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Abstract. This paper presents our approach to the task of ImageCLEFlifelog 

2018. Two subtasks, activities of daily living understanding (ADLT) and life mo-

ment retrieval (LMRT) are addressed. We attempt to reduce the user involvement 

during the retrieval stage by using natural language processing technologies. The 

two subtasks are conducted with dedicated pipelines, while similar methodology 

is shared. We first obtain visual concepts from the images with a wide range of 

computer vision tools and propose a concept selection method to prune the noisy 

concepts with word embeddings in which textual knowledge is inherent. For 

ADLT, the retrieved images of a given topic are sorted by time, and the frequency 

and duration are further calculated. For LMRT, the retrieval is based on the rank-

ing of similarity between image concepts and user queries. In terms of the per-

formance, our systems achieve 47.87% of percentage dissimilarity in ADLT and 

39.5% of F1@10 in LMRT. 

Keywords: Visual Concept Selection, Distributed Word Representation, Life-

log. 

1 Introduction 

Wearable devices for personalized multimodal recording, together with dedicated life-

logging applications for smartphones, become more popular nowadays. For example, 

gadgets like GoPro and Google Lens have already attracted consumers’ attention, and 

new kinds of media like Video Weblog (VLog) emerged on Youtube heavily rely on 

these devices. On the other hand, numerous personalized data that are acquired, rec-

orded, and stored still remain challenging to access by their owners. As a result, a sys-

tem that supports human to make summarization and recap precious life moments is 

highly demanded. 
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In ImageCLEFlifelog 2018 [1,2], two subtasks are conducted to address the issue of 

image-based lifelog retrieval. The first subtask, activities of daily living understanding 

(ADLT), is aimed at providing a summarization of certain life events for a lifelogger. 

The second subtask, lifelog moment retrieval (LMRT), is aimed at retrieving specific 

moments in a lifelog such as shopping in a wine store. A key challenge in both subtasks 

is the semantic gap between the textual user queries and the visual lifelog data. Users 

tend to express their information needs in higher-level, abstract descriptions such as 

shopping, dating, and having a coffee, while the visual concepts that computer vision 

(CV) tools extract from images are usually a set of concrete objects such as cup, table, 

and television. The approaches proposed by previous work [3,4] focus on dealing with 

the visual information. In this work, we attempt to reduce the semantic gap by using 

both visual information and textual knowledge. We propose a framework that integrates 

visual and textual information extracted from advanced CV and natural language pro-

cessing (NLP) technologies. 

2 Related Work 

In this section, we briefly discuss recent works on lifelog retrieval. For a retrieval 

model, relevance and diversity are two major criteria to achieve. The retrieval of rele-

vant lifelog data is usually based on modeling the similarity between the textual con-

cepts, from the user query, and the visual features, from the lifelog data. Diversity, on 

the other hand, can be improved by image clustering. For example, Liting et al. [3] 

propose a method based on textual concept matching and hierarchical agglomerative 

clustering. Ana et al. [4] propose a method based on both visual and metadata infor-

mation along with clustering on results. So far, various techniques for image processing 

and image retrieval have been applied to lifelog retrieval, but relatively few NLP tech-

niques are explored in this area. 

As deep neural networks have achieved remarkable success in computer vision, it is 

also tempting to use deeply learned features in lifelog retrieval. For example, features 

generated from CNN are adopted to the lifelog retrieval task [3]. Models for textual 

concept extraction include image classification model [5] or object detection model 

[6,7]. For textual knowledge modeling, deep neural networks also benefit distributed 

word representations, also known as word embeddings, where every word is repre-

sented in a vector in a dense space. There are different implementations for learning 

word embeddings [8,9,10,11,12,13], which can be further used in multi-modal applica-

tions. 

3 Retrieval Framework 

Fig. 1 illustrates our proposed system. The two subtasks, ADLT and LMRT, share a 

similar framework. The details of our framework are introduced in the following sub-

sections. 



 

3.1 Visual Concept Extraction 

Both subtasks rely on the information from the provided image set. We extract the vis-

ual concepts from each image by using a wide range of image recognition tools. Before 

that, preprocessing is performed to improve the image recognition. The images in the 

lifelog data are automatically taken with a wearable camera so that many of them suffer 

from the poor quality such as overexposed, underexposed, out of focus, or ill-com-

posed. We apply blurriness detection and pixel-wise color histogram [4] to filter out 

those uninformative images. For the qualified images, several image recognition tools 

are integrated to extract visual concepts from a variety of aspects.  

