
Personalized symptom checker using medical claims
Sabin Kafle

Cambia Health Solutions, Inc.
Portland, Oregon

sabin.kafle@cambiahealth.com

Penny Pan
Cambia Health Solutions, Inc.

Portland, Oregon
penny.pan@regence.com

Ali Torkamani
Cambia Health Solutions, Inc.

Portland, Oregon
ali.torkamani@cambiahealth.com

Stevi Halley
Cambia Health Solutions, Inc.

Portland, Oregon
stevi.halley@regence.com

John Powers
Cambia Health Solutions, Inc.

Portland, Oregon
john.powers@cambiahealth.com

Hakan Kardes
Cambia Health Solutions, Inc.

Portland, Oregon
hakan.kardes@cambiahealth.com

ABSTRACT
It is increasingly common for patients to query their symptoms
online before approaching medical professionals, with around 1%
of Google1 search queries being related to symptoms [15]. Conse-
quently, building symptom-diagnosis Knowledge Base (KB) and
subsequently, symptom checkers is a significant research problem
[19], global symptom checkers and online search engines are unable
to accommodate personal information which is useful for provid-
ing better health recommendations. In this work, we describe our
symptom checker which leverages medical claims, demographics,
and symptoms to deliver personalized health recommendations.
Moreover, we also explain our pipeline for building an integrative
KB capable of leveraging both personal and textual information.

CCS CONCEPTS
• Applied computing→ Health informatics;

KEYWORDS
Symptom Checker; Knowledge Base; Personalization

ACM Reference Format:
Sabin Kafle, Penny Pan, Ali Torkamani, Stevi Halley, John Powers, andHakan
Kardes. 2018. Personalized symptom checker using medical claims. In Pro-
ceedings of the Third International Workshop on Health Recommender Systems
co-located with Twelfth ACMConference on Recommender Systems (HealthRec-
Sys’18), Vancouver, BC, Canada, October 6, 2018 , 5 pages.

1 INTRODUCTION
It is estimated that around 35% of patients’ search for their symp-
toms online before consulting medical personnel according to a
survey in 2012 [19]. Symptom checkers and search engines are used
primarily to rule out serious conditions and find guidance before
seeking physicians. A symptom checker provides diagnostic infor-
mation based on the symptoms entered by the user. Most symptom
checkers also ask the user for personal information including age,
gender, and current location to provide more informed medical in-
sights, including nearby medical facilities for treatment of possible

1https://www.google.com/

HealthRecSys’18, October 6, 2018, Vancouver, BC, Canada
© 2018 Copyright for the individual papers remains with the authors. Copying permit-
ted for private and academic purposes. This volume is published and copyrighted by
its editors.

ailments. Symptom checkers function by querying users’ symptoms
to an internal medical KB and then ranking the possible diagno-
sis using Information Retrieval (IR) methods [11]. The symptoms
entered by the user are usually interpreted by a Natural Language
Processing (NLP) component to align it to the internal medical
KB. User interactions involve either a question answering based
approach with questions asked by the symptom checker [8, 12] or
a more open textual input including a list down of symptoms and
recent events [16].

The vast majority of online symptom checkers are focused on
providing a diagnosis based on the symptoms entered by the users.
There are some which interact further with a user to obtain addi-
tional medical information including anymedical history. While the
former tends to diagnose without contextual information, the latter
suffers from verbosity. Also, users’ may not be comfortable in pro-
viding their medical history to online services. Another issue also
lies in the lack of a robust Natural Language Understanding (NLU)
component. While testing out different symptom checkers, most
are unable to understand rudimentary paraphrases and negations.

Making a relevant health decision through a symptom checker
is based on a reliable internal medical KB [16]. A KB requires hu-
man annotation to build accurate relations. Manual annotation is
a costly process especially for symptom checkers since it requires
efforts from multiple medical professionals to eliminate bias. There
have been few efforts to learns KB automatically either using medi-
cal texts [10, 16] or Electronic Medical Records (EMRs) [18]. The
constructed KBs are heavily refined and validated by medical pro-
fessionals before usage. Also, no work exists leveraging multiple
sources while building a KB, which is essential for more reliable
health diagnosis.

