
OCL Visualization - A Reality Check?

Edward D. Willink

Willink Transformations Ltd, Reading, England,
ed_at_willink.me.uk

Abstract. Visual representations, particularly in the context of a visual
paradigm such as UML, have many attractions. At OCL 2018, vOCL was
presented with the well intentioned goal of making hard-to-read textual
OCL more accessible within diagrams. The approach as presented was
unfortunately technically unsound. This paper repairs the technical prob-
lems in the vOCL approach, and contrasts it with four other approaches.

Keywords: visual programming, OCL, QVT

1 Introduction

OCL [9] was originally part of UML, and although UML [8] is primarily a graph-
ical representation, OCL has remained almost steadfastly textual.

Expression languages have been inherently textual for as long as mathemat-
ics has required expressions. FORTRAN set the standard for textual computer
expression languages and apart from the introduction of objects and the "."
dot operator not that much has changed since expression-wise. Various forms
of Program Flow Diagram have been attempted to provide a graphical repre-
sentation. These can be quite useful in an informal context but have generally
failed to contribute to a standard language; SDL [6] is a notable exception to
this observation.

Given that graphics has generally failed for expressions, it is not surprising
that graphical representations of OCL have not prospered.

The novel vOCL visualization was presented at OCL 2018 despite some con-
cerns from the submission reviewers. More concerns were expressed during the
presentation. In this paper we outline these concerns and show how they can be
resolved to make vOCL a genuinely novel approach to OCL visualization.

In Section 2 we present a running example and in Section 3 we present the
traditional naive visualization of its OCL Abstract Syntax Tree [1]. Then in Sec-
tion 4 we analyse the problems in the OCL 2018 presentation of vOCL [2] and
solve them so that we can provide a vOCL visualization of our example. In Sec-
tion 5, Section 6 and Section 7 we present further visualizations of our running
example using QVTs [7], a Constraint Diagram [4] and Visual OCL [5] respec-
tively. The characteristics of the �ve visualizations are contrasted in Section 8.
Finally in Section 9 we review the related work and conclude in Section 10.

? Copyright©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

17



2 Running Example

Our running example uses the two-class example metamodel, shown in Fig 1. It
is elaborated slightly, from that in vOCL [2], to add a Patient.id.

Fig. 1. Example Metamodel

The metamodel shows that a Hospital has a number of beds and may serve
one or more Patients that have an id.

Our example OCL to be visualized comprises an invariant to check that each
of the patients in a Hospital has a distinct id.

context Hospital

inv uniquePatientId:

self.patients->forAll(p1, p2 | p1 <> p2 implies p1.id <> p2.id)

(Of course, in practice, self.patients->isUnique(id) is simpler.)

3 Naive AST Visualization

The OCL speci�cation1 de�nes the Classes that may be used to form an Abstract
Syntax Tree [1] to represent an OCL expression.

The naive AST visualization is shown in Fig 2. It is auto-generated from the
XMI serialization of the AST as a UML-like2 Object Diagram.

The diagram has been simpli�ed to eliminate all the reference edges to, and
referenced nodes for, the type/operator/property objects. It will be su�cient to
study just the de�nition nodes. However, the diagram remains far from simple.

It is instructive to study the diagram and to re�ect upon how a reader may
acquire an understanding of it.

Starting at the top of the diagram, a Class named Hospital (the context)
contains a Constraint named uniquePatientId as one of its ownedInvariants.
This in turn contains an ExpressionInOCL as its ownedSpecification.

The ExpressionInOCL contains a ParameterVariable named self as its
ownedContext. It also contains an IteratorExp, as its ownedBody, the root of
the actual OCL expression tree.

1 The OCL speci�cation is imperfect. In this paper we use the similar classes from the
Eclipse OCL Pivot model that prototypes solutions to OCL speci�cation issues.

2 Edge styling distinguishes compositions by the use bold lines with diamonds, and
reference edges as dashed lines.

18



The IteratorExp has further PropertyCallExp and OperatorCallExp ex-
pressions as its ownedSource and ownedBody, and also two IteratorVariables
named p1 and p2 as its ownedIterators.