 

  

Fig. 1. System framework. 

Image Filtering. We prune low quality images with blurriness and color diversity de-

tection. The blurriness metric is defined based on the variation of the Laplacian. We 

perform convolution on each image with the Laplacian filter (3x3 kernel), and calculate 

the blurriness score as the variance of the convolved result. The images with a variance 

below a threshold are considered blurry and undesirable. Moreover, images with a high 

color homogeneity are also considered uninformative, and can be detected with quan-

tized color histograms. 

Concept Labeling. In order to retrieve lifelog data according to the query style defined 

in the two subtasks, effective textual representation for images is crucial. For a given 

photo, we would like to know where it was being taken, what objects are in it, and even 

what action the lifelogger took at that moment. To extract visual concepts from different 

aspects, deep learning models have shown breakthrough results in recent years.  

Basically, general concepts and scene of images can be captured by two DenseNet 

[5] classifiers pre-trained on ImageNet1K [14] and Place365 [15], respectively. We 



consider classes with output probability beyond the threshold as labels. The threshold 

is moderate to ensure the recall rate. For details present in images, object detection 

techniques Yolo-v2 [5] and Faster RCNN [7] are used. Both tools are pre-trained on 

MS COCO [16] and Open Images [17] datasets.  

Open Images dataset, which consists of 15,440,132 boxes on 600 categories in a 

domain closer to human daily life, covers most of the topics in the subtasks. MS COCO 

Dataset consists of 91 objects types with 2.5 million labels in 328k images. We also 

utilize the image analysis function provided by Google Cloud Vision API1. The online 

service provides not only fruitful labels but also supports optical character recognition 

(OCR), which helps detect and extract text from images. Note that the image concepts 

provided by organizer are also added in. After going through the above tools, an image 

would be tagged with concepts present in various aspects, as shown in Fig. 2. 

 

 
(a) Image ID: 20160815_150731_000 

 
(b) Image ID: 20160820_101541_000 

 
(c) Image ID: 20160827_093525_000 

Fig. 2. Lifelog images with their corresponding visual concepts labeled by various image 

recognition models. 

 

Image recognizers are hardly to perfectly label the concepts. For instance, most of 

the deep learning tools cannot capture the place of Fig. 1(a) except OCR, which identi-

fies the keyword Cafe. In our framework, the ensemble of the outputs of all image rec-

ognizers is considered as a set of candidate visual concepts.  

                                                           
1  https://cloud.google.com/vision/ 



 

Concept Filtering. We leverage a number of state-of-the-art tools to depict an image 

in a set of candidate visual concepts. However, false positive concepts generated by 

those tools result in redundancy and noise. For example, an image relevant to interior 

like “bedroom” or “living room” would be supported by the visual concepts such as 

“couch”, “bed”, and “table”. By contrast, the concept “church” would have lower sim-

ilarities to those terms. Based on this idea, we prune the set of candidate visual concepts 

by removing the concepts that are less supported by other concepts, and produce a set 

of visual concepts for each image. We compute the semantic similarity between candi-

date visual concepts by using pre-trained word embeddings and construct a similarity 

matrix, which represents the similarity of each concept pair. We discard those concepts 

that would accumulate low correlations with other concepts. The procedure is illus-

trated in Fig. 3 with a real example. 

 

 

Fig. 3. Illustration of concept filtering. 

3.2 Indexing 

Our framework fetches images based on a given query. In ADLT, we require users to 

specify concepts that highly related to the given topics and keep off confusing terms as 

a query term set for each topic. Moreover, time span according to the topics would be 

considered. To ensure the quality and usability of the retrieval system in practice, pre-

processing on textual data and the retrieval algorithms are other crucial issues.  

Metadata Preprocessing. For generalization of the retrieval task, tags available in 

metadata like “Home” and “Work” in the location field and “transport” and “walking” 

in the activity field are extracted as attributes of images, instead of using all the location 

information. To proceed further with locational information, we calculate the average 

moving speed according to GPS coordinates to infer the type of transportation (e.g. car, 

airplane). For any pair of points {(lat1, lon1), (lat2, lon2)} on the geographical coordi-

nate system, the distance d is given by the great-circle distance formula as follows. 

