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Abstract. In the field of Affective Computing, one of the most impor-
tant issues is the identification of the emotional state of a subject. There
are a plethora of research works in emotion identification, works that
have their foundations in other fields such as philosophy, psychology,
neuroscience, and cognitive sciences. Nowadays, with the emergence of
wearable devices and DIY electronics kits, the interest in developing emo-
tion identification systems with these low-cost devices has gained more
attention. The use of low-cost devices came out with new challenges re-
lated to the low quality of the signals acquired due to less noise-tolerant
sensors which are used in real-life environments. In this context, the
main objective of this work is to present a methodology, based on ma-
chine learning techniques for time series forecasting, to build models able
to identify emotional states, from signals acquired from low-cost devices,
as accurately as a professional medical device can do. To this end, we
proposed the use of two devices: Nexus-10 MKII, a biofeedback and neu-
rofeedback system from MindMedia, used to obtain reference measure,
and BiTalino (r)evoltuion Boar Kit (BiTalino hereinafter), a low-cost
physiological signals acquisition device from PLUX Wireless Biosignals
S.A. In this work,11 Machine Learning models have been developed to
predict the emotional state, identified by Nexus-10, with the signals pro-
vided by BiTalino. Our experiments show that the best model was a
Random Forest which can predict the emotional state in the test set
with a RMSE of 0.172 and a R2 of 0.858.

Keywords: Emotion identification · Affective Computing · Time Series
Forecasting · Machine Learning.

1 Introduction

Emotions are a fundamental part of human behaviour and, as pointed out in
[7,8], play an important role in human decision tasks. However, not until Rosling
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Picard coined the term “Affective Computing” (AfC) [19], do we realise the need
of emotion aware computational systems. Currently, it is widely assumed that
a system capable of identifying the affective state of the user and reacting to
them can offer a better human-computer interaction experience and, in many
cases, make less frustrating the use and adoption of new technology. From its
beginnings, AfC has been a prolific research field, making possible the develop-
ment of effective systems in a long range of applications domains such as, for
example, medicine [15], assisted learning [22], arts [9], entertainment [14] and
ambient intelligence [1]. In all of these areas, AfC aims to reduce the commu-
nicative difference between human emotions and computers, developing systems
capable of recognising and reacting to the emotional states of users.

From its beginnings, AfC research has been focused on developing systems
able of 1) human emotion identification, 2) expressing emotions and 3) “feeling”
emotions [5]. Apart from the recent advances in 2) and 4), the topic that has
received more attention from the AfC community is emotion identification. With-
out a reliable emotion recognition process, it is impossible to develop emotion-
aware systems. It is in this context in which this research is conducted.

Emotion identification requires representational models in which identified
emotional states could be measured. Multiple models have been proposed by
researches of a wide range of fields, ranging from psychology and philosophy
to neuroscience and cognitive science (see [10,16] for a review). Among all the
available, the OCC model [18], based on the appraisal theory proposed by James
Russel [21], is the most widely used in AfC. In the OCC model, emotions are
represented in an orthogonal two-dimensional space. One of the dimension is the
valence in which states ranging from pleasure to displeasure can be represented.
The other dimension, arousal, is in charge to capture the intensity of the emotion
(from excited to calm).

In the field of neuroscience, relevant studies have revealed a correlation be-
tween the response of the Autonomous Nervous Systems (ANS) to human emo-
tions and the valence-arousal plane [4,11]. More specifically, a great number of
research studies has pointed out that the Galvanic Skin Response (GSR) corre-
lates with the arousal levels and Heart Rate (HR) with the emotional valence.
However, although GSR and HR are widely used, there are a huge number of
research focused on detecting emotions from other physiological signals (see [5]
for a review). Among the most commonly used physiological signals, we can
find Electromyogram (EMG), Electrocardiogram (ECG), Electroencephalogram
(EEG), Electrooculogram (EOG) and Blood Volume Pressure (BVP).

