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Abstract. We address the problem of finding high-level explanations
for concept subsumption w.r.t. combinations of EL (resp. EL+) CBoxes.
Our goal is to find explanations for concept subsumptions in such combi-
nations of CBoxes which contain only symbols (concept names and role
names) that are common to the CBoxes. For this, we use the encoding
of TBox subsumption as a uniform word problem in classes of semilat-
tices with monotone operators for EL and the ≤-interpolation property
in these classes of algebras, as well as extensions to these results in the
presence of role inclusions. For computing the ≤-interpolating terms we
use a translation to propositional logic and methods for computing Craig
interpolants in propositional logic.

1 Introduction

Description logics are logics for knowledge representation which provide a logical
basis for modeling and reasoning about objects, classes of objects (concepts), and
relationships between them (roles). They are of particular importance in provid-
ing a logical formalism for ontologies. One of the problems arising when creating
ontologies is to ensure that they do not contain mistakes that could allow to
prove subsumptions between concepts that are not supposed to hold. One situa-
tion in which this can happen is when already existing databases (or ontologies)
which can be considered trustworthy are extended or when two databases (or
ontologies) are put together. Even if the new ontology is still consistent, one
needs to make sure that no concept inclusions which are not supposed to be true
can be derived. It is therefore important to provide simple explanations for con-
cept subsumptions in such combined ontologies (containing, for instance, only
symbols that occur both in the original ontology and in the extension). In this
paper we analyze this particular problem for the case in which the two ontologies
consist only of TBoxes resp. CBoxes. We restrict the description logics to EL and
EL+. We use the encoding of TBox subsumption for EL as a uniform word prob-
lem in classes of semilattices with monotone operators and the ≤-interpolation
property in these classes of algebras, as well as extensions to these results in
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the presence of role inclusions. (A subset of the axioms needed for deriving a
concept inclusion can be determined using an unsatisfiable core computation.)
For computing the ≤-interpolating terms we use a translation to propositional
logic and methods for computing Craig interpolants in propositional logic. We
regard these ≤-interpolating terms as high-level explanations for the subsump-
tion. If more explanations are needed, they can then be obtained by analyzing
the unsatisfiable cores and the resolution derivation of the ≤-interpolating terms.

Related work One method for finding justifications in description logics which
has been addressed in previous work is the so-called axiom pinpointing. The idea
is to find a minimal axiom set, which already has the consequence in question.
Similar algorithms for computing minimal axiom sets for ALC-terminologies
were given by Baader and Hollunder [4], and by Schlobach and Cornet [18].
They are extensions of the tableau-like satisfiability algorithm for ALC and the
tableau-like consistency algorithm for ALC, respectively, in which they make use
of labels to keep track of the axioms that were used during the execution of the
algorithms. In contrast to the algorithm in [18], the one in [4] does not com-
pute minimal axiom sets directly, but Boolean formulae from which they can be
derived. Possibilities of explaining ALC-subsumption (again based on tableau
implementations) are described in [9]. In [17], a general approach to produce
axiom pinpointing extensions of consequence-based algorithms is proposed. The
methods we propose in this paper are based on resolution and hierarchical rea-
soning and are restricted to EL and EL+.

In [7] and [8] Baader et al. give a similar algorithm for axiom pinpointing in the
description logics EL and EL+, respectively, in which they modify the subsump-
tion algorithm for EL (respectively EL+). Here again labels are used to keep
track of the axioms needed and the output is a Boolean formula, from which the
axioms can be derived. They show that computing all possible minimal axiom
sets may need exponential time, whereas computing one such set can be done in
polynomial time. In [8] they consider extensions of TBoxes, i.e. unions of a static
TBox (with irrefutable axioms) and a refutable TBox. There are also approaches
to finding and enumerating justifications in EL-ontologies and extensions thereof
using saturation with respect to a consequence-based calculus [14], using resolu-
tion [11], or using other suitable SAT-tools [2]. The approach we present could
use these methods for axiom pinpointing or justification computation (here we
instead use unsatisfiable core computation).

Possibilities of finding small proofs for description logics have been investigated
in [1]. This is not the direct goal of this paper, but might be considered as a
further step in an incremental way of generating explanations, after having con-
structed intermediate terms. In [10], provenance for variants of the description
logic EL is studied; our approach could be extended with such considerations
for making the explanations more informative.

Possibilities of detecting differences between ontologies have been studied in [12];
this could be seen as a first step of obtaining the concept inclusions on which
our method could be applied.
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A1 : Endocardium ⊑ Tissue

A2 : Endocardium ⊑ ∃part-of.HeartWall

A3 : HeartWall ⊑ BodyWall

A4 : HeartWall ⊑ ∃part-of.LeftVentricle

A5 : HeartWall ⊑ ∃part-of.RightVentricle

A6 : LeftVentricle ⊑ Ventricle

A7 : RightVentricle ⊑ Ventricle

A8 : Endocarditis ⊑ Inflammation

A9 : Endocarditis ⊑ ∃has-location.Endocardium

A10 : Inflammation ⊓ ∃has-location.Endocardium ⊑ Endocarditis

A11 : Inflammation ⊑ Disease

A12 : Inflammation ⊑ ∃acts-on.Tissue

B1 : Ventricle ⊑ ∃part-of.Heart

B2 : HeartDisease ⊑ Disease

B3 : HeartDisease ⊑ ∃has-location.Heart

B4 : Disease ⊓ ∃has-location.Heart ⊑ HeartDisease

R1 : part-of ◦ part-of ⊑ part-of

R2 : has-location ◦ part-of ⊑ has-location

Fig. 1: Example of an EL+ ontology

1.1 Illustration

We illustrate our ideas on the example CBox in Figure 1. It is based on an
example from [28], which we modified in some points. We changed the CBox in a
way that it only contains general concept inclusions and conjunction only appears
on the left hand side of an axiom. Furthermore we left out some axioms and
concepts, but also added new concepts (LeftVentricle, RightVentricle, Ventricle)
and changed some axioms accordingly. (Note that concept names always start
with capital letters, whereas role names start with small letters.)

We divided the CBox into three parts: The A-part is our main CBox, which
is supposed to be consistent. The B-part is an extension of the main CBox and
may introduce some new (and in the worst case even unwanted) consequences.
The R-part contains only role axioms RI (we assume that role symbols are
always among the shared symbols of the two CBoxes). Thus, the A-part is the
CBox TA ∪ RI and the B-part is the CBox TB ∪ RI, where TA and TB are
TBoxes. We are interested in finding simple explanations for consequences w.r.t.
this extended CBox. One such consequence is Endocarditis ⊑ Heartdisease.
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Constructor name Syntax Semantics

conjunction C1 ⊓ C2 CI

1 ∩ CI

2

existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}

Fig. 2: EL constructors and their semantics

Note that TA ∪ TB ∪ RI |= Endocarditis ⊑ Heartdisease, but TA ∪ RI 2

Endocarditis ⊑ Heartdisease and TB ∪ RI 2 Endocarditis ⊑ Heartdisease, i.e. the
consequence comes from the extension of the ontology and is not a consequence
of one of the parts alone. Our goal now is to find an explanation of the reason
why TA ∪ TB ∪ RI |= Endocarditis ⊑ Heartdisease. Formally this means that we
try to find a concept description C which contains only shared symbols of TA and
TB such that TA∪RI |= Endocarditis ⊑ C and TA∪TB ∪RI |= C ⊑ Heartdisease.
The common concepts in this example are Disease and Ventricle. We obtain the
concept description C := Disease ⊓ ∃has-location.Ventricle, which can be regarded
as a high-level explanation for TA ∪ TB ∪RI |= Endocarditis ⊑ Heartdisease. The
details are presented in Section 4.

