four pieces (𝐾 = 4) is illustrated in Fig. 1.
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Table 1: Detailed settings of our five runs.

Runs Methods Parameters

1 ACE-PGD 𝐾 = 64, 𝜖 = 16, and iters. = 20
2 ACE-PGD 𝐾 = 64, 𝜖 = 32, and iters. = 20
3 ACE-PGD 𝐾 = 256, 𝜖 = 16, and iters. = 20
4 ACE-PGD 𝐾 = 256, 𝜖 = 64, and iters. = 20
5 ACE-Ins 𝐾 = 64, 𝜆 = 0.01, and iters. = 100

2.2 Adversarial Color Enhancement
ACE generates non-suspicious adversarial images by iteratively
updating the parameters of the color filter defined in Eq. 1, in
contrast to the conventional attacks that are operated in the raw
pixel space.

There are two methods to constrain the color transformation
strength. The first method imposes adjustable bounds on the filter
parameters, formulated as:

min
𝜽

𝐿𝑎𝑑𝑣 (𝐹𝜽 (𝒙)), s.t. 1 ≤ ∥ 𝜽

𝜽 0
∥∞ ≤ 𝜖, (2)

where 𝜽 0 denotes the initial parameters, equaling to 1𝐾/𝐾 . The
adversarial loss, 𝐿𝑎𝑑𝑣 , adopts the specific logit loss from the the well-
known C&W method [2]. Note that this parameter bound is not
necessarily to tight as in the 𝐿𝑝 methods, since the color filtering can
inherently guarantee the uniformity of the image transformation
even when the perturbations are large. This bounded variant of
ACE is referred to as ACE-PGD.

The second method guides the transformation towards specific
appealing color styles, in addition to achieving the adversarial ef-
fects. To this end, additional guidance from common enhancement
practices is incorporated into the adversarial optimization. Specif-
ically, the targeted appealing color styles are obtained by using
Instagram filters, and the optimization can be formulated as:

min
𝜽

𝐿𝑎𝑑𝑣 (𝐹𝜽 (𝒙)) + 𝜆 · ∥𝐹𝜽 (𝒙) − 𝒙 ins∥22, (3)

where 𝒙 ins denotes the targeted Instagram filtered image with a
specific color style. This variant of ACE is referred to as ACE-Ins.
One popular Instagram filter style, Nashville, is considered in our
submitted runs, and the implementation is automated using the
GIMP toolkit with the Instagram Effects Plugins1.

In the context of fooling BIQA, the 𝐿𝑎𝑑𝑣 is formulated as:

𝐿𝑎𝑑𝑣 = max{BIQA(𝐹𝜽 (𝒙)) −𝐶, 0}, (4)

where the target score can be set by adjusting 𝐶 . Specifically, we
set 𝐶 a bit lower than the standard target, 50, to make sure the
adversarial effects could remain after the JPEG compression.

3 RESULTS AND ANALYSIS
In total, we submitted five runs. We tried different parameters of
ACE-PGD for the first four runs, and used ACE-Ins for the last run.

As can be seen from Table 1, all the five runs effectively de-
crease the model accuracy to a level below 50%. Specifically, as
expected, higher 𝐾 = 4 and 𝜖 lead to stronger adversarial effects. In
1https://www.marcocrippa.it/page/gimp_instagram.php.

Table 2: Evaluation results of our five runs. The accuracy (%)
is calculated over all the 550 test images, which are com-
pressed with JPEG 90 before evaluation. The number of
times selected as “Top-3” most appealing among the total 13
qualified runs is evaluated by user study with 7 people on
20 representative images that have the largest BIQA score
variance. The maximum number is 140.

Runs 1 2 3 4 5

Acc before JPEG 48.00 33.27 50.00 21.82 35.09
Acc after JPEG 45.27 33.45 47.45 22.55 44.91

Number of Top-3 2 7 6 4 7

Figure 2: Adversarial images achieved by our approach with
the original and decreased scores. The top row shows the
examples with relatively high appeal and the bottom row
shows the failed examples with low appeal.

addition, we find that the results before and after the JPEG compres-
sion remain similar, suggesting that our approach is stale against
compression.

However, the human evaluation results on the 20 selected images
are not satisfying. It implies that the BIQA model is more stable
against the interference of smooth modifications, such as ACE,
than the classification models. Specifically, we notice that ACE-
Ins fails to drive the image into a target appealing style since the
optimization has to be focused on lowering the score. This may
be because the quality assessment model tends to rely on high-
frequency features but the ImageNet classifier learns both low-
frequency (e.g. shape) and high-frequency (e.g. textures) features.
This makes the quality assessment model more robust against the
low-frequency perturbations by our ACE. We will explore this in
more depth for the future work.

Figure 2 visualizes the successful adversarial examples with high
and low appeal. We can observe that ACE can yield good image
examples with filtering-like styles, but the bad examples suffer from
over-colorization effects.
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