Although, huge number of medical devices are available for acquiring these
signals from the medical community, currently there is a growing interest in de-
veloping emotion recognition systems using low-cost devices, such as wristbands
and electronic DIY kits [13,12,17,20,23]. Some of the advantages of using low-
cost devices, apart from their cost, are their portability which makes possible
the design of experiments in real-life situations, outside of highly controlled lab-
oratory environments. Apart from the portability capabilities, their autonomy,
due to a low energy consumption hardware, makes possible to extend the period



in which the signals are recorded. However, despite these advantages, one of the
main problems that has to be faced when working with low-cost devices is the
quality of sensors. In this sense, a mechanism to deal with poor noise-tolerant
sensors, which introduce more artefacts than those obtained by medical devices,
are needed to obtain reliable measures. It is in this context in which this work
has been developed. The main objective of this work is to present a methodol-
ogy, based on machine learning techniques for time series forecasting, to build
models able to identify emotional states, from signals acquired from low-cost
devices, as accurately as a medical device can do. To this end, we proposed the
use of two devices: Nexus-10 MKII 1 (Nexus-10 hereinafter), a biofeedback and
neurofeedback system from MindMedia, used to obtain reference measure, and
BiTalino (r)evoltuion Boar Kit (BiTalino hereinafter), a low-cost physiological
signals acquisition device from PLUX Wireless Biosignals S.A.

2 Data and Experimental procedure

To obtain the required data, an experiment was performed with the collaboration
of students of the University of Murcia. Students between 18 and 28 years old
have been studied. The volunteers have been contacted individually, following a
methodology for the experiment, giving them an appointment with exact date
and time. The experiment consists of the visualisation of a collection of 40 well
known paintings, arranged randomly for each participant. While the subjects
visualise the stimuli, the necessary physiological signals are acquired through the
sensors of the mentioned devices. The data have been treated with the utmost
confidentiality, in accordance with Spanish Law 3/2018 of 5 December on the
Protection of Personal Data and Guarantee of Digital Rights.

After accommodating the subject as best as possible with the sensors in
place, the phases of the experiment are remembered. It’s also reminded that is
crucial that, for the duration of the entire experiment, the subject must look at
the screen.

Fig. 1. Representative diagram of the experiment’s phases.

The figure 1 depicts the experimental protocol followed. The description of
the phases of the experiment is as follows:

– Eyes Closed Phase. This phase lasts 60 seconds. During this phase, the sub-
ject must remain still with their eyes closed until they are told to open them
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again. This phase allows us to know the rhythms and frequencies of the
subject when they are in a state of minimal activity.

– Basal Phase. This phase lasts 60 seconds. During this phase, the subject has
to look directly at a black screen. This phase makes possible to know what
is the “normal” state of the subject when they are active without receiving
any stimuli.

– Stimulus Phase. In this phase, the subject will observe a collection of forty
well-known paintings randomly arranged on the screen. These paintings are
the visual stimuli that are projected individually one after the other, with a
duration of 8 seconds.

– Basal Phase. Another basal phase exactly the same as the first one.

Once the experiment is finished, all recordings are stopped and the corre-
sponding files, with the collected data, are saved. Sensors are then removed from
the subject and cleaned.

3 Data recording

During the experiment, two different devices have been used for physiological sig-
nals acquisition. To obtain a reliable emotional index for training the machine
learning model, NeXus-10 has been used. Nexus-10 is capable of acquiring multi-
ple physiological signals: EEG (2 derivations), EOG (electrooculography), GSR,
BVP and temperature. For the objective of this work, GSR and BVP (Blood
volume Pulse) signals have been considered. During the experiment, EEG (2
derivations), EOG and eye-tracking information have also been acquired for
other purposes beyond the scope of this work.

The other device used isBITalino, from Plux Wireless Biosignals S.A. BiTal-
ino is a physiological signal acquisition device which is based on similar projects,
such as Arduino and Raspberry Pi. It is a low-cost, modular, multi-purpose,
easily accessible and configurable acquisition device capable of capturing multi-
ple physiological signals in real-time: Accelerometer, ECG, EDA (Electrodermal
Activity), EEG (1 derivation), EGG (Electrogastrography), EMG (Electromyo-
graphy), EOG, temperature and light. For acquiring the pulse signal, a pulse
sensor, connected to one of the analogical channels has been used. Its cost and
its open hardware and software philosophy make BiTalino a very interesting tool
for developing projects.

In this work, the following physiological signals have been acquired:

– NeXus-10 MKII : GSR and BVP, both at a sample rate of 32Hz. GSR sensor
is placed in the proximal phalanges II and III of the left hand. BVP sensor
is placed in the distal phalanx II of the right hand.