2 Preliminaries

The central notions in description logics are concepts and roles. In any descrip-
tion logic a set NC of concept names and a set NR of roles is assumed to be given.
Complex concepts are defined starting with the concept names in NC , with the
help of a set of concept constructors. The available constructors determine the
expressive power of a description logic. The semantics of description logics is
defined in terms of interpretations I = (∆I , ·I), where ∆I is a non-empty set,
and the function ·I maps each concept name C ∈ NC to a set CI ⊆ ∆I and
each role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I .

The description logics EL, EL+ and some extensions. If we only allow
intersection and existential restriction as concept constructors, we obtain the
description logic EL [3], a logic used in terminological reasoning in medicine
[27, 26]. Fig. 2 shows the constructor names used in the description logic EL
and their semantics. The extension of ·I to concept descriptions is inductively
defined using the semantics of the constructors. In [6, 5], the extension EL+ of
EL with role inclusion axioms is studied. Relationships between concepts and
roles are described using TBoxes or, more generally, CBoxes.

Definition 1 (TBox, Model, TBox subsumption). A TBox (or terminol-
ogy) is a finite set consisting of primitive concept definitions of the form C ≡ D,
where C is a concept name and D a concept description; and general concept
inclusions (GCI) of the form C ⊑ D, where C and D are concept descriptions.

– An interpretation I is a model of a TBox T if it satisfies:
• all concept definitions in T , i.e., CI=DI for all definitions C≡D ∈ T ;
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• all general concept inclusions in T , i.e., CI⊆DI for every C⊑D ∈ T .
– Let T be a TBox, and C1, C2 two concept descriptions. C1 is subsumed by

C2 w.r.t. T (C1 ⊑T C2) if and only if CI
1 ⊆ CI

2 for every model I of T .

Since definitions can be expressed as double inclusions, in what follows we will
only refer to TBoxes consisting of general concept inclusions (GCI) only.

Definition 2 (CBox, Model, CBox subsumption). A CBox consists of a
TBox T and a set RI of role inclusions of the form r1 ◦ · · · ◦ rn ⊑ s. Since
terminologies can be expressed as sets of general concept inclusions, we will view
CBoxes as unions GCI∪RI of a set GCI of general concept inclusions and a
set RI of role inclusions of the form r1 ◦ · · · ◦ rn ⊑ s, with n≥1.

– An interpretation I is a model of the CBox C = GCI ∪ RI if it is a model
of GCI and satisfies all role inclusions in C, i.e., rI1 ◦ · · · ◦ rIn ⊆ sI for all
r1 ◦ · · · ◦ rn ⊆ s ∈ RI.

– If C is a CBox, and C1, C2 are concept descriptions then C1 ⊑C C2 if and
only if CI

1 ⊆ CI
2 for every model I of C.

In [6] it was shown that subsumption w.r.t. CBoxes in EL+ can be reduced in
linear time to subsumption w.r.t. normalized CBoxes, in which all GCIs have
one of the forms: C ⊑ D,C1 ⊓C2 ⊑ D,C ⊑ ∃r.D, ∃r.C ⊑ D, where C,C1, C2, D

are concept names, and all role inclusions are of the form r ⊑ s or r1 ◦ r2 ⊑ s,
where r, s, r1, r2 are role names. Therefore, in what follows, we consider w.l.o.g.
that CBoxes only contain role inclusions of the form r ⊑ s and r1 ◦ r2 ⊑ s.

Algebraic semantics for EL, EL+ and extensions thereof. In [20] we stud-
ied the link between TBox subsumption in EL and uniform word problems in
the corresponding classes of semilattices with monotone functions. In [22, 23],
we showed that these results naturally extend to the description logic EL+.
Let SLO(Σ) be the class of all ∧-semilattices with unary operators (S,∧, {fS}f∈Σ),
such that, for every f ∈ Σ, fS : S → S is a monotone function, i.e. f satisfies:

Mon(Σ) =
∧

f∈Σ

∀x, y
(

x ≤ y → f(x) ≤ f(y)
)

.

When defining the semantics of EL or EL+ with role names NR we use a class of
∧-semilattices with monotone operators of the form SLO∃

NR
= (S,∧, {f∃r}r∈NR

).

Every concept description C can be represented as a term C; the encoding is
inductively defined:

– Every concept name C ∈ NC is regarded as a variable C = C.
– C1 ⊓ C2 = C1 ∧ C2 and ∃rC = f∃rC.

If RI is a set of role inclusions of the form r ⊑ s and r1 ◦ r2 ⊑ s, let RIa be the
set of all axioms of the form

∀x (f∃r(x) ≤ f∃s(x)) for all r ⊑ s ∈ RI

∀x (f∃r1(f∃r2(x)) ≤ f∃s(x)) for all r1 ◦ r2 ⊑ s ∈ RI

We will denote by SLO∃
NR

(RIa) the class of all semilattices with monotone op-
erators in which all axioms in RIa hold.
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Theorem 3 ([23]). If the only concept constructors are intersection and ex-
istential restriction, then for all concept descriptions D1, D2 and every EL+

CBox C=GCI∪RI – where RI consists of role inclusions of the form r ⊑ s and
r1 ◦ r2 ⊑ s – with concept names NC = {C1, . . . , Cn} and set of roles NR the
following are equivalent:

(1) D1⊑CD2.

(2) SLO∃
NR

(RIa) |= ∀C1 . . . Cn

((

∧

C⊑D∈GCI C≤D
)

→ D1≤D2

)

.

In [23, 24] we showed that the uniform word problem for the class of algebras
SLO∃

NR
(RIa) is decidable in PTIME. For this, we proved that SLO∃

NR
(RIa) can

be seen as a “local” extension (cf. [19]) of the theory SLat of semilattices.

Theorem 4 ([25, 23]). Let G be a set of ground clauses. The following are
equivalent:

(1) SLat ∪Mon(Σ) ∪G |=⊥.
(2) SLat ∪Mon(Σ)[G] ∪ G has no partial model A such that its {∧}-reduct is a

semilattice, and all Σ-subterms of G are defined.
Here we denoted by Mon(Σ)[G] the set of all instances of axioms of Mon(Σ)
containing only (ground) subterms occurring in G.

Let Mon(Σ)[G]0 ∪ G0 ∪ Def be obtained from Mon(Σ)[G] ∪ G by replacing (in
a bottom-up manner) every term t = f(c) starting with functions in Σ with a
fresh constant ct, and adding t ≈ ct to the set Def.

The following are equivalent (and equivalent to (1) and (2) above):

(3) Mon(Σ)[G]0 ∪G0 ∪Def has no partial model A such that its {∧}-reduct is a
semilattice, and all Σ-subterms of G are defined.

(4) Mon(Σ)[G]0 ∪G0 is unsatisfiable in SLat.
(Note that in the presence of Mon(Σ) the instances Con[G]0 of the con-
gruence axioms for the functions in Σ, Con[G]0 = {g=g′ → cf(g)=cf(g′) |
f(g)=cf(g), f(g

′)=cf(g′) ∈ Def}, are not necessary.)