 

𝑑 = cos−1(sin(𝑙𝑎𝑡1) sin(𝑙𝑎𝑡2) + cos(𝑙𝑎𝑡1) cos(𝑙𝑎𝑡2) cos(|𝑙𝑜𝑛2 − 𝑙𝑜𝑛1|)) × 6371𝑘𝑚  (1) 

 

and the average speed is calculated according to the distance d and the difference be-

tween timestamps. 

Retrieval Model. The similarity between the user query and an individual image, rep-

resented as a set of visual concepts, is measured with three schemes as follows. 

  



Exact Matching. Given a list of concepts in the user query that are combined with log-

ical operators AND, OR, and NOT, the visual concepts of the image should meet the 

condition. This approach returns accurate results if the topic is explicit, e.g., watching 

TV or use cell phone in the car. 

BM25 Model. Exact matching suffers from low recall rate. Here, we perform the partial 

matching by using a classic retrieval model, BM25 [18]. The BM25 scheme measures 

the relatedness between two sets of concepts based on term frequency (TF) and inverse 

document frequency (IDF). In this way, the specific concepts are more likely to be 

extracted. For example, the concept “grocery”, which provides specific information 

than the general concept “indoor” does, has a higher BM25 score due to its higher in-

verse document frequency. 

Word Embedding. Word embeddings (distributed word representations) have been 

widely used in text similarity measurement. For fuzzy matching, we adopt the word 

embeddings to measure the semantic relatedness between the concepts in the query and 

the concepts extracted from an image. The information of semantic relatedness would 

be helpful when similar but not identical concepts are present in both sides. We first 

obtain distributed representations of concepts with word embeddings that are pre-

trained on a large-scale corpus, and aggregate concept-level semantics by taking the 

element-wise mean for each query/image. In this way, the relatedness between the 

query and an image can be computed by using the cosine similarity. Note that by using 

the pre-trained word embeddings, external knowledge is inherent in the retrieval model. 

3.3 Image Stream Segmentation 

Deeply Learned Features. Pre-trained convolutional neural networks have been 

shown to be beneficial for various computer vision tasks as generic image feature ex-

tractors. In this sense, we apply pre-trained CNN tools [5] to extract dense feature vec-

tors, and estimate the level of change between consecutive images by measuring the 

dissimilarity of their representations using Euclidean distance and cosine similarity. 

Another neural network-based approach for this purpose is to compress the image by 

autoencoders. These methods are tempting that feature extraction can be done automat-

ically, and the obtained feature can be integrated with other features simply. 

In this work, we obtain the dense vector for each image with a pre-trained DenseNet 

and with a deep autoencoder trained on the provided images. For each pair of two con-

secutive images, a threshold of dissimilarity is heuristically tuned to determine whether 

the two images belong to the same event cluster or not. Besides, smoothing methods 

such as moving average should also be adopted to prevent the consecutive boundary 

occur in a short time period. 

Event Interval. In addition to the features learned by models, human knowledge is also 

involved. Due to the property of lifelog data and given topics, human beings can easily 

figure out how long it takes for a daily activity. Therefore, our other approach is group-

ing the images by reasonable interval of shooting times. That is, two consecutively re-

trieved images would treat as a single event if the difference of their timestamps is 

smaller than a threshold according to the event topic. The thresholds for each topic are 



 

intuitive defined by human. For example, the reasonable event interval would be about 

60 minutes for having a lunch.  

3.4 Daily Activities Summarization 

For ADLT, the system output should be two real values indicating the frequency and 

total duration of the given topic, respectively. The frequency could be calculated by 

summing up the number of segmented retrieved events. The duration is obtained by 

summing up the time differences between the first frame and last frame of each event. 

3.5 Life Moment Retrieval 

For LMRT, the model is designed to retrieve a number of images indicating specific 

life moments with respect to the target query. There are total 10 topics, each consists of 

a title, a short description, and a longer narrative in detail. For query processing, we 

extract key terms in the title and in the description only, since the intention in the nar-

rative is often too complicated to extract without human assistance. This can be done 

by simply removing function words in each query. Note that further processing such as 

stemming is unnecessary due to the use of word embeddings. The resulting concepts 

can be further improved by human, according to the narrative or human’s general 

knowledge. Finally, the query is transformed into vector representation and compared 

with pre-computed vector representation of each image. 

4 Experiments 

For the two subtasks, automatic runs are submitted. For each of the subtasks, we first 

describe the parameter settings, and show the experimental results. We only report the 

execution time of our system for testing since we exploit pre-trained tools. 

