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Abstract. With the ultimate objective of enhancing health and well-
being in shared office spaces, we have developed real-time predictive mod-
els of indoor CO2 level and then examined alternative user interaction
scenarios with the prediction outcome. The specific aim is to persuade
office workers to take timely preventive actions when a high level of
carbon dioxide concentration is forecast. Through this novel approach
that seeks to prevent the situations of discomfort, rather than rectifying
them, we seek to reduce the daily exposure of office workers to poor air
quality in shared spaces, which commonly harms their health and cog-
nitive performance. Among the forecast models that we implemented,
the best performing model provides 97.66% accuracy for predicting CO2
level 5 minutes ahead of time and 87.51% accuracy for predicting of 20
minutes. In the second step, we elicited the different parameters of the
prediction that need to be communicated with the users (e.g. certainty,
time lag, salience) and examined the space of possibilities for designing
user interaction scenarios. We discuss these scenarios in this paper; user
studies are being conducted (ongoing work) to evaluate the effectiveness
of alternative interaction scenarios.
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1 Introduction

Indoor environmental conditions can have far-reaching implications for our health
and well-being since we spend a substantial part of our time (90% in developed
countries) inside buildings. More specifically, the quality of air indoors has been
subject of numerous studies, which present evidence for direct links between rel-
atively high levels of carbon dioxide concentration and problems such as fatigue,
lethargy, headache, and cardiac arrhythmia as well as difficulty in retaining at-
tention, concentration, and cognitive performance [3][4][10][11][12][14]. This is a
commonly reoccurring situation in shared closed spaces. For example, a recent
study of 100 schools in Switzerland has shown that in two-third of classrooms
the level of CO2 falls in the range that can have a negative impact on the stu-
dents learning capacity [17]. Also, a recent study revealed that in the UK poor
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environmental conditions in offices account for loss of productivity equivalent of
13B pounds every year [18].

Research in this area builds on the body of literature under the banner of
Indoor Environmental Qualities (IEQ), where standards and quality norms have
been developed to define the acceptable range of human comfort parameters
and architectural design guidelines have been proposed to ensure those norms
are met (e.g. [9]). However, over the past decade, as our buildings increasingly
incorporate context-aware automation and new forms of interactivity, special at-
tention has been payed to the role of humans and artificial intelligence embodied
by buildings as well as the interaction between these two [16][19][2]. It has been
widely acknowledged that the future of our experiences within buildings is bound
with advances in artificial intelligence and particularly how intelligent compo-
nents embodied by built environments can create a dialogue with users [1][5][15].

In our research, we pursue a similar perspective on the question of human
comfort and well-being with a focus on the specific problem of high CO2 con-
centration in shared work spaces. We examine a novel approach, in which the
objective is to predict and prevent the unhealthy situations rather than rectify-
ing them after they occurred. Two reasons motivate this preventive approach:
(1) recovering from discomfort exhausts both time and cognitive effort, (2) regu-
lar exposure to situations that are even mildly uncomfortable can harm health in
long-term. We, therefore, needed to develop models that can accurately predict
the level of carbon dioxide in office spaces, and to design interaction scenarios
with the prediction results that can support the users take a preventive action.
The predictive models and the comparison of their performance are described
in Section 2, and four scenarios for interaction with the prediction results are
presented in Section 3.

2 Prediction of CO2 Concentration Level

Human exhale is the main source of carbon dioxide indoors and its concentration
in the air is highly impacted by the number of people in the room. Nevertheless,
the evolution of CO2 level is also influenced by many other parameters such
as room size, ventilation rate, relative humidity, as well as outdoor air quality.
Since capturing all of these variables entails heavy instrumentation of the place
and the people, the predication model that we seek to develop should function
independently of their variations. More precisely, our objective in this step is to
develop and compare algorithms that can predict at real-time whether or not
the CO2 level in an office will exceed a threshold solely on the bases of previous
measurements of CO2 in the same office.