In this work, we describe a symptom checker which aims to
alleviate some of the shortcomings of currently deployed online
symptom checkers. We first describe a medical KB construction
pipeline which is capable of leveraging open source medical re-
sources, medical texts2,3, and medical claims data. Text data are
capable of providing medical details which serve as information to
an interested user; medical resources enable structure into medical
KBs while claims data empowers frequency of diagnosis along with
historical information. Secondly, we describe the architecture of
the symptom checker with NLP pipeline and personalization as
its core component. Our symptom checker has the advantage of

2https://www.ncbi.nlm.nih.gov/pubmed
3https://en.wikipedia.org/wiki

HealthRecSys’18, October 6, 2018, Vancouver, BC, Canada Kafle et al.

being able to leverage medical claims into the diagnostic decision
resulting in personalized diagnosis (based on historical medical
records), recommend providers’ specialty and place of service to
the user from probable diagnosis.

2 RELATEDWORK
The earliest version of symptom checkers made predictions for
a single or closely related diagnoses (e.g.; breast cancer). Fuzzy
rules extracted from neural networks [7] or Bayesian decision rules
[9] provide inference from symptoms to diagnosis. More recent
symptom checkers mostly describe the KB extraction process with
NLU and IR [11] being separate fields.

The KB construction process is a semi-automated method with
information extraction tools such as MetaMap [1] used for extrac-
tion of medical terminologies. The relations in medical KB are
weighted using co-occurrence statistics. This method has found
application in Isabel [16] and IBM Watson [10]. Rotmensch et al.
[18] describe a method for KB construction based on noisy-OR
based Bayesian Networks [13] using Electronic Medical Records
(EMRs). Middleton et al. [12] describe a symptom checker which
achieves high performance in dataset described by Semigran et al.
[19] but requires considerable human effort in building. Reinforce-
ment learning-based question-answer interactions also provide a
natural formulation to symptom checkers. Training is performed
by conversion of symptom-diagnosis probability mapping to se-
quences using likelihood sampling [4, 20].

3 DATA GENERATION PIPELINE
A significant proportion of work in building a symptom checker lies
in the construction of medical KBs. Manual construction of medical
KB requires a significant human effort, in turn, making the process
expensive. A common alternative is the construction of KB with
slight inaccuracies based on medical texts, refined by medical pro-
fessionals. A generic automated KB construction pipeline requires
the following resources[18] - Structured clinical resources (e.g.;
UMLS [2], ICD-10 [14]), Medical texts (e.g.; Wikipedia, PubMed4
abstracts), and Information Extraction (IE) Engine (e.g.; MetaMap
[1]). Unified Medical Language System (UMLS) is a medical ontol-
ogy integrating multiple sources of medical knowledge including
SnomedCT [5], ICD-10 using entity defined as concepts to build a
hierarchical relation between medical terminologies. SnomedCT
is a medical ontology constructed with the objective of defining
medical concepts hierarchically. ICD-10 codes are used to describe
the diagnosis of patients which is then used by physicians to bill
the patient. All the KBs hierarchically describe the concepts with
UMLS enabling linkage between multiple KBs.

In addition to the data sources mentioned above, we also use
medical claims data. Medical claims give the diagnosis of a patient
using ICD-10 codes which can then be cross-referenced with pa-
tients personal information to obtain a complete historical picture
of a user. The availability of claims data enables construction of a
more robust KB which considers temporal dimension as a compo-
nent of KB. Medical claims also provide a convenient solution for
recommending provider specialty and place of service which can

4https://www.ncbi.nlm.nih.gov/pubmed

be mapped to symptoms using the mapping between symptoms
and diagnosis.

We describe our data generation pipeline in the following steps:
(1) Use Wikipedia5 to obtain textual information regarding ICD-

10. Textual information can be attained either through ICD-
10 homepage in Wikipedia6 or using names of ICD-10 code
to search in Wikipedia. We use a combination of both to
obtain a total of 2, 319 diagnosis description linked to ICD-
10 diagnosis codes extracted either from the web page or the
hierarchical relationship between diagnosis codes.

(2) Use MetaMap to extract all symptoms and diagnosis from
PubMed and Wikipedia text. The extracted symptoms and
diagnosis are then mapped using co-occurrence statistics
between symptoms and diagnosis. To reduce the number of
unique diagnosis codes, we use only those diagnosis which
has a unique Wikipedia article. All other ICD-10 codes are
mapped to the nearest codes using hierarchy relation. Symp-
toms name are also reduced using name overlap between
symptoms to obtain a significantly reduced list. The original
list of symptoms can be obtained from UMLS ontology.