So far, the structure is sensibly read from top down.

Fig. 2. Naive Visualization of Example AST

Simple expressions such as the IteratorExp's ownedSource navigation on
PropertyCallExp can also be read top down since we �nd that the navigation
evaluates a patients property on the ownedSource which is a VariableExp

named self referring to the overall self ParameterVariable. The reader can
mentally push the patients access on to a mental stack while discovering that
self is the source for the patients navigation.

More complicated expressions cannot sensibly be read top down. If we at-
tempt to read the IteratorExp's ownedBody top down, we encounter an implies

OperationCallExp with a pair of <> OperatorCallExp expressions providing the
implies ownedSource and ownedArguments. Our mental stack needs to push
three of the four top down tree paths while continuing to understand one.

If instead we attempt to understand the expression part of the tree by read-
ing bottom up, we can start at the bottom left with a VariableExp named
p1 that refers to the value of the p1 IteratorVariable and passes it as the
ownedSource of the left hand <> OperationCallExp. We cannot continue up
since the OperationCallExp ownedArguments is not yet understood. This is

19



resolved by yet again starting at the bottom to understand the VariableExp

named p2. We now have both inputs of the left-hand <> and may understand
that the <> is checking that p1 and p2 are di�erent and passing this up as the
ownedSource of the implies OperationCallExp. In order to fully understand
the implies we have to go back to the bottom to understand the p1.id and
p2.id navigations and p1.id <> p2.id comparison.

The observation that non-trivial expression trees are more easily understood
by reading them bottom up is hardly surprising. An OCL evaluator can only
evaluate by working bottom up, and the reader, in gaining an understanding of
the OCL expression, needs to emulate that execution.

The simpli�ed naive AST visualization requires 18 nodes and 22 edges.

4 vOCL

The vOCL [2] visualization presented at the OCL 2018 workshop introduces some
interesting novelties. By re-using the Class Diagram, vOCL avoids the need for a
new programming artefact, such as an OCL document or a novel UML diagram.
Each OCL constraint, pre-condition or post-condition is visualized as a `mark-
up' overlay upon the pre-existing Class Diagram.

The `mark-up' comprises a sequence of directed edges from the start point
(self) to a sequence of nodes. A node for a PropertyCallExp may be created
by drawing an ellipse or rounded rectangle around the role name text of the
required property. A node for an OperationCallExp or IteratorExp may be
created by drawing a new rectangle. The visualization is made more pleasing by
the provision of a number of mnemonic icons for many common OCL operations.

Figure 2 of [2] is reproduced as Fig 3 to demonstrate this.

Fig. 3. vOCL's Figure 2.

At top left, we see the OCL constraint to be visualized. At bottom left, we
see the Class Diagram for the metamodel. At the right we see the `mark-up' in
black upon the metamodel in grey.

The black box for Hospital identi�es it as the context and consequently the
self object when we start to read at the black �lled circle.

20



The �rst arrow takes us from self to patients giving us self.patients.
The next arrow takes us to the icon for the size() operator giving us

self.patients.size().
Then on to the icon for the <= operator giving us self.patients.size() <=.
Now we hit the problem. We continue on from the <= to the rounded rectangle

around Hospital.beds. Why does the result of a Boolean <= contribute to the
evaluation of Hospital.beds? Where is the missing second input to <=? Where
does the Boolean result of <= go to?

If we look at the naive AST visualization of this expression shown in Fig 4
and the equivalent mark-up for the reading order in green, the problem gets a
little clearer.

Fig. 4. Naive Visualization of vOCL invariant

The AST comprises a <= OperationCallExp, whose left-hand ownedSource

is the chain of VariableExp, PropertyCallExp, OperationCallExp to evalu-
ate self.patients.size() and the right hand side is the shorter chain for
VariableExp, PropertyCallExp for self.beds.

21



It can be seen that the reading order de�ned by the arrows in Fig 3 take
us up the left hand expression in bottom up fashion to the <=, but then top
down on the right hand side without ever visiting the self VariableExp. For
this simple case, intuition might perhaps suggest that self was implicit as the
self-container of the beds rounded rectangle. However, in more complex cases
magic rather than intuition is required to explain the semantics.