– Bitalino: GSR and Pulse both at a sample rate of 1000Hz. The GSR sensor
is placed in the middle phalanges II and III of the left hand. The BVP sensor
is placed in the distal phalanx I of the left hand.

These sample rates produces signals of 17440 samples for the Nexus-10 and
545000 samples for signals for the BiTalino.



4 Singals proceessing

Despite the quality of signals acquired with NeXus-10 MKII, some process-
ing is needed. As we are interested in the Skin Conductance Level (SCL), the
tonic component of the GSR, a Continuous Decomposition Analysis using Non-
negative Deconvolution have been applied to the GSR signal using Ledalab Soft-
ware [2,3]. NeXus-10 MKII provides the HR values directly from the BVP signal,
so no processing is required.

Signal acquired through BiTalino required some processing to remove both
noise and artefacts. First, a Butterworth filter of order 3 and cutoff frequency of
2.5 Hz has been applied. The filtered signal is then processed by a Savitzky-Golay
filter of order 1 and a frame length of 75. No prepossessing has been done on the
EDA signal. The figure 2 shows a comparison between the signal BVP obtained
by the NeXus-10 MKII and the BITalino after filtering.

Fig. 2. BVP NeXus-10 MKII and BITalino sensor signals.

As BiTalino and Nexus-10 acquired signals at different sample rates, a down-
sampling process was applied to BiTalino signals to equal the number of samples
and synchronise the timestamps. Then, the signals acquired were processed and
segmented according to the stimuli presented. Finally, for each painting, four
time series, each one composed of 364 samples, have been obtained.



5 Emotional Index

In this work, the Emotional Index (EI) is calculated as proposed in [6,24,25]. The
idea under EI is to obtain a monodimensional variable from the two variables
that define the effects plane [16]: HR, (horizontal axis) associated to the valence
and SCL (tonic component of GDR), vertical axis associated to the arousal.

Using this approach, the emotional state of a subject can be define as:

EI = 1 − β

π
(1)

where

β =

{
3
2π + π − ϑ if SCLz ≥ 0, HRz ≤ 0
π
2 − ϑ otherwise

(2)

and

ϑ = arctan(HRz, SCLz) (3)

SCLz and HRz represent the Z-score variables of the SCL and HR, acquired
from Nexus-10, respectively. The σ and µ required for the transformation are
calculated from the corresponding signals acquired during the 2 baselines phases
(at the beginning and the end of the experiment). The EI, obtain through t1,
2 and 3 equations, varies between [−1, 1], where positives values are associated
with positive emotions and negative values to negative emotions. Once EI has
been calculated, all the signals are downsampled to produce one sample per
second. At the end, a dataset with 13832 samples is obtained.

6 Model Building and results

Once signals have been processed and EI has been calculated, for each stimulus
three temporal series, BITalino EDA and pulse signals together with the EI,
are used to create a multivariate time series. Therefore, the problem for build-
ing a model for emotion identification from BITalino can be approached as a
multivariate time series forecasting problem using Machine Learning Techniques.

To build the model, different data set configurations, with a different number
of lagged variables, have been tested:

– Forma 1. No lagged variables considered, to predict EIti only values of
GSRti and HRti are taken into account as predictors.

– Forma 2. Two lagged version of predictors has been added to the previous
data set producing two new datasets: Forma 2 v2 and Forma 2 v3 with
one and two lagged versions of GSR and HR respectively.

– Forma 3. Two lagged version of the EI has been added to Forma 2 datasets
generating two new datasets: Forma 3 v2 and Forma 3 v3 with one and
two lagged versions of EI respectively.

– Forma 4. Two new datasets have been created: Forma 4 v2 and Forma 4 v2
with with one and two lagged versions of EI added to Forma 1 respectively.



From the original dataset, 20% of the samples have been reserved for test-
ing. In this work, we have considered the following regression models: Linear,
Knn, CART (Classification and Regression Trees), Random Forest, Bayesian
Ridge, Lasso, Linear SVM (Support Vector Machines), ε-SVM, ν-SVM, SGD
(Stochastic Gradient Descent) and Multilayer Perceptron. All the models have
been trained over the seven datasets previously generated using 10 folds strat-
ified cross-validation with a grid hyperparameter search. RSME and R2 have
been chosen as performance measures. At the end of the process, 77 models were
generating (11 regression models × 7 datasets).