This equivalence allows us to hierarchically reduce, in polynomial time, proof
tasks in SLat ∪Mon(Σ) to proof tasks in SLat (cf. e.g., [25]) which can then be
solved in polynomial time. In [23, 24] we proved that similar results hold for the
class SLOΣ(RI) of semilattices with monotone operators in a set Σ satisfying
a family RIa axioms of the form:

∀x g(x) ≤ h(x) (1)

∀x f(g(x)) ≤ h(x) (2)

resp. their flattened version RIflata , in which (2) is replaced by (3):

∀x y ≤ g(x) → f(y) ≤ h(x) (3)
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Theorem 5 ([24]). Let SL be a local axiomatization of the theory of semilat-
tices. The following are equivalent:

(1) SL ∪Mon(Σ) ∪RIflata |= ∀x
∧n

i=1 si(x) ≤ s′i(x) → s(x) ≤ s′(x);

(2) SL ∪Mon(Σ) ∪RIflata ∧G |=⊥, where G =
∧n

i=1 si(c)≤s′i(c)∧s(c)6≤s′(c);

(3) (SL ∪ Mon(Σ) ∪ RIflata )[ΨRI(G)] ∧ G |=⊥ where ΨRI(G) =
⋃

i≥0 Ψ
i
RI , with

Ψ0
RI=st(G) and Ψ i+1

RI ={f2(d) | f(d) ∈ Ψ i
RI , (y≤f2(x)→f1(y)≤f(x)) ∈ RIflata }.

An example that illustrates the way the method for hierarchical reasoning
can be used in this case is given in Appendix A.

3 P -Interpolation Property

Let Pred be a set of predicates. We look at a certain kind of interpolation prop-
erty which we call P -interpolating. In the following we give a definition for
P -interpolation and show that the theory of semilattices has this property.

Definition 6. T0 is P -interpolating with respect to P ∈ Pred, if for all con-
junctions A and B of ground literals, all binary predicates R ∈ P and all terms
a and b such that a contains only constants occurring in A and b contains only
constants occurring in B (or vice versa), if A ∧ B |=T0

aRb then there exists a
term t containing only constants common to A and B with A∧B |=T0

aRt∧tRb.
T0 is strongly P -interpolating, if there exists such a term t with A |=T0

aRt and
B |=T0

tRb.1

Proving P -interpolability is sometimes easier for theories which are P -convex.

Definition 7. A theory T0 is convex with respect to the set Pred of all predicates
(which may include also equality ≈) if for all conjunctions Γ of ground atoms,
relations R1, . . . , Rm ∈ Pred and ground tuples of corresponding arity t1, . . . , tn,
if Γ |=T0

∨m
i=1 Ri(ti) then there exists j ∈ {1, . . . ,m} such that Γ |=T0

Rj(tj).

We will prove that the theory of semilattices with monotone operators is ≤-
interpolating. For this we will use the fact that the theory of semilattices is
≤-convex.

Lemma 8. The theory of semilattices is ≤-convex.

Proof: The convexity of the theory of semilattices w.r.t. ≈ follows from the fact
that this is an equational class; convexity w.r.t. ≤ follows from the fact that
x ≤ y if and only if (x ∧ y) ≈ x. �

Lemma 9. The theory SLat of semilattices is ≤-interpolating.

1 This definition is equivalent to the definition, sometimes used in the literature, in
which a and b are required to be constants.
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Proof: This is a constructive proof based on the fact that SLat = ISP (S2) (i.e.
every semilattice is isomorphic to a sublattice of a power of S2), where S2 is the
2-element semilattice, or, alternatively, that every semilattice is isomorphic to a
semilattice of sets. We prove that the theory of semilattices is ≤-interpolating,
i.e. that if A and B are two conjunctions of literals and A∧B |=SLat a ≤ b, where
a is a term containing only constants which occur in A and b a term containing
only constants occurring in B, then there exists a term containing only common
constants in A and B such that A |=SLat a ≤ t and A ∧ B |=SLat t ≤ b. We can
assume without loss of generality that A and B consist only of atoms (otherwise
one moves the negative literals to the right and uses convexity - details are given
in Appendix B). A ∧ B |=SLat a ≤ b if and only if the following conjunction of
literals in propositional logic is unsatisfiable:

(Ren(∧)) Pe1∧e2 ↔ Pe1 ∧ Pe2

(P) Pe1 ↔ Pe2 e1 ≈ e2 ∈ A

Pe1 → Pe2 e1 ≤ e2 ∈ A

(N) Pa

Pg1∧g2 ↔ Pg1 ∧ Pg2

Pg1 ↔ Pg2 g1 ≈ g2 ∈ B

Pg1 → Pg2 g1 ≤ g2 ∈ B

¬Pb

for all e, e1, e2 subterms in A for all g, g1, g2 subterms in B

We obtain an unsatisfiable set of clauses (NA ∧ Pa) ∧ (NB ∧ ¬Pb) |=⊥, where
NA and NB are sets of Horn clauses in which each clause contains a positive
literal. We can saturate NA ∪ Pa under ordered resolution, in which all symbols
occurring in A but not in B are larger than the common symbols. We show that
if A ∧B |=SLat a ≤ b holds, then for the term

t :=
∧

{e | A |=SLat a ≤ e, e common subterm of A and B}

the following hold:

(i) A |=SLat a ≤ t, and
(ii) A ∧B |=SLat t ≤ b.

This means that for the theory of semilattices we have a property stronger than
≤-interpolability, but not quite as strong as strongly ≤-interpolability.2

Every e ∈ T = {e | A |= a ≤ e, e common subterm of A and B} corresponds
to the positive unit clause Pe (where Pe is a propositional variable common to
NA and NB) which can be derived from NA using ordered resolution (with the
ordering described above).

It is clearly the case thatA |=SLat a ≤ t, becauseNA∧Pa∧¬Pt∧(Pt ↔
∧

e∈T Pe) is
unsatisfiable. Thus, (i) holds. For proving (ii), observe that by saturatingNA∧Pa

under ordered resolution we obtain the following kinds of clauses containing only
shared symbols which can possibly lead to ⊥ after inferences with NB∧¬Pb (and
thus to the consequence a ≤ b together with B).

(a) Pek positive unit clauses s.t. ek contains symbols common to A and B.
(b)

∧n

j=1 Pcij → Pdi
, where cij and di are common symbols, such that for all i,

j and k we have cij 6= ek and di 6= ek.

2 This proof fixes a problem with a claim made in the Appendix of [21] where it is
mentioned that the theory of semilattices is strongly ≤-interpolating.
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Other types of clauses may appear too, but they can not be used to obtain a ≤ b

(the details are presented in Appendix B).

For the proof of (ii) one needs to consider separately the case in which none
of the clauses of type (b) is needed to derive ⊥ together with NB ∧ ¬Pb (and
thus the consequence a ≤ b) and the case when some clauses of type (b) are
needed. In the first case, ⊥ is derived already because of a subset {Pei | i ∈ S}.
In the second case a careful analysis is needed. The details are presented in
Appendix B. ⊓⊔

We show how to compute an intermediate term in the theory of semilattices on
an example.

Example 10. Let A = {a1 ≤ c1, c2 ≤ a2, a2 ≤ c3} and B = {c1 ≤ b1, b1 ≤
c2, c3 ≤ b2}. It is easy to see that A∧B |= a1 ≤ b2. We can find an intermediate
term by using the methods described in the proof: We saturate NA ∧ Pa1

=
(Pa1

→ Pc1)∧(Pc2 → Pa2
)∧(Pa2

→ Pc3)∧Pa1
under ordered resolution, in which

the symbols Pa1
, Pa2

are larger than Pc1 , Pc2 , Pc3 . This yields the clauses Pc1 and
Pc2 → Pc3 containing shared propositional variables. (NA ∧ Pa1

) ∧ (NB ∧ ¬Pb2 )
is unsatisfiable iff NB ∧ ¬Pb2 ∧ Pc1 ∧ (Pc2 → Pc3) is unsatisfiable. Indeed t = c1
is an intermediate term, as A |= a1 ≤ c1 and A ∧ B |= c1 ≤ b2. Note that
NB∧¬Pb2 ∧Pc1 is satisfiable, so B 6|= c1 ≤ b2. Moreover, we only need Pc2 → Pc3

in addition to NB ∪ ¬Pb2 to derive ⊥, thus A ∧ B |= c1 ≤ b2 and the clause
Pc2 → Pc3 obtained from NA is really needed for this.