(3) Learn the weights in KB between symptoms and diagno-
sis. We use the Naive-Bayes weight learning [18] to learn
associations between symptoms and diagnosis.

(4) Use medical claims data to provide age and gender-based
statistics to diagnosis codes, which propagates to symptoms
with proportion to learned weights between symptoms and
diagnosis. The medical claims are also used to learn the
weights between different diagnosis in the temporal dimen-
sion. Finally, the medical claims are used to learn provider
specialty and place of service for different symptoms based
on the learned weights and frequency. We use two year
claims data consisting of more than 400k medical claims
from around 200k members to build the statistics.

4 ARCHITECTURE DESIGN
We summarize our process flow along with architecture in Figure 1.
The basic design of symptom checker currently consists of the
following components:

• Front-end
• Web server
• Natural Language Processing (NLP) component
• Personalization component

We describe each of the components in detail in preceding subsec-
tions.

4.1 Front-end
The front-end is the interactive component of the symptom checker
where the user interacts with the symptom checker to obtain diag-
nostic information. It consists of the following two components:

• A query page to obtain the user’s symptoms and their per-
sonal information (age and gender currently). Users are free
to enter additional medical events and any events considered

5https://en.wikipedia.org/wiki
6https://en.wikipedia.org/wiki/ICD-10

Personalized symptom checker using medical claims HealthRecSys’18, October 6, 2018, Vancouver, BC, Canada

Figure 1: Process flow for symptom checker with core com-
ponents

relevant by the user (e.g., travel to a tropical region before
getting symptoms).

• A response page which displays the user’s possible con-
ditions, related symptoms, possible place of service and
provider specialty, along with a field to include additional
symptoms. Figure 2 depicts the response page of the symp-
tom checker.

A design consideration is to make predictions regarding diagnosis
regardless of the amount of information entered by the user. The
probability score depicts the uncertainty of the model when making
predictions.

4.2 Web server
The web server is the core component of the system through which
the different components of the symptom checker interacts. The
symptoms, description, and demographic information entered by
the user is processed by the web server. The information is then
passed through NLP and personalization component to obtain a
better understanding of the symptoms and constraints placed on
the possible diagnosis based upon personal information. An Elas-
ticSearch7 database is then queried to generate candidate diagnosis.
The symptom checker then interacts with the database sequentially
to further filter and rank the candidates for the entered symptoms
and personal information. Then, the personalization component
is used to re-rank the diagnosis. The diagnoses are then used to
extract useful information including likely place of service, provider

7https://www.elastic.co/products/elasticsearch

Figure 2: An example response of the symptom checker

specialty, and related symptoms specific to the possible conditions.
Figure 3 shows the additional information by the symptom checker.

4.3 NLP component
NLP processor provides three functionalities - paraphrase genera-
tion, negation detection and phrase extractions.

The negation detection and phrase extraction features use the
dependency parser based on Spacy Python library8. Phrase extrac-
tion enables the user to enter symptom checker in either a textual
manner with long text input or as a list down of symptoms. Nega-
tion detection helps to understand the complex set of information
which is useful in ranking out the list of diagnosis based upon both
positive symptoms and negative symptoms.

Paraphrase generation component uses Stacked LSTM in an
encoder-decoder framework with attention for training similar to
[6]. UMLS concepts are used to generate dataset defining medical
paraphrases. The dataset provides synonyms for medical phrases
including symptoms and diagnosis.

4.4 Personalization component
The personalization component enables the symptom checker to
provide multiple sets of results for the same symptoms based on
personal information of the user. The first step is in identifying
the relative importance of symptoms and diagnosis based on the
age and gender information of the user. The relative importance is
useful for narrowing down the results for symptom checker. The
second application of personalization component lies in the re-
ranking of the result of symptom checker based on the relevance of
the diagnosis to the user based on age, gender, and medical history.

5 EVALUATION
We use a dataset of 45 clinical vignettes of different degree of sever-
ity of diagnosis described in [19]. A clinical vignette is a full descrip-
tion of a patient condition enabling a physician to make a diagnostic

8https://spacy.io/

HealthRecSys’18, October 6, 2018, Vancouver, BC, Canada Kafle et al.