First of all, in order to reduce the number of models to be analysed, for each
model, the best pair (model, dataset), according to their evaluation in the test
set, has been chosen (Table 1).

Model Dataset RMSE (train) RMSE (test) R2(train) R2(test)

LR forma3 v3 0.393 ± 0.011 0.387 ± 0.092 0.502 ± 0.024 0.410 ± 0.183

KNN forma4 v3 0.367 ± 0.009 0.443 ± 0.078 0.570 ± 0.017 0.164 ± 0.485

CART forma3 v3 0.000 ± 0.000 0.562 ± 0.084 1.000 ± 0.000 −0.259 ± 0.303

RF forma3 v2 0.191 ± 0.014 0.172 ± 0.084 0.881 ± 0.016 0.858 ± 0.177

BRR forma3 v3 0.393 ± 0.011 0.387 ± 0.092 0.502 ± 0.024 0.410 ± 0.183

Lasso forma4 v3 0.395 ± 0.011 0.384 ± 0.100 0.498 ± 0.026 0.426 ± 0.196

Lin-SVM forma4 v3 0.176 ± 0.020 0.179 ± 0.079 0.433 ± 0.070 0.305 ± 0.250

ε-SVM forma1 0.563 ± 0.006 0.561 ± 0.055 −0.021 ± 0.013 −0.266 ± 0.318

ν-SVM forma3 v3 0.155 ± 0.009 0.168 ± 0.076 0.503 ± 0.0243 0.350 ± 0.248

SGD forma4 v3 0.396 ± 0.013 0.390 ± 0.090 0.495 ± 0.032 0.400 ± 0.184

MLP forma3 v3 0.394 ± 0.014 0.412 ± 0.090 0.501 ± 0.033 0.385 ± 0.366

Table 1. Best results of each model through all datasets.

In order to determine if the observed differences in performance are statisti-
cally significant, statistical hypotheses tests have been applied. Due to the small
number of sample in each group, if difficult to prove the parametric assumption
(normality and sphericity), therefore the non-parametric Friedman’s test has
been conducted, rendering an χ2 of 56.44 and 45.22 for RSME in train and test
data and 58.45 and 40.84 for R2 in train and test data, which are considered sig-
nificant (p < 10−4).Additionally, Nemenyi’s Post-Hoc Test tests were conducted
and revealed that, in the case of RSME in test data:

– CART performs significantly different than lasso, RF , ν-SVM and linear-
SVM, with p-values 0.029,0.001,0.001 and 0.029 respectively.

– mlp performs significantly different than RF and ν-SVM with p-values 0.007
and 0.017 respectively.

– ε-SVM performs significantly different than RF and ν-SVM with p-values
0.022 and 0.049 respectively.

After evaluating the results, two models stood out from the others:RandomForest
and the ν-SVM. Although ν-SVM has a slightly higher RMSE value, the Ran-



dom Forest algorithm was chosen, as the RMSE difference is approximately
0.005 while the Random Forest R2 value is approximately 0.508 (out of 1)
higher than ν-SVM R2 value and also present less variability. Another conclusion
is that CART is the worse model and the unique model presenting overfitting.
Summarising, Random Forest the best model for predicting EI from GSR and
Pulse signals provided by BiTalino, with an RMSE of 0.172 and an R2 of 0.858
on test set. The figure 3 shows an example of algorithm prediction.

Fig. 3. Prediction of EI values with the two best models trained for low-cost device
BITalino.

7 Conclusions

In this work, a methodology, based on Machine Learning techniques, for building
models for emotions detection with low-cost hardware. As low-cost hardware,
BiTalino from PLUXWireless Biosignals, S.A. has been chosen, and the results
obtained show a good performance of the models obtained, producing reliable
predictions of the Emotional Index EI very close to those obtained by medical
certified equipment as the Nesux-10-MRKII of MindMedia. Another important
advantage is that, through the process described here, a big part of the signal
processing stack could be avoided.



Another important conclusion, based on model performance measures, is that
the use of lagged variables, in our case 6 (two for each time series) is a good
approach to overcome problems due to noise in signal acquisition.

Among future works, we are working in real-time implementation of the
generated models. To this end, a real-time version of the two filters considered
are being implemented. Apart from this, new experiments are being scheduled
to increase the size of data sets. Another line is focused on the implantation of
the filters on hardware or firmware.
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