Theorem 11. The theory SLO∃
NR

(RIa) of semilattices with monotone operators
satisfying axioms RIa is ≤-interpolating.

Proof (Sketch): The operators of SLO∃
NR

(RIa) satisfy the monotonicity con-
dition Mon; the axioms in RIa are in a class we studied in [21]. Let A and B

be two conjunctions of literals (corresponding to two TBoxes), let RI be a set
of role axioms and let Mon be the family of all monotonicity axioms for the
functions {f∃r | r ∈ NR}. Assume that A ∧ B |=SLO∃

NR
(RIa) a ≤ b, where a

is a term containing only constants and Σ-functions occurring in A and b is a
term containing only constants and Σ-functions occurring in B. By Theorem 4,
A ∧ B |=SLO∃

NR
(RIa) a ≤ b if and only if (with the notation used in Theorem 4),

A0∧B0∧Mon[A∧B]0∧RIa[A∧B]0∧Con0∧¬(a ≤ b)0 |=SLat⊥. In the presence of
monotonicity, Con is not needed. The set H = Mon[A∧B]0∧RIa[A∧B]0∧¬(a ≤
b)0 contains mixed clauses. Using a result similar to one used in [21] (the proof
is given in Appendix C, cf. Proposition 13) we can “separate” all clauses in H
as well as a ≤ b, i.e. we have A0 ∧HA ∧B0 ∧HB ∧ ¬(a0 ≤ t0 ∧ t0 ≤ b0) |=SLat⊥,
where t0 contains only constants common to A0 and B0. After replacing back
the new constants with the terms they represent, we obtain: A∧B |=SLO∃

NR
(RIa)

(a ≤ t ∧ t ≤ b), where t contains symbols common to A and B.3 ⊓⊔

3 As in [21], for function symbols f, g, if f occurs in A and g occurs in B, but they
occur together in one of the axioms in RI , they are considered to be shared.
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4 ≤-Interpolation for High-Level Explanations

In this section we explain our method in detail and illustrate each step of the
method on the example from Section 1.1. First we give a formal statement of
the problem we are addressing: Let TA and TB be two EL+ TBoxes and RI a set
of role inclusions. Let NC be the set of all concept names occurring in TA ∪ TB,
NA

C and NB
C be the set of concept names occurring in TA and TB , respectively,

and NAB
C = (NA

C ∩ NB
C ) be the common concept names. Let X be a concept

description over NA
C and Y a concept description over NB

C such that they do
not contain only shared symbols and such that TA ∪ TB ∪ RI |= X ⊑ Y , but
TA ∪ RI 6|= X ⊑ Y and TB ∪ RI 6|= X ⊑ Y . The goal is to find a concept
description C, containing only concepts in NAB

C (and possibly also only roles
common to TA and TB), such that TA∪RI |= X ⊑ C and TA∪TB∪RI |= C ⊑ Y .
The concept description C can then be seen as a “high-level explanation” for
X ⊑ Y . Using Theorem 3 and Theorem 11, we can always compute such a
concept description. For this we apply the following steps:

1. Translate to the theory of semilattices with monotone operators
2. Flatten, purify and use instantiation
3. Separate all mixed instances of role and monotonicity axioms
4. Compute an intermediate term using P -interpolation

Remark 12. We can make the method more efficient especially for large ontolo-
gies, by modifying Steps 2 and 3. Usually, if we have very large TBoxes, only
some of their axioms are necessary for obtaining a certain consequence. There-
fore it is sufficient to apply Step 2 only on the relevant axioms. Similarly, we can
speed up our method by applying Step 3 only on the instances relevant for our
problem. For determining which axioms/instances are relevant we can compute
a minimal axiom set, for example by using unsatisfiable core computation. We
therefore modify the method by including a Step 2a (before Step 2) and a Step
3a (before Step 3) in which we compute a minimal axiom or instance set.

For the ontology from Section 1 we have the following sets of symbols (we indicate
also the abbreviations used in what follows):

NA
C = {Endocardium(Em),Tissue(T),HeartWall(HW),

LeftVentricle(LV),RightVentricle(RV),Ventricle(V)

Disease(D), Inflammation(I),Endocarditis(Es)}

NB
C = {Heart(H),HeartDisease(HD),Disease(D),Ventricle(V)}

NAB
C = {Disease(D),Ventricle(V)}

Therefore the consequence Endocarditis ⊑ Heartdisease indeed belongs to the
problem described above. We show how to apply steps 1 to 4 (including steps
2a and 3a) in detail:

Step 1: Figure 3 shows the ontology after the translation to the theory of
semilattices (SLat). For this we replace ⊑ by ≤ and ⊓ by ∧, and write the role
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A1 : Em ≤ T

A2 : Em ≤ po(HW)

A3 : HW ≤ BW

A4 : HW ≤ po(LV)

A5 : HW ≤ po(RV)

A6 : LV ≤ V

A7 : RV ≤ V

A8 : Es ≤ I

A9 : Es ≤ hl(Em)

A10 : I ∧ hl(Em) ≤ Es

A11 : I ≤ D

A12 : I ≤ ao(T)

B1 : V ≤ po(H)

B2 : HD ≤ D

B3 : HD ≤ hl(H)

B4 : D ∧ hl(H) ≤ HD

R1 : ∀X: po(po(X)) ≤ po(X)

R2 : ∀X: hl(po(X)) ≤ hl(X)

M1 : ∀X,Y: X ≤ Y → po(X) ≤ po(Y)

M2 : ∀X,Y: X ≤ Y → hl(X) ≤ hl(Y)

M3 : ∀X,Y: X ≤ Y → ao(X) ≤ ao(Y)

Fig. 3: Ontology after translation to SLat with monotone operators

axioms as universal formulae. Note that we use abbreviations for role names (e.g.
hl for has-location, po for part-of, ao for acts-on). Also note that we now state
the monotonicity axioms for each role explicitly.

Step 2a: Using unsat core computation we get the minimal axiom set minA =
{A2, A4, A6, A8, A9, A11, B1, B4, R2}. This means that for the following instan-
tiation step we only have to consider the role axiom R2 and none of the mono-
tonicity axioms is needed.