4.1 Activities of Daily Living Understanding Task 

In the first trial of ADLT, we use the query consisting of the concepts automatically 

parsed from the given topics. We seize nouns and gerunds as concepts and list them for 

query. For the time condition, information is directly provided with the <span> tag. 

However, some of the required concepts like socializing or having party seldom appear 

in the visual concept sets since most of CV tools are trained with shallow semantic 

image descriptions. To deal with this issue, the topics consisting of abstract ideas are 

refined by human. 

As mentioned in previous sections, visual concepts of each image labeled by CV 

tools are far from perfect. For this reason, visual concept filtering is applied to discard 

the concepts with a low relevance to other concepts in the same image. After we obtain 

a list of visual concepts sorted by the row sum of similarity matrix for each image, the 

top half of the concepts are retained. To our observation, this is a flexible threshold. 

Besides, two kinds of pre-trained word embeddings are brought in here, including 



GloVe [9] trained on Common Crawl with 840B tokens and ConceptNet Numberbatch 

[8]. The comparison in percentage dissimilarity [1] is shown in Table 1, where (G) and 

(N) denote GloVe and ConceptNet Numberbatch word vectors, respectively. 

Table 1. Performances in ADLT. 

Pipeline Percentage Dissimilarity 

vanilla retrieval 0.2434 

fine-tuned query  0.2850 

fine-tuned query + concept selection (N) 0.3850 

fine-tuned query + concept selection (G) + coffee capturing 0.4592 

fine-tuned query + concept selection (N) + coffee capturing 0.4787 (Rank 2) 

 

For summarization, two types of image stream segmentation are tried on the devel-

opment set. We find out that the segmentation based on deeply learned features results 

unstable boundaries and comes out a limited performance. Basically, it is hard to deter-

mine the threshold of dissimilarity between two images. On the other hand, using hu-

man defined reasonable interval for each event type, deemed an intuitive parameter for 

daily activities, provides more sensible boundaries. As a result, we apply the latter 

method on the test set. 

In general, our framework achieves a percentage dissimilarity of 0.3850 with human 

refined query and visual concept filtering reported by the online evaluation platform. 

The inference time for each topic is 5.59s on average. Error analysis shows that our 

system fetches a lot of unnecessary images for topic 1 because the CV tools cannot 

identify “coffee cup” in the lifelog data. For this reason, we refine the query by using 

only “cup”, instead of “coffee cup”, to ensure the recall rate. It turns out that images 

with bottles or mug are retrieved (under the Office scenario).  

 

 

Fig. 4. Examples of coffee capturing based on RGB constraints 

To enhance the precision of topic 1, an ad-hoc method is further introduced to filter 

out surplus retrieved items. First, we observe that the coffees might be bought by the 



 

lifelogger from the same shop within the same red cup. So we specify the upper and the 

lower bounds of RGB value to capture red objects in a given shoot. For the considera-

tion of spatial verification, we preserve images containing red area larger than a thresh-

old. The procedures of the above operations are shown in Fig. 4. By distinguishing the 

red coffee cup from other types of cup, the results of topic 1 are greatly enhanced, and 

the overall performance is also increased as shown in Table 1. 

The best result among our all submissions, i.e., percentage dissimilarity of 0.4787, 

is achieved by the combination of fine-tuned query, concept selection mechanism with 

ConceptNet Numberbatch word embedding and coffee capturing trick. The ad-hoc im-

age filtering for topic 1 produces a significant improvement. For the construction of the 

similarity matrix used in visual concept filtering, the ConceptNet Numberbatch embed-

dings, built using an ensemble that combines data from ConceptNet [8], word2vec [10], 

GloVe [9], and OpenSubtitles2016 [19], provide better results comparing to GloVe. 

The effectiveness of concept filtering is shown in Fig. 5. 

 

 

Fig. 5. Example of concept filtering on image 20160830_181833_000. 

4.2 Life Moment Retrieval Task 

For LMRT, we submit a total of four successful runs, which are either fully automatic 

or semi-automatic with human fine-tuned queries. In this subtask, we use a subset of 

CV tools based on a preliminary evaluation on the development set. The relatedness 

between images and queries are measured with the word embedding method as de-

scribed in Section 3.2. We employ the 300-dimenstional word embeddings pre-trained 

on 16B tokens with fastText [11]. Out-of-vocabulary words are ignored. The first run 

is using automatically extracted query terms to match image concepts. We consider this 

as the baseline method.  