In this section, we present the examined predictive algorithms, describe how
the training and test datasets were collected, and report the accuracy and com-
putation time of each algorithm.
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2.1 Predictive Models

Due to the nature of CO2 variation being highly sensitive to the momentary
indoor environmental conditions, we limit our exploration to the forecasting
models that can be trained using only the values recorded during a recent past
interval (up to 60 minutes prior to the current moment). We refer to this interval
as "Observation Buffer”. Variants of short-term forecasting methods for time-
series were applied, namely, Autoregressive (AR) and Autoregressive Integrated
Moving Average (ARIMA). In addition, we examined Long Short-Term Memory
(LSTM)—a recurrent neural network architecture—in which the problem was
formulated as a multiple parallel input and multi-step output case. Precisely,
the following models were implemented:

— ARIMA: AutoARIMA function available in the python library pmdarima was
used to train the model from the first observation buffer to identify the
optimal values of ARIMA parameters (p, d, ¢) 1. For every observation buffer
afterwards, a new ARIMA model was created with the saved parameters
using the ARIMA function from the same python library.

— ARIMA Log: Model configuration remained the same as the ARIMA de-
scribed above except that the log-transformed observation buffers were used
to train the model.

— ARIMA with update: AutoARIMA function was used to train the model
once for every 10 observation buffers. For the remainder of the observa-
tion buffers, the ARIMA model was updated using the update function of
AutoARIMA when a observation was available.

— ARIMA Log with update: Model configuration remained the same as the
“ARIMA with update” except that the log-transformed observation buffers
were used to train the model.

— ARIMA with new parameters: A new ARIMA model by AutoARIMA was
created for every observation buffer.

— ARIMA Log with new parameters: Model configuration remained the
same as the “ARIMA with new parameters” except that the log-transformed
observation buffers were used to train the model.

— AR: Autoregressive algorithm using function AR from python library statsmodels
was applied on an observation buffer to build the model.

— AR Log: Model configuration remained the same as the AR except that the
log-transformed observation buffers were used to train the model.

— LSTM: Data from the four sources were used as parallel input, and the out-
put was a multi-step prediction. Basic Encoder-Decoder LSTM architecture
with adam as the optimizer and mean squared logarithmic error as the loss
function were applied.

The Python source code implementing the above algorithms are available in
a git repository: [link anonymized|

1 p: the number of autoregressive terms; d: the number of nonseasonal differences
needed for stationarity; ¢: the number of lagged forecast errors in the prediction
equation.
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2.2 Data Collection

Data was collected using four devices deployed in a shared office, which recorded
the CO2 concentration in the air every five seconds. CO2 concentration is mea-
sured as the number of CO2 molecules in one million molecules of air, and is
expressed as part per million (ppm). For the measurement, we used state-of-the-
art technology that operates based on an optical gas molecule detection method
termed as non-dispersive infrared spectroscopy. The data collection was done
during Autumn time in a Central European country. The data was divided into
observation buffers for training the AR and ARIMA models, while LSTM was
trained using data of an entire day.

2.3 Evaluation of Predictive Models

To assess the performance of the models, we consider two criteria: (1) the ac-
curacy of prediction compared against the actual values, and (2) the training
time, as the algorithms may be required to run several times during a short time
interval.

Accuracy of a prediction is computed as the percentage of predicted values
that fall within the confidence interval around the actual value (confidence in-
terval is fixed to +£30ppm, based on the technical error range of the sensor). The
overall accuracy of a model, as we report in the next section, is the average ac-
curacy of 464 instances of prediction executed on one day of data (four devices,
12 times prediction per hour, 10 hours, and excluding the last 20 minutes).

Regarding the training time, the performance of AR and ARIMA were mea-
sured as they were run on a Mac Pro with 2.7 GHz 12-Core Intel Xeon E5
processor. LSTM was run on Google Colab GPU using Keras. For the case of
LSTM, since the training needs to be done only once using the four parallel
inputs, its overall performance cannot be compared to the other models based
on the training time. Therefore, in our comparitive analysis, we consider only
the accuracy of LSTM.