Unfortunately the vOCL paper does not really de�ne the semantics of its
reading order arrow. Rather its table provides `Navigational arrow to follow the
constraint'. If `navigational' is meant in the modelling sense of navigation from
one class via a Property to another, at most one of the four arrows in Fig 3 is
`navigational'.

When this paper was presented at OCL 2018, the intuitive nature of reading
order and the inability of this representation to handle multiple instances of
the same type seemed to make this approach unsound. However if we permit
multiple start points, and de�ne the reading order arrow as the data �ow in the
expression AST, both these problems are solved as shown in green on Fig 5.

Fig. 5. Fixed vOCL's Fig 2.

The corresponding AST of this `mark-up' is shown in Fig 6.

Once we can have multiple instances, and the reading order is clear, we can
solve our example as shown in Fig 7. The three blobs correspond to the three
variables self, p1 and p2, and each contributes a partial reading. Since we have
multiple blobs, it is no longer sensible to use grey for the background metamodel
so that the one self blob can be black.

The isolated blob for self is bound to Hospital and reads as self.patients
to make available a Patient for binding to each of the other two blobs, one for
p1 and one for p2.

One pair of readings from p1 and p2, passes via the <> operation to the
self input of implies. Another pair of readings passes via an id navigation
to another <> operation that provides the other implies input. The lack of an
implies output can be interpreted as a short form for must-be-true. Note that
there are two rounded rectangles around the Patient.id property, one for each
of p1.id and p2.id.

22



Fig. 6. Fixed Naive Visualization of vOCL invariant

Fig. 7. Fixed vOCL for Running Example.

23



The vOCL realization requires 9 nodes and 12 edges. The savings arise from
re-use of the UML elements and from folding Variable and VariableExp nodes
onto a starting blob.

5 QVTs Visualization

The Eclipse QVTd project provides an alternative form of OCL visualization.
This facilitates visualization of the matching and subsequent reactions of a
schedulable rule. The embedding of our example in QVTr is shown below:

top relation isOk {

domain from h1 : Hospital {} {

h1.patients->forAll(p1, p2 | p1 <> p2 implies p1.id <> p2.id)

};

enforce domain to h2 : Hospital {};

}

The outer relation just transforms the h1 instance of Hospital to the h2

instance. Our example is embedded as a guard that inhibits conversion if the
patient id's are not unique. The UML-like QVTs visualization is shown in Fig 8.

Fig. 8. QVTs Visualization of Example

24



The top row shows the QVT functionality matching an h1 Hospital instance
for conversion to an h2 instance via a trace instance. Only h1 is relevant for
discussing the OCL visualization.

The thick solid line from h1 to patients shows the navigation via the
patients property from the rectangular Hospital Class-instance named h1

to the rounded-rectangular OrderedSet of Patient DataType-valued named
patients.

The thin solid line labelled �source� from patients to the forAll ellipse,
shows the use of patients as the source of a forAll iteration. The two iterators
are shown as rectangles named p1 and p2, linked by edges labelled �iterator�

from the domain of the iteration and by edges labelled as �iterators-0� and
�iterators-1� to the forAll to which they contribute. The remaining input
of the forAll labelled �body� provides the result of the body expression of the
iteration. Each of the p1 and p2 iterators are an input to an ellipse of a <>

operation that feeds the �self� input of the implies operation that provides
the iteration body. Each of the p1 and p2 iterators also provides the source to a
corresponding navigation of the id property whose value is passed via the other
<> operation to the b input of the implies.

Finally the thin solid line from the forAll iteration to the true literal im-
poses the constraint that the result of the forAll must be true for the overall
QVTs rule to be permitted to execute.

Most of the elements use thin lines indicating that they are expressions whose
value is checked, rather than objects whose existence forms part of the pattern
match. The lines are also dashed rather than solid indicating that there may
be zero or many computations to be performed. In this example the dashed
lines correspond to the iteration body that may be separately evaluated for each
iterator permutation. Conversely the solid line shows that the three h1-patients-
forAll-true edges are always evaluated/matched exactly once.