Step 2: Let T0 = SLat and T1 = SLat∪R2 be the extension of T0 with axiom R2.
We know that it is a local theory extension, so we can use hierarchical reasoning.
We first flatten the role axiom R2 in the following way:

Rflat
2 : ∀X, Y: X ≤ po(Y) → hl(X) ≤ hl(Y)

We have the following instances of this axiom:

I1 : Em ≤ po(HW) → hl(Em) ≤ hl(HW)

I2 : Em ≤ po(LV) → hl(Em) ≤ hl(LV)

I3 : Em ≤ po(RV) → hl(Em) ≤ hl(RV)

I4 : Em ≤ po(H) → hl(Em) ≤ hl(H)

I5 : HW ≤ po(LV) → hl(HW) ≤ hl(LV)

I6 : HW ≤ po(RV) → hl(HW) ≤ hl(RV)

I7 : HW ≤ po(H) → hl(HW) ≤ hl(H)

I8 : LV ≤ po(HW) → hl(LV) ≤ hl(HW)

I9 : LV ≤ po(RV) → hl(LV) ≤ hl(RV)

I10 : LV ≤ po(H) → hl(LV) ≤ hl(H)

I11 : RV ≤ po(HW) → hl(RV) ≤ hl(HW)

I12 : RV ≤ po(LV) → hl(RV) ≤ hl(LV)

I13 : RV ≤ po(H) → hl(RV) ≤ hl(H)

I14 : H ≤ po(HW) → hl(H) ≤ hl(HW)

I15 : H ≤ po(LV) → hl(H) ≤ hl(LV)

I16 : H ≤ po(RV) → hl(H) ≤ hl(RV)

We purify all formulae by introducing new constants for the terms starting with
a function symbol, i.e. role names. We save the definitions in the following set:

Def = {poHW = po(HW), poLV = po(LV), poH = po(H), hlEM = hl(EM),

hlHW = hl(HW), hlLV = hl(LV), hlHC = hl(HC), hlH = hl(H)}
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We then have the set A0∧B0∧I0, where A0, B0 and I0 are the purified versions of
A = {A2, A4, A6, A8, A9, A11}, B = {B1, B4} and I = {I1, ..., I10}, respectively.

Step 3a: Computing an unsatisfiable core yields the following set of axioms:
{A2, A4, A6, A8, A9, A11, B1, B4, I1, I5, I10}. So we have H = {I1, I5, I10}. Out
of these instances the first two are pure A (meaning the premise contains only
symbols in NA

C ), but I10 is a mixed instance, since LV ∈ NA
C \NB

C and H ∈
NB

C \NA
C , so Hmix = {I10}.

Step 3: To separate the mixed instance LV ≤ poH → hlLV ≤ hlH one has to find
an intermediate term t in the common signature such that LV ≤ t and t ≤ poH.
t = V is such a term. We get Hsep = {IA10, I

B
10} where

IA10 : LV ≤ V → hlLV ≤ hlV

IB10 : V ≤ poH → hlV ≤ hlH

Note that IA10 is an instance of the monotonicity axiom for the has-location role
and IB10 is an instance of axiom Rflat

2 .

Step 4: Note that w.r.t. SLat the formula A0 ∧ I1 ∧ I5 ∧ IA10 is equivalent to:

A0 = Em ≤ poHW ∧ HW ≤ poLV ∧ LV ≤ V ∧ Es ≤ I ∧ Es ≤ hlEm ∧ I ≤ D

∧ hlEM ≤ hlHW ∧ hlHW ≤ hlLV ∧ hlLV ≤ hlV

To obtain an explanation for TA ∪ TB ∪ RI |= Endocarditis ⊑ HeartDisease we
saturate the set A0 ∧ Es under ordered resolution as described in the proof of
Theorem 9, where symbols occurring in A and not in B are larger than common
symbols. Doing this yields two inferences containing only common symbols: D
and hlV. By taking the conjunction of these terms and translating the formula
back to description logic, we obtain J = Disease ⊓ ∃has-location.Ventricle. Then
TA ∪RI |= Endocarditis ⊑ J and TA ∪ TB ∪RI |= J ⊑ HeartDisease.

5 Conclusion

We analyzed a possibility of giving high-level justifications for subsumption in
the description logics EL and EL+. For this, we used the encoding of TBox
subsumption as a uniform word problem in classes of semilattices with monotone
operators for EL and the ≤-interpolation property in these classes of algebras,
as well as extensions to these results in the presence of role inclusions. This
can be seen as a first step towards providing short, high-level explanations for
subsumption. If more explanations are needed, they can then be obtained by
pinpointing and analyzing the resolution derivation of the ≤-interpolating terms.

There has been work on other forms of interpolation in the family of EL
description logics: a variant of interpolation is proved in [16], possibilities for
uniform interpolation are analyzed in [13] and [15] (it is well known that neither
ALC nor EL allow uniform interpolation). As a plan for future work we would
like to analyze possibilities of symbol elimination and abduction in such logics
– which are strongly related to uniform interpolation.

Acknowledgements: We thank the reviewers for their helpful comments.
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A Example of local reasoning in EL+

We illustrate the ideas on the example from Section 1.1. Consider the CBox C
consisting of the following GCI:

A1 −A2 Endocardium ⊑ Tissue ⊓ ∃part-of.HeartWall
A4 HeartWall ⊑ ∃part-of.LeftVentricle
A6 LeftVentricle ⊑ Ventricle
A8 −A9 Endocarditis ⊑ Inflammation ⊓ ∃has-location.Endocardium
A11 Inflammation ⊑ Disease
B1 Ventricle ⊑ ∃part-of.Heart
B2 −B4 Heartdisease = Disease ⊓ ∃has-location.Heart

and the following role inclusions RI:

part-of ◦ part-of ⊑ part-of
has-location ◦ part-of ⊑ has-location

We want to check whether Endocarditis ⊑C Heartdisease. This is the case iff (with
some abbreviations – e.g. hl stands for ∃has-location and po for ∃part-of, HW for
HeartWall, Em for Endocardium, H for Heart, etc.):

SL ∪ Mon(hl, po) ∪ {∀x y≤po(x) → po(y)≤po(x),
∀x y≤po(x) → hl(y)≤hl(x)}

∪ {Em ≤ T ∧ po(HW), HW ≤ po(LV), LV ≤ V, V ≤ po(H), I ≤ D,
Endocarditis ≤ I ∧ hl(Em), Heartdisease = D ∧ hl(H),
Endocarditis 6≤ Heartdisease} |= ⊥ .

Then st(K, G) = {po(HW), po(LV), po(H), hl(Em), hl(H)}. To compute ΨK(G),
note that Ψ0

RI = st(K, G), Ψ1
RI = {po(Em), po(H)}, and Ψ2

RI = Ψ1
RI .

Thus, ΨK(G) = {po(HW), po(LV), po(Em), po(H), hl(Em), hl(H)}. After com-
puting (RIa ∪Mon(hl, po) ∪ Con)[Ψ(G)] we obtain the following conjunction of
(Horn) ground clauses:

G (RIa ∧Mon ∧ Con)[Ψ(G)]∧SL[Ψ(G)]

Em ≤ T ∧ po(HW) y≤po(x) → po(y)≤po(x) for x, y ∈ {HW, LV,Em,H}
HW ≤ po(LV), y≤po(x) → hl(y) ≤ hl(x) for x, y ∈ {Em,H}
LV ≤ V
V ≤ po(H) xRy → po(x)Rpo(y) for x, y ∈ {HW, LV,Em,H}
Endocarditis ≤ I ∧ hl(Em) xRy → hl(x)Rhl(y) for x, y ∈ {Em,H}
I ≤ D R ∈ {≤,≥,=}
Heartdisease = D ∧ hl(H)
Endocarditis 6≤ Heartdisease SL[Ψ(G)]

By Theorem 5, Endocarditis ⊑C Heartdisease iff φ = G ∧ (RIa ∧ Mon ∧
Con)[Ψ(G)] ∧ SL[Ψ(G)] is unsatisfiable. Note that φ is a set of ground clauses
in first-order logic with equality, containing all instances of the congruence ax-
ioms corresponding to the (ground) terms which occur in φ. A translation to
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Datalog can easily be obtained by replacing the function symbols with binary
predicate symbols. Alternatively, we can process the instances in φ by replac-
ing, in a bottom-up fashion, all the terms starting with function symbols (which
are all ground) with new constants (and adding, separately, the corresponding
definitions). We obtain the following set of clauses:

Def G0 (RIa ∧Mon ∧ Con)[Ψ(G)]0 ∧ SL[Ψ(G)]0

po(HW) = c1 Em ≤ T ∧ c1 a ≤ po
b
→ po

a
≤ po

b

po(LV) = c2 HW ≤ c2, aRb → po
a
R po

b
a, b ∈ {HW, LV,H,Em}

po(H) = c3 LV ≤ V
po(Em) = c4 V ≤ c3 a ≤ po

b
→ hla ≤ hlb

hl(H) = c5 Endocarditis ≤ I ∧ c6 aRb → hlaR hlb a, b ∈ {H,Em}
hl(Em) = c6 I ≤ D

Heartdisease = D ∧ c5 hla, hlb constants renaming hl(a),hl(b)
Endocarditis 6≤ Heartdisease po

a
, po

b
constants renaming po(a),po(b)

R ∈ {≤,≥,=}
SL[Ψ(G)]0

The satisfiability of φ can therefore be checked automatically in polynomial
time in the size of φ which in its turn is polynomial in the size of ΨK(G). Hence,
in this case, the size of φ is polynomial in the size of G.

Unsatisfiability can also be proved directly: G ∧ (RIa ∧ Mon ∧ Con)[Ψ(G)]
entails the inequalities:

(1) Endocarditis ≤ (I ∧ hl(Em)) ≤ (D ∧ hl(Em));
(2) LV ≤ V ≤ po(H);
(3) Em ≤ po(HW), hence also hl(Em) ≤ hl(HW);
(4) HW ≤ po(LV), hence also hl(HW) ≤ hl(LV);
(5) LV ≤ po(H), hence also hl(LV) ≤ hl(H);
(6) (D ∧ hl(Em)) ≤ (D ∧ hl(H)) = Heartdisease

Thus, G ∧ (RIa ∧Mon ∧ Con)[Ψ(G)] |= Endocarditis ≤ Heartdisease, which leads
to a contradiction, since Endocarditis 6≤ Heartdisease is in G.

B Proof of Lemma 9

Lemma 9. The theory SLat of semilattices is P -interpolating for P = {≈,≤}.

Proof: This is a constructive proof based on the fact that SLat = ISP (S2),
where S2 is the 2-element semilattice. We prove that the theory of semilattices
is ≤-interpolating, i.e. that if A and B are two conjunctions of literals and
A ∧ B |=SLat a ≤ b, where a is a term containing only constants which occur in
A and b a term containing only constants occurring in B, then there exists a
term containing only common constants in A and B such that A |=SLat a ≤ t and
A∧B |=SLat t ≤ b. We can assume without loss of generality that A and B consist
only of atoms: Indeed, assume that A ∧B = A1 ∧ · · · ∧ An ∧ ¬A′

1 ∧ · · · ∧ ¬A′
m,

where A1, . . . , An, A
′
1, . . . , A

′
m are atoms. Then the following are equivalent:

– A ∧B |=SLat a ≤ b
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– |=SLat A ∧B → a ≤ b

– |=SLat ¬A1 ∨ · · · ∨ ¬An ∨A′
1 ∨ · · · ∨ A′

m ∨ a ≤ b

– |=SLat (A1 ∧ · · · ∧ An) → A′
1 ∨ · · · ∨ A′

m ∨ a ≤ b

– A1 ∧ · · · ∧ An |=SLat A
′
1 ∨ · · · ∨ A′

m ∨ a ≤ b

Since the theory of semilattices is convex w.r.t. ≤ and ≈, it follows that if
A∧B |=SLat a ≤ b then either (a) A1∧· · ·∧An |=SLat A

′
j for some j ∈ {1, . . . ,m}

or (b) A1 ∧ · · · ∧ An |=SLat a ≤ b. It is easy to see that in case (a), A ∧ B |=⊥.
Then the conclusion of the theorem follows immediately. We therefore continue
the proof for the case when A and B consist only of atoms.

As SLat = ISP (S2), in SLat the same Horn sentences are true as in the
2-element semilattice S2. Thus, A ∧ B |=SLat a ≤ b iff A ∧ B |=S2

a ≤ b, so we
can reduce such a test to entailment in propositional logic.

It follows that A ∧B |=SLat a ≤ b if and only if the following conjunction of
literals in propositional logic is unsatisfiable:

(Ren(∧)) Pe1∧e2 ↔ Pe1 ∧ Pe2

(P) Pe1 ↔ Pe2 e1 ≈ e2 ∈ A

Pe1 → Pe2 e1 ≤ e2 ∈ A

(N) Pa

Pg1∧g2 ↔ Pg1 ∧ Pg2

Pg1 ↔ Pg2 g1 ≈ g2 ∈ B

Pg1 → Pg2 g1 ≤ g2 ∈ B

¬Pb

for all e, e1, e2 subterms in A for all g, g1, g2 subterms in B

We obtain an unsatisfiable set of clauses (NA ∧ Pa) ∧ (NB ∧ ¬Pb) |=⊥, where
NA and NB are sets of Horn clauses in which each clause contains a positive
literal. We can saturate NA ∪ Pa under ordered resolution, in which all symbols
occurring in A but not in B are larger than the common symbols. We show that
if A ∧B |=SLat a ≤ b holds, then for the term

t :=
∧

{e | A |=Slat a ≤ e, e common subterm of A and B}

the following hold:

(i) A |=SLat a ≤ t, and
(ii) A ∧B |=SLat t ≤ b.

This means that for the theory of semilattices we have a property stronger than
≤-interpolability, but not quite as strong as strongly ≤-interpolability.
Every e ∈ T = {e | A |=SLat a ≤ e, e common subterm of A and B} corresponds
to the positive unit clause Pe (where Pe is a propositional variable common to
NA and NB) which can be derived from NA using ordered resolution (with the
ordering described above).

It is clearly the case that A |=SLat a ≤ t, because NA∧Pa∧¬Pt∧(Pt ↔
∧

e∈T Pe)
is unsatisfiable. Thus, (i) holds.

For proving (ii), observe that by saturating NA∧Pa under ordered resolution we
obtain the following kinds of clauses which can possibly lead to ⊥ after inferences
with NB ∧ ¬Pb (and thus to the consequence a ≤ b together with B):
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(a) Pek positive unit clauses s.t. ek contains symbols common to A and B, for
k ∈ {1, . . . , l}.

(b)
∧ni

j=1 Pcij → Pdi
, where cij and di are common symbols, such that for all i,

j and k we have cij 6= ek and di 6= ek, for i ∈ {1, . . . , p}.

Other types of clauses may appear too, but they can not be used to obtain a ≤ b:
To see that clauses where some cij = ek are not necessary to derive the

consequence a ≤ b, note that if Pek is a positive unit literal and we have the clause
(Pek ∧

∧

Pcij ) → Pdi
, then by resolution we get as an inference

∧

Pcij → Pdi
.

It is easy to see that (Pek ∧
∧

Pcij ) → Pdi
is redundant in the presence of

∧

Pcij → Pdi
. In the same way, clauses of the form

∧

Pcij → Pek (i.e. clauses of
type (b) where di = ek) are redundant in the presence of Pe1 , . . . , Pel . For the
proof of (ii) one needs to consider separately the case in which none of the Pdi

is needed to derive ⊥ together with NB (and thus the consequence a ≤ b) and
the case when some Pdi

are needed.