Table 1. Performance of the models with 20 minutes observation buffer and five min-
utes prediction interval (ARIMA/AR); 10 hours observations and 10 hours predictions
(LSTM)

Model Accuracy (%) Training time (s)
ARIMA 97.62 73.7486
ARIMA Log 96.87 80.9518
ARIMA update 97.66 7.9522
ARIMA Log update 93.70 16.6990
ARIMA new param 97.63 73.7192
ARIMA Log new param 96.87 80.9293
AR 97.66 0.0029
AR Log 97.66 0.0026
LSTM 65.46 53.4 (per epoch)
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Fig. 1. CO2 prediction with 20 minutes observation buffer and five minutes prediction
interval by AR model

2.4 Results

Combinations of observation buffer sizes of 10 and 20 minutes, and prediction
interval of 5, 10, and 15 minutes were tested. In all of the performed tests, AR
outperformed the other methods both in terms of accuracy and training time.
The second highest performing candidate was “ARIMA with update”.

Table 1 shows the performance of the models for an example setup where the
observation buffer size is 20 minutes and the prediction interval is 5 minutes,
and Figure 1 shows the prediction results versus observations during one day by
AR model.

3 Interaction with Indoor Co2 Forecast

Once a high level of CO2 is predicted, it should be communicated to the user.
This is an interaction design challenge that we begin to explore in this section.

3.1 Objective

As previously described, the ultimate objective here is to prevent the situations
in which a high level of CO2 harms the occupants’ health and productivity. This
can be accomplished by either inputting the prediction results to the building
ventilation system, or by informing the occupants and supporting them to take
preventive action. In this work, we favor the latter, for two major reasons: (1)
many buildings do not provide a standard digital interface to their ventilation
system, and (2) by keeping the users informed and engaged, we may be able
to increase their general awareness, leading to change of routine and behavior
also in places where such sensing and predictive technology is not available.
Therefore, we seek to design interaction scenarios that can motivate the users
to carry out a timely preventive action (e.g. opening a window, taking a break,
reorganizing the location of collaborative tasks). On the other hand, to ensure
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that the system will be accepted by the users in long-term, it must be designed
to be unobtrusive, and be able to fade in the background of the user’s attention.

3.2 Elements of Prediction

In this section, as we shift our focus from the technical description of predictive
models to the human interactive experiences, we also change the perspective of
our discussion and use a different nomenclature. From the user perspective, three
concepts can be elicited from the CO2 forecast: the Risk itself including its nature
and significance, the Temporal Prozimity of the risk, and the Certainty that it
will occur. Mapping these concepts with the output variables of the prediction
models, one can see a link between Risk and the value of prediction, between
Temporal Proximity and the prediction interval, as well as between Certainty
and prediction accuracy. It is, however, worth noting that, depending on the
interpretation of these concepts they can be overlapping or inter-related; it is
not required that all of them be included in the presentation of a forecast; and
they might be influenced by factors other than the outcome of the predictive
model (subjective and contextual interpretation of their presentation). In the
following, we first elaborate on possible interpretations of these three concepts
and then explore how they may be integrated into interactive scenarios.

Risk. The Risk can be simply a trigger notifying that the CO2 level is predicted
to exceed the standard threshold for healthy indoor air quality. Alternatively, it
can be the precise value of the predicted CO2 concentration level, or the range
within which the predicted value falls (e.g. comfortable, slightly uncomfortable,
uncomfortable, intolerable).

Temporal Prozimity. Temporal Proximity—defined as the time between the
present moment and the time of prediction—is not a constant value. Once it
is predicted that after a certain time interval the level of CO2 reaches a thresh-
old, this interval reduces as time goes by. In addition, more data is fed to the
model and thus the prediction is updated. An alarming situation forecast of 20
min, may not be valid after a minute to be shown as forecast of 19 minutes. This
should be especially considered as we expect the users to take preventive actions
(e.g. opening the window) which can change drastically the new predictions.
How can we display the dynamic nature of Temporal Proximity while retaining
the coherency of prediction presentation?