The QVTs is a domain-speci�c visualization focussed on the objects/values.
All OCL constructs can be visualized. The visualization is auto-generated and
may only be edited to provide a more aesthetically pleasing layout.

Our example requires 11 nodes and 15 edges. The savings are mostly due to
folding the VariableExp nodes that access a value into the Variable that provides
the value.

6 Constraint Diagrams

Constraint Diagrams [4] are a Constraint rather than an OCL visualization.
Fig 9 shows our example.

The ability of the notation to depict membership of domains is well suited
to this example.

The left hand ellipse depicts the domain of Hospital instances, with a single
instance shown by the blob.

25



Fig. 9. Constraint Diagram Visualization of Example

The middle ellipse depicts the domain of Patient instances with two distinct
instances shown by two distinct blobs. Each blob is related to the Hospital

instance by the patients relationship.

The right hand ellipse depicts the domain of Integer values with two distinct
values shown by two distinct blobs. Each blob is related by the id relationship
to a correspondingly distinct Patient instance.

While the notation is clearly not OCL, it is visualizing the same concepts.
Blobs correspond to instances, edges to property navigations. Distinctness of the
blobs realises the <> operation almost invisibly. Multiple blobs realize the dual
forAll very elegantly. The implies operation is also invisible, arguably because
the Constraint Diagram implements a slightly di�erent logic; the possibility that
the iterators are the same is just not possible.

This example demonstrates how Constraint Diagrams have a `sweet spot' that
can often coincide with typical usage. However when something else is required
more complexity is needed. There is no support for arbitrary OCL.

The example requires 8 nodes and 4 edges. There is very little extra text.

7 Visual OCL

Visual OCL re-uses typical UML graphical idioms for its visualization, particu-
larly the compartment nesting for hierarchical state machines. Fig 7 shows our
example. (The �gure is an adaptation of Fig 2.32 of [5].)

The outer compartment is top-titled to show that it is an invariant of a
Hospital. It contains a side-titled compartment for a ∀ with p1 and p2 iterators.
This in turn contains a pair of compartments for left and right hand side of an
implies operation. The lower compartment is split so that a textual expression
can express what cannot be expressed graphically.

Within most of the compartments, a small UML pattern identi�es a part of
the expression.

In the outer compartment, a self instance of Hospital has a patients nav-
igation to the p multi-instance of Patient.

The top half of the implies identi�es two Person instances named p1 and
p2 with a 6= relationship between them, and the special isIn relationship to the
outer Person multi-instance.

26



Fig. 10. Visual OCL Visualization of Example

The bottom half of the implies again shows the two p1 and p2 Person

instances but now with identi�cation of the id attributes, whose value is con-
strained by the 6= in the textual box.

Given a particularly helpful UI, it is perhaps possible to draw the diagram
with 12 node/compartment creations, 3 edge creations and 10 text token selec-
tions/entries.

Contrasting Visual OCL with the naive visualization suggests that the main
di�erence is that the compositions of the naive visualizations are replaced by
compartment nesting. Since both compositions and compartments are limited
to a single parent, the use of nested compartments seems sound and so the only
limitation is in the diversity of helpful idioms such as the ∀ iteration side-titling
and a guarantee that whatever lacks a special idiom can be captured by a textual
compartment.

In the example, use of ∀ and 6= rather than forAll and <> illustrates a
dilemma that has been resolved by favouring a mathematical notation rather
than the OCL which is itself a compromise between compactness for mathe-
maticians and readability for casual programmers. Not following OCL seems
like a mistake since ultimately the textual compartment should be OCL rather
than OCL-like.

8 Comparison

The characteristics of the �ve visualizations are summarized in the following
table.

27



Visualization Nodes Edges Texts OCL Coverage Diagram Editing

Naive AST 19 22 - Full Auto-generated
vOCL 9 12 - Full Mark-up
QVTs 11 15 - Full Auto-generated

Constraint Diagram 8 4 - Partial Manual Edit
Visual OCL 12 3 10 Full Manual Edit

The nodes and edges indicate how many graphical artefacts are used by the
visualization of our running example. For most of the visualizations, the text
is rendered automatically from metamodel elements. Only for Visual OCL does
additional text appear to need manual entry.