In the rest of runs, we add time and location constraints to each query and re-rank 

the retrieved images using provided metadata. This information can be either inferred 

automatically by NLP APIs2 in Run 3, or given by human in Run 4 and Run 5. We use 

a heuristic method for re-ranking that increases the score by a weight wl if the location 

constraints are satisfied, and decreases the score by a weight wt if the time constraints 

are not satisfied. The weight wl is set as 0.8, and wt is 0.1 in the experiments.  

                                                           
2 https://cloud.google.com/natural-language/ 



In Run 4, we fine-tune the queries to get better results. Each query is rewritten into 

the form consisting of the following fields: positively related concepts, negatively re-

lated concepts, location constraint, and time constraint. For negatively related concepts, 

we assign a weight of -1 to their word representations before vector aggregation. Table 

2 shows an example that the automatic one is extracted from the title and the descrip-

tion. The fine-tuned one is obtained by removing relatively useless query terms and 

manually adding additional concepts, according to narrative and retrieved images. Once 

the query is modified, the system retrieves new results, and the query can be further 

improved based on new results. In the last run, we perform clustering on the retrieved 

images based on the event intervals described in Section 3.3. 

Table 2. Query Formulation for LMRT. 

 Title: Interviewed by a TV presenter 

 Description: Find all the moments when I was interviewed by TV presenter. 

 Narrative: The moment must show the cameras or cameramen in front of the life-

logger. The interviews can occur at the lifelogger's home or in the office environ-

ment. 

Automatic positive = {interviewed, TV, presenter}; negative = {}; 

location = {}; time = {} 

Fine-tuned positive = {camera, person}; negative = {}; 

location = {home, work}; time = {} 

 

Table 3 and Fig. 6 show the performance of our method for LMRT. The inference 

time (without clustering) for each topic is 2.46s on average. The best result on the test 

set is achieved by the combination of the fine-tuned query with time/location con-

straints, showing that it is crucial to have human to give more precise query expressions. 

We also notice that there is no improvement with clustering. A possible reason is that 

some queries in the test set ask for rare events such as assembling furniture. Under the 

scoring metric, cluster recall at 10 (CR@10) [1], used in this subtask, there is no benefit 

to cluster events that occur less than ten times. Instead, inaccurate results may be intro-

duced and decrease the score.  

For LMRT, we employ pre-trained fastText for the official runs. As word embedding 

playing a crucial role in this task, we try a number of off-the-shelf word embeddings 

for similarity computation. Details of these embeddings can be found in [8,9,10,11, 

12,13]. These models are designed in quite different ways, but all produce semantic 

representations for individual words in a latent space. Fig. 7 compares different word 

embeddings. We report F1@10 scores per query in the development set with a fully 

automated approach. The results suggest that it would be beneficial to use word em-

beddings that associate with additional contextual information such as syntactic de-

pendency or lexical ontology.  

Another advantage of adopting word embeddings is that sometimes query words are 

absent while relative or similar concepts are present in the desired images. With word 

embeddings, we have an opportunity to capture this kind of relations. For example, it 

is possible to match an image with the concepts {bowl, food, knife, meal, person, salad, 



 

table} to the query {salad, kitchen} with a high similarity, though the keyword 

“kitchen” is absent from the set of visual concepts.  

 

Table 3. Performances in LMRT. 

Run ID  Description F1@10 

Run 1 automatic query (baseline) 0.177 

Run 3 automatic query + constraints 0.223 

Run 4 fine-tuned query + fine-tuned constraints 0.395 (Rank 4) 

Run 5 fine-tuned query + fine-tuned constraints + clustering 0.354 

 

 

Fig. 6. Official results on the test set. 

 

Fig. 7. F1@10 Scores on the development set with different embeddings used. 

5 Conclusion 

This paper presents our approaches to daily activities summarization and moment re-

trieval for lifelogging. In both subtasks, we introduce the external textual knowledge to 

reduce the semantic gap between the user query and the visual concepts extracted by 

the latest CV tools. Experimental results show the ensemble distributed word model, 

ConceptNet Numberbatch, provides effective word embeddings in both two subtasks.  

Experimental results also suggest that better performances can be achieved by using 

fine-tuned queries. That means there still exists a room for improvement on bridging 

the gap between the abstract human intentions and the concrete visual concepts. 
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