Figure 3: Additional results generated by the symptom
checker for search term "shoulder pain".

decision. The dataset is divided into three degrees of severity - re-
quiring emergent care (15 cases), requiring non-emergent care (15
cases) and requiring self-care only (15 cases). Table 1 lists some
example vignettes.

We achieve competitive performance to other online symptom
checkers despite using only unsupervised data generation process.
We report our accuracy in Table 2. The average performance of
symptom checkers is 58% for Top-20 evaluation. The symptoms are
manually entered in the format acceptable to the symptom checker
to achieve optimal performance. Unlike many online symptom
checkers, our system is capable of incorporating noisy text as input
and obtaining relevant information through the NLP component.

The accuracy report in Table 2 shows that the symptom checker
performs significantly better for diagnosis requiring self-care com-
pared to emergent and non-emergent care. The discrepancy in
performance is due to the symptoms listed for self-care conditions
having more accurate data source in the form of textual data. A
deeper dive is needed to study the discrepancy between medical
KB and the evaluation dataset to account for the noise in medical
KB and its impact on different care types [3].

Other online symptom checkers as evaluated on Semigran et al.
[19] on average obtain 34% Top-1 accuracy and 58% Top-20 accuracy
with higher accuracy for emergent care (80%) and least accuracy
for self-care (33%) while non-emergent care accuracy is 55%. The
performance of some higher quality symptom checkers is higher
with Babylon symptom checker [12] obtaining performances similar
to medical professionals [17]. The discrepancy in performance is
primarily due to the quality of KB with the KB pipeline described

Diagnosis Age SymptomsGender
Requiring Emergent Care

Acute Liver
Failure

48 y/o
Female

• Confusion
• Disorientation
• Increasingly Drowsy
• Mild right upper quadrant pain
• Chronic tylenol acetaminophen
user - recently took more

Requiring non-emergent Care

Pneumonia
6 y/o
Male

• History of asthma
• Five days fever
• Cough
• Appetite good
• Yellow sputum
• Temperature = 101.6

Requiring self-care

Acute
Conjunctivitis

14 y/o
Male

• 3 days red, irritated eye
• Watery discharge from eye
• URI symptoms
• No pain or light sensitivity

Table 1: Examples vignettes extracted from Semigran et al.
[19]. There are 15 diagnostic vignettes for each type of care
i.e. emergent, non-emergent, and self-care.

Metric Emergent
care

Non emer-
gent care

Self-care Overall

Top@1 20.00 20.00 50.00 29.55
Top@3 20.00 33.33 57.14 36.36
Top@5 33.33 53.33 64.29 50.00
Top@10 46.67 60.00 71.43 59.09
Top@20 53.33 66.67 78.57 65.91

Table 2: Accuracy evaluation (%) of symptom checker across
diagnosis requiring emergency, non-emergency and self-
care.

in our system being highly reliant on unsupervised methods rather
than being a fully validated medical KB [18]. We expect to obtain
better performance on future iterations of our medical KB as we
incorporate additional resources and validation methods.

6 CONCLUSION AND FUTUREWORK
We have described a symptom checker based upon a medical KB
generated in an unsupervised fashion. The novelty of our approach
lies in the unsupervised data generation process using multiple
data sources, which is then linked with NLP and personalization
components to provide a robust, personalized symptom checker.
Future work includes refinement of data generation pipeline to
integrate additional data sources including EMRs and integration
of specific user info into the symptom checker interface to provide
a better understanding of individual symptoms.

Personalized symptom checker using medical claims HealthRecSys’18, October 6, 2018, Vancouver, BC, Canada

REFERENCES
[1] Alan R Aronson. 2006. Metamap: Mapping text to the umls metathesaurus.

Bethesda, MD: NLM, NIH, DHHS (2006), 1–26.
[2] Olivier Bodenreider. 2004. The unified medical language system (UMLS): in-

tegrating biomedical terminology. Nucleic acids research 32, suppl_1 (2004),
D267–D270.

[3] M Alan Brookhart, Til Stürmer, Robert J Glynn, Jeremy Rassen, and Sebastian
Schneeweiss. 2010. Confounding control in healthcare database research: chal-
lenges and potential approaches. Medical care 48, 6 0 (2010), S114.