Case 1: None of the Pdi
is needed to derive ⊥ together with NB (and thus the

consequence a ≤ b). We know that NA |= Pa →
∧l

k=1 Pek . From this it follows

that A |= a ≤
∧l

k=1 ek.

For A ∧ B |= a ≤ b to be true,
∧l

k=1 Pek ∧ NB ∧ ¬Pb must be unsatisfiable, so
there has to be a subset S ⊆ {1, ..., l} such that

∧

k∈S Pek ∧ NB ∧ ¬Pb. This

means that B |=
∧

s∈S es ≤ b. But then, since
∧l

k=1 ek ≤
∧

s∈S es, it follows that

B |=
∧l

k=1 ek ≤ b, and therefore also A ∧B |=
∧l

k=1 ek ≤ b.

Case 2: Some Pdi
are needed to derive ⊥ from NB ∧¬Pb. Again, we know that

NA |= Pa →
∧l

k=1 Pek (hence A |= a ≤
∧l

k=1 ek).
For A ∧ B |= a ≤ b to be true, i.e. (NA ∧ Pa) ∧ (NB ∧ ¬Pb) to be unsatisfiable,
there have to be subsets S1 ⊆ {1, ..., l} and S2 ⊆ {1, ..., p} such that NB ∧
∧

k∈S1
Pek ∧

∧

i∈S2
((
∧

j Pcij ) → Pdi
) ∧ ¬Pb is unsatisfiable. Let NAB := NB ∧

∧

k∈S1
Pek ∧

∧

i∈S2
((
∧

j Pcij ) → Pdi
). We know that NB ∧

∧

k∈S1
Pek ∧ ¬Pb is

satisfiable. Assume that there is no cij such that NB ∧
∧

k∈S1
Pek ∧ ¬Pb |= Pcij .

Then for every cij , NB ∧
∧

k∈S1
Pek ∧¬Pb ∧¬Pcij is satisfiable. Since all clauses

in Nb∧
∧

k∈S1
Pek ∧¬Pb are Horn clauses, it follows that NB ∧

∧

k∈S1
Pek ∧¬Pb∧

∧

i,j ¬Pcij is satisfiable. Every model of NB ∧
∧

k∈S1
Pek ∧ ¬Pb ∧

∧

i,j ¬Pcij is a
model of NAB ∧ ¬Pb. It would therefore follow that NAB ∧ ¬Pb is satisfiable,
which is a contradiction. Thus, there exists at least one cij such that NB ∧
∧

k∈S1
Pek ∧ ¬Pb |= Pcij . We can add Pcij to this set of clauses and repeat the

reasoning for the set of clauses obtained this way as long as we still have one
clause of the form ((

∧

j Pcij ) → Pdi
) in NAB such that there exists at least one

cij such that Pcij was not added to NAB.
Then there has to be a sequence (di1j)j∈J1

, (di2j)j∈J2
, ..., (dinj)j∈Jn

such that:

– Pdi1j
can be derived from NAB∧

∧

Pek , for all j ∈ J1,
– Pdi2j

can be derived from NAB∧
∧

Pek∧
∧

k∈J1
di1k, for all j ∈ J2,

– Pdi3j
can be derived from NAB∧

∧

Pek∧
∧

k∈J1
di1k∧

∧

k∈J2
di2k, for all j ∈ J3,

. . .
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– Pdinj
can be derived from NAB∧

∧

k Pek∧
∧

k∈J1
di1k∧ · · ·

∧

k∈Jn−1
din−1k, for

all j ∈ Jn,
– Pb can be derived from NAB∧

∧

Pek∧
∧

k∈J1
di1k∧ . . .∧

∧

k∈Jn
dink.

But then A ∧B |=
∧

ek ≤ di1l, for all l ∈ J1, hence A ∧B |=
∧

ek ≤
∧

l∈J1
di1l,

hence A ∧ B |=
∧

ek ∧
∧

l∈J1
di1l ≈

∧

ek. Therefore, as A ∧ B |= (
∧

ek ∧
∧

l∈J1
di1l) ≤ di2j , for all j ∈ J2, we have A ∧ B |=

∧

ek ≤
∧

j di2j . Similarly it
can be proved that A∧B |=

∧

ek ≤
∧

j dinj , and finally that A∧B |=
∧

ek ≤ b.
⊓⊔

C A separation result

Proposition 13. Let T0 be a theory with signature Π0 = (Σ0,Pred). Assume
that ≤ ∈ Pred is such that ≤ is a transitive relation in all models of T0 and that
T0 is convex with respect to ≤ and ≤-interpolating.

Let A0 and B0 be conjunctions of ground literals in the signature Πc
0 (the

extension of Π0 with a set of constants) such that A0 ∧ B0 ∧ H |=T0
a ≤ b,

where a contains only symbols occurring in A0 and b only symbols occurring
in B0 and H is a set of Horn clauses of the form c1 ≤ d1 → c ≤ d in the
signature Πc

0 which are instances of flattened and purified clauses of the form
Mon[A ∧ B]0 ∧ RIa[A ∧ B]0 as explained in Theorem 11, i.e. of axioms of the
following type:

{

x ≤ g(y) → f(x) ≤ h(y)
x ≤ y → f(x) ≤ f(y)

(4)

Then the following hold:

(1) There exists a set T of Πc
0-terms containing only constants common to A0

and B0 and a term t ∈ T such that

A0 ∧B0 ∧ (H\Hmix) ∧Hsep |=T0
a ≤ t ∧ t ≤ b,

where

Hmix = {a1 ≤ b1 → a2 ≤ b2 ∈ H | a1, a2 constants in A, b1, b2 constants in B}∪
{b1 ≤ a1 → b2 ≤ a2 ∈ H | b1, b2 constants in B, a1, a2 constants in A}

Hsep = {(a1 ≤ t1→a2 ≤ cf(t1)) ∧ (t1 ≤ b1→cf(t1) ≤ b2) | a1≤b1→a2≤b2 ∈ Hmix,

b1 ≈ g(e1), b2 ≈ h(e1) ∈ DefB, a2 ≈ f(a1) ∈ DefA or vice versa,
and t1, f(t1) ∈ T } = HA

sep ∧HB
sep

where cf(t1) are new constants in Σc (considered to be common) introduced for
the corresponding terms f(t1).

(2) A0 ∧ B0 ∧ (H\Hmix) ∧ Hsep ∧ ¬(a ≤ t ∧ t ≤ b) is logically equivalent w.r.t.
T0 with the separated conjunction of literals A0 ∧ B0 ∧ ¬(a ≤ t ∧ t ≤ b) =
A0 ∧ B0 ∧

∧

{c ≤ d | Γ→c ≤ d ∈ H\Hmix} ∧
∧

{c ≤ cf(t) ∧ cf(t) ≤ d |
(Γ → c ≤ cf(t)) ∧ (Γ → cf(t) ≤ d) ∈ Hsep} ∧ ¬(a ≤ t ∧ t ≤ b).
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Proof: We prove (1) and (2) by induction on the number of clauses in H.
If H = ∅ then the initial problem is already separated into an A and a B

part so we are done: We have A0 ∧B0 |=T0
a ≤ b and since we assumed that T0

is ≤-interpolating, there exists a term t containing only constants common to
A0 and B0 such that A0 ∧B0 |=T0

a ≤ t ∧ t ≤ b (we can choose T = {t}).
Assume that H contains at least one clause, and that for every H1 with fewer

clauses and every conjunction of literals A′
0, B

′
0 with A′

0 ∧ B′
0 ∧ H1 |=T0

a ≤ b,
(1) and (2) hold.