The Constraint Diagram has distinctly lower artefact counts, but it has only
partial coverage of OCL syntax. Our running example may be unfairly well suited
to a Constraint Diagram visualization.

Two of our visualizations are secondary; they are auto-generated from the
textual OCL or from QVTr. The other three are primary, requiring an appro-
priate graphical editor. vOCL requires an ability to mark up a standard UML
Class Diagram. The remaining two require editing support for a new kind of
Diagram.

The need for new editing capabilities is unattractive, but even the auto-
generated visualizations need improved tooling to provide adequate layouts. The
�gures in this paper required considerable manual enhancement.

9 Related Work

This paper was motivated by a need to solve the problems in vOCL [2]. The
solutions and examples are presented here in Section 4.

We identify the Dragon Book [1] as a source for the traditional naive AST
visualization.

Alternative visualizations have been provided as Constraint Diagrams [4]
and as Visual OCL [5]. We provide examples of these diagrams in Section 6 and
Section 7.

We identify a more modern OCL visualization embedded within the QVTs
visualization of the Eclipse QVTd project [10].

Overall our comparison of �ve alternative visualizations is as inconclusive as
the two contrasted in [3].

10 Conclusions

We have remedied the de�ciencies in vOCL so that its `navigation' arrows have a
consistent data �ow semantic, and so that multiple start points can accommodate
non-trivial expressions.

We have presented �ve alternative visualizations of an OCL expression of
moderate complexity. It is far from clear that any of the visualizations is unam-
biguously better than any other. Each can be good for a particular usage.

28



vOCL and Constraint Diagrams may be better within a UML tool, but the
attempt to hide OCL completely seems unrealistic, since OCL must be used
when the expression gets too complex. The new graphical idioms therefore just
add to the amount to learn and require tooling to provide new diagrams.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers, Principles, Techniques and Tools, Addison
Wesley, 1986

2. Badreddin, O., Barraza, G., Hamou-Lhadj, A.: vOCL: A novel approach for
UML constraints modeling, 18th International Workshop in OCL and Tex-
tual Modeling, October 14, 2018, Copenhagen, Denmark. http://ceur-ws.org/Vol-
2245/ocl_paper_7.pdf

3. Fish, A., Howse, J., Taentzer, G., Winkelmann, J.: Two vi-
sualizations of OCL: a comparison. Brighton, UK, 2005.
https://research.brighton.ac.uk/�les/186722/VOCLTR.pdf

4. Kent, S.: Constraint Diagrams: Visualizing Invariants in Object-Oriented Models.
OOPSLA 1997. https://www.cs.kent.ac.uk/pubs/1997/794/content.pdf

5. Kiesner, C., Taentzer, G., Winkelmann, J.: Visual OCL: A Visualization of
the Object Constraint Language, TU Berlin Technical Report 2002/23, 2002.
http://www.user.tu-berlin.de/o.runge/tfs/projekte/vocl/gKTW02.pdf

6. Rockstrom, A., Saracco, R.: SDL-CCITT Speci�cation and Descrip-
tion Language,IEEE Transactions on Communications 30(6):1310 - 1318,
July 1982, https://www.researchgate.net/publication/224733068_SDL-
CCITT_speci�cation_and_description_language

7. Willink, E.: QVTs: A TGG-like graphical representation for e�cient
Declarative Model to Model Transformation scheduling, March 2019,
https://www.eclipse.org/mmt/qvt/docs/ICGT2019/GraphicalQVT.pdf

8. OMG Uni�ed Modeling Language (OMG UML), Version 2.5, OMG
Document Number: formal/15-03-01, Object Management Group (2015),
http://www.omg.org/spec/UML/2.5

9. Object Constraint Language. Version 2.4., OMG Document Number: formal/2014-
02-03, Object Management Group (2009), http://www.omg.org/spec/OCL/2.4

10. Eclipse QVT Declarative Project.
https://projects.eclipse.org/projects/modeling.mmt.qvtd

29



30