[4] Edward Y Chang, Meng-Hsi Wu, Kai-Fu Tang Tang, Hao-Cheng Kao, and Chun-
Nan Chou. 2017. Artificial Intelligence in XPRIZE DeepQ Tricorder. In Proceedings
of the 2nd International Workshop on Multimedia for Personal Health and Health
Care. ACM, 11–18.

[5] Kevin Donnelly. 2006. SNOMED-CT: The advanced terminology and coding
system for eHealth. Studies in health technology and informatics 121 (2006), 279.

[6] Sadid A Hasan, Kathy Lee, Vivek Datla, Ashequl Qadir, Joey Liu, Oladimeji Farri,
et al. 2016. Neural Paraphrase Generation with Stacked Residual LSTM Networks.
In Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers. 2923–2934.

[7] Yoichi Hayashi. 1991. A neural expert system with automated extraction of
fuzzy if-then rules and its application to medical diagnosis. In Advances in neural
information processing systems. 578–584.

[8] Hao-Cheng Kao, Kai-Fu Tang, and Edward Y Chang. 2018. Context-Aware
Symptom Checking for Disease Diagnosis Using Hierarchical Reinforcement
Learning. (2018).

[9] Igor Kononenko. 2001. Machine learning for medical diagnosis: history, state of
the art and perspective. Artificial Intelligence in medicine 23, 1 (2001), 89–109.

[10] Adam Lally, Sugato Bagchi, Michael A Barborak, David W Buchanan, Jennifer
Chu-Carroll, David A Ferrucci, Michael R Glass, Aditya Kalyanpur, Erik TMueller,
J William Murdock, et al. 2017. WatsonPaths: scenario-based question answering
and inference over unstructured information. AI Magazine 38, 2 (2017), 59.

[11] Ray R Larson. 2010. Introduction to information retrieval. Journal of the American
Society for Information Science and Technology 61, 4 (2010), 852–853.

[12] Katherine Middleton, Mobasher Butt, Nils Hammerla, Steven Hamblin, Karan
Mehta, and Ali Parsa. 2016. Sorting out symptoms: design and evaluation of
the’babylon check’automated triage system. arXiv preprint arXiv:1606.02041
(2016).

[13] Agnieszka Oniśko, Marek J Druzdzel, and Hanna Wasyluk. 2001. Learning
Bayesian network parameters from small data sets: Application of Noisy-OR
gates. International Journal of Approximate Reasoning 27, 2 (2001), 165–182.

[14] World Health Organization et al. 1992. The ICD-10 classification of mental and
behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva:
World Health Organization.

[15] Veronica Pinchin. 2016. I’m Feeling Yucky :(Searching for
symptoms on Google. https://blog.google/products/search/
im-feeling-yucky-searching-for-symptoms/

[16] P Ramnarayan, G Kulkarni, A Tomlinson, and J Britto. 2004. ISABEL: a novel
Internet-delivered clinical decision support system. Current perspectives in health-
care computing (2004), 245–256.

[17] Salman Razzaki, Adam Baker, Yura Perov, Katherine Middleton, Janie Baxter,
Daniel Mullarkey, Davinder Sangar, Michael Taliercio, Mobasher Butt, Azeem
Majeed, et al. 2018. A comparative study of artificial intelligence and human
doctors for the purpose of triage and diagnosis. arXiv preprint arXiv:1806.10698
(2018).

[18] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David
Sontag. 2017. Learning a health knowledge graph from electronic medical records.
Scientific reports 7, 1 (2017), 5994.

[19] Hannah L Semigran, Jeffrey A Linder, Courtney Gidengil, and Ateev Mehrotra.
2015. Evaluation of symptom checkers for self diagnosis and triage: audit study.
bmj 351 (2015), h3480.

[20] Kai-Fu Tang, Hao-Cheng Kao, Chun-Nan Chou, and Edward Y Chang. 2016.
Inquire and Diagnose: Neural Symptom Checking Ensemble using Deep Rein-
forcement Learning. In Proceedings of NIPS Workshop on Deep Reinforcement
Learning.

https://blog.google/products/search/im-feeling-yucky-searching-for-symptoms/
https://blog.google/products/search/im-feeling-yucky-searching-for-symptoms/

	Abstract
	1 Introduction
	2 Related work
	3 Data Generation Pipeline
	4 Architecture Design
	4.1 Front-end
	4.2 Web server
	4.3 NLP component
	4.4 Personalization component

	5 Evaluation
	6 Conclusion and Future Work
	References