Certainty. The certainty of prediction may be defined in various ways and involve
several factors, for example, the expected accuracy of predication, the previous
prediction results, and the graveness of the situation (i.e. the difference between
the predicted CO2 level and the standard threshold). How can we combine these
parameters into a representation of Certainty that is most understandable for
the users considering the common perception of certainty in everyday human
interaction?
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Fig. 2. Scenario I: the red line moves counterclockwise indicating the remaining time
until when the CO2 level will be higher than the standard threshold.

3.3 Scenarios

In order to exemplify the ways in which Risk, Temporal Proximity, and Certainty
can be translated to the constituents of interaction scenarios between users and a
system that predicts the level of CO2 we propose four alternative visualizations.
The ultimate objective is to prototype these scenarios and conduct user studies
to compare their impact on the users’ perception of environment and behaviour
change. The implementation of the scenarios may manifest as dynamic visual-
ization of forecast outcome on a personal interactive device placed on the user’s
desk. It could alternatively be displayed on a private screen (smartphone) or a
public display in the shared office or meeting room.

Scenario I In the first scenario, only the Temporal Proximity and the most
basic version of Risk are displayed. Once a high level of CO2 is predicted, a
red line (resembling a clock arm) appears on a round screen and then moves
counterclockwise with time. By examining such a minimal design, we aim to
study whether the mere knowledge about when the situation of discomfort will
occur can support the user to decide about its urgency. If the user takes a
preventive action that leads to a drastic decrease in CO2 level the clock arm will
disappear in a way that the user understands it is a reward for her action (e.g.
moving clockwise and fading away).

On the round screen (resembling a clock), the default active part is shown as
20 minutes. The user can change this by turning the knob shown as blue circle
inside the clock. The color of this knob can indicate the quality of air outdoors,
depending on which opening the window may or may not be a good idea. The
interaction with this knob is common across the four scenarios.

Scenario I Similar to the first scenario, a red clock arm indicates the Temporal

Proximity. In scenario II, however, the Certainty of prediction is illustrated by
either the length of the clock arm or the degree of its color opacity.
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Fig. 3. Scenario 11: the red line moves counterclockwise indicating the remaining time
until the CO2 level will be higher than the standard threshold. The length of the red
line shows the Certainty of prediction.
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Fig. 4. Scenario III: the red, yellow, and green colors indicate if the predication of CO2
for that time is within the uncomfortable, borderline, or comfortable range, respectively.

Scenario III The Risk is presented in ranges and coded with a spectrum of
colors between red to green. In this scenario, predication algorithm is run for
every minute between 0 to what is set as active part of the clock (20 minutes by
default). Certainty is not displayed in this scenario.

Scenario IV Certainty is added to the third scenario, illustrated by how far the
areas are extended towards the border of the clock.

By presenting four imaginable scenarios, we aimed to demonstrate some of
the ways in which the concepts of Risk, Temporal Proximity, and Certainty
can be embedded into a representation of forecast results. Moreover, we will
utilize these and similar scenarios to answer user experience design questions
such as the followings: which design elements in these scenarios can impact the
user engagement, trust, and long-term acceptability? How can the accuracy of
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Fig. 5. Scenario IV: the colors indicate the range to which the predication of CO2 level
corresponds, similar to the third scenario. The fluctuation corresponds to the change
in the Certainty of prediction.

prediction translate to a contextualized representation of Certainty relevant to
the user’s daily communication experiences? How can we create the feeling of
support and companionship for the users and avoid increasing distress?

4 Conclusion and Future Work

In this paper, we compared nine models of short-term indoor CO2 concentration
prediction. The highest performing model, Autoregressive (AR), achieved 97.66%
accuracy of prediction 5 minutes ahead of time and 87.51% of 20 minutes. We also
briefly discussed the translation of forecast results from modeling space to user
interaction space, and proposed four interaction scenarios that can dynamically
display the outcome of prediction.

In the future development of this work, in addition to running user studies
to investigate the questions mentioned in the last section, we will address some
of the limitations in data collection and prediction. For example, we improve
the predictive models by taking into account the noise in the data due to the
inaccuracy of sensors [8]. We also aim to collect data from different office setups
to cover larger variety of CO2 measurements with samples of extreme conditions.
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