Let D be the set of all atoms c ≤ d occurring in premises of clauses in H.
As every model of A0 ∧ B0 ∧

∧

(c≤d)∈D ¬(c ≤ d) ∧ ¬(a ≤ b) is also a model for

H∧A0∧B0∧¬(a ≤ b) andH∧A0∧B0∧¬(a ≤ b) |=T0
⊥, A0∧B0∧

∧

(c≤d)∈D ¬(c ≤

d)∧¬(a ≤ b) |=T0
⊥. Let (A0 ∧B0)

+ be the conjunction of all positive literals in
A0 ∧B0, and (A0 ∧B0)

− be the set of all negative literals in A0 ∧B0. Then

(A0 ∧B0)
+ |=T0

∨

(c≤d)∈D

(c ≤ d) ∨
∨

¬L∈(A0∧B0)−

L ∨ (a ≤ b).

T0 is convex with respect to ≤ and (A0∧B0)
+ is a conjunction of positive literals.

Therefore, either

(i) (A0 ∧B0)
+ |= L for some L ∈ (A0 ∧B0)

− (then A0 ∧B0 is unsatisfiable and
hence entails any atom ci ≤ di), or

(ii) (A0 ∧B0)
+ |= a ≤ b, or

(iii) there exists (c1 ≤ d1) ∈ D such that A0 ∧B0 |=T0
c1 ≤ d1.

Case 1: A0∧B0 is unsatisfiable. In this case (1) and (2) hold for T = {t}, where
t is an arbitrary term over the common symbols of A0 and B0.

Case 2: A0 ∧ B0 is satisfiable and (A0 ∧ B0)
+ |= a ≤ b. Then we can use the

fact that T0 is ≤-interpolating and we are done.

Case 3: A0 ∧ B0 is satisfiable and there exists (c1 ≤ d1) ∈ D such that A0 ∧
B0 |=T0

c1 ≤ d1. Then A0∧B0 is logically equivalent in T0 with A0∧B0∧c1 ≤ d1.
Let C = c1 ≤ d1 → c ≤ d ∈ H such that A0 ∧B0 |= c1 ≤ d1.

Case 3a. Assume that C contains only constants occurring in A or only con-
stants occurring in B. Then A0 ∧B0 ∧H is equivalent w.r.t. T0 with A0 ∧B0 ∧
(H\C) ∧ c ≤ d. By the induction hypothesis for A′

0 ∧ B′
0 = A0 ∧ B0 ∧ c ≤

d and H1 = H\{C}, we know that there exists T ′ and t ∈ T ′ such that
A′

0 ∧B′
0 ∧ (H1\H1mix) ∧H1sep |= a ≤ t ∧ t ≤ b, and (2) holds too.

Then, for T = T ′, A′
0 ∧B′

0 ∧ (H1\H1mix)∧H1sep ∧¬(a ≤ t∧ t ≤ b) is logically
equivalent to A0∧B0∧(H\Hmix)∧Hsep∧¬(a ≤ t∧t ≤ b), so A0∧B0∧(H\Hmix)∧
Hsep |= (a ≤ t ∧ t ≤ b), i.e. (1) holds.

In order to prove (2), note that, by definition, H1mix = Hmix and and H1sep =
Hsep. By the induction hypothesis, A′

0∧B
′
0∧(H1\H1mix)∪H1sep∧¬(a ≤ t∧t ≤ b)

is logically equivalent to a corresponding conjunction A
′

0 ∧B
′

0 ∧¬(a ≤ t∧ t ≤ b)
containing as conjuncts all literals in A′

0 and B′
0 and all conclusions of rules in
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H1\H1mix and H1sep. On the other hand, A′
0 ∧B′

0 ∧ ¬(a ≤ t ∧ t ≤ b) is logically
equivalent to A0∧B0∧ (c ≤ d)∧¬(a ≤ t∧ t ≤ b), where (c ≤ d) is the conclusion
of the rule C ∈ H\Hmix. This proves (2).

Case 3b. Assume now that C := c1 ≤ d1 → c ≤ d is mixed, for instance that
c1, c are constants in A and d1, d are constants in B.

(a) Assume that C is obtained from an instance of a clause of the form
x ≤ g(y) → f(x) ≤ h(y). This means that there exist c ≈ f(c1) ∈ DefA and
d1 ≈ g(e), d ≈ h(e) ∈ DefB. We know that A0 ∧ B0 |=T0

c1 ≤ d1 and that T0 is
≤-interpolating. Thus, there exists a term t1 containing only constants common
to A0 and B0 such that

A0∧B0 |=T0
c1 ≤ t1 ∧ t1 ≤ d1. (5)

Let cf(t1) be a new constant, denoting the term f(t1), and let

CA = c1 ≤ t1→c ≤ cf(t1) and CB = t1 ≤ d1→cf(t1) ≤ d.

Thus, CA corresponds to the instance c1 ≤ t1→f(c1) ≤ f(t1) of the monotonicity
axiom for f , whereas CB corresponds to the rule t1 ≤ g(e)→f(t1) ≤ h(e).

As A0 ∧B0 |= c1 ≤ t1 ∧ t1 ≤ c1 and as ≤ is transitive, by (5):

A0 ∧B0 ∧ CA ∧CB |=|T0
A0 ∧B0 ∧ (c1 ≤ t1 ∧ CA) ∧ (t1 ≤ d1 ∧ CB)

|=|T0
A0 ∧B0 ∧ c ≤ cf(t1) ∧ cf(t1) ≤ d

|=T0
A0 ∧B0 ∧ c ≤ d,

(where |=|T0
stands for logical equivalence w.r.t. T0.)

Hence, A0 ∧B0 ∧CA ∧CB ∧ (H\C) |=T0
A0 ∧B0 ∧ c ≤ d∧ (H\C). On the other

hand, since A0∧B0 |=T0
c1 ≤ d1 it follows that A0∧B0∧H is logically equivalent

with A0 ∧B0 ∧ c ≤ d∧ (H\C), so A0 ∧B0 ∧CA ∧CB ∧ (H\C)∧¬(a ≤ b) |=T0
⊥.

By the induction hypothesis for A0∧B0∧c ≤ cf(t1)∧cf(t1) ≤ d andH1 = H\C
we know that there exists a set T ′ of terms such that A0∧B0∧c ≤ cf(t1)∧cf(t1) ≤
d∧ (H1\H1mix)∧H1sep∧¬(a ≤ t∧ t ≤ b) |=⊥, and also (2) holds. Then (1) holds
for T = T ′∪{f(t1), t1}.

(b) Assume that C corresponds to an instance of a monotonicity axiom x ≤
y → f(x) ≤ f(y). This means that there exist c ≈ f(c1) ∈ DefA and d ≈ f(d1) ∈
DefB. We know that A0 ∧B0 |=T0

c1 ≤ d1 and that T0 is ≤-interpolating. Thus,
there exists a term t1 containing only constants common to A0 and B0 such that

A0∧B0 |=T0
c1 ≤ t1 ∧ t1 ≤ d1. (6)

Let cf(t1) be a new constant, denoting the term f(t1), and let

CA = c1 ≤ t1→c ≤ cf(t1) and CB = t1 ≤ d1→cf(t1) ≤ d.

Thus, CA corresponds to the instance c1 ≤ t1→f(c1) ≤ f(t1) of the monotonicity
axiom for f , whereas CB corresponds to the instance t1 ≤ d1→f(t1) ≤ f(d1) of
the monotonicity axiom for f . The proof can then continue as the proof of case
(a); also in this case we can choose T = T ′∪{f(t1), t1}.

(2) can be proved similarly using the induction hypothesis. ⊓⊔


