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Abstract. If one examines the spot price series of electjxaker over the
course of time, it is striking that the electricityice across the day takes a
course that is determined by power consumptiorofolig a day and night
rhythm. This daily course changes in its height tamporal extent in both, the
course of the week, as well as with the coursehefytear. This study deals
methodologically with non-linear correlative andtaaorrelative time series
properties of the electricity spot price. We cdnite the usage of non-fully
connectionist networks in relation to fully conrientst networks to decompose
non-linear correlative time series properties. Aiddally, we contribute the us-
age of long short-term-memory network (LSTM) toadiger and to deal with
autocorrelation effects.
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1 Introduction

Despite all criticism of this approach, the randamik process has established itself
for the modeling of stock prices. Pricing on eleity markets deviates significantly
from the pricing on stock markets, as the undegyifarkov property cannot be as-
sumed for electricity markets as well. Producedtelgty cannot be stored without
significant losses and, accordingly, temporal aslgi¢ turns out to be highly ineffi-
cient. If one examines the spot price series aftetml power over the course of time,
it is striking that the electricity price acros®ttiay takes a course that is determined
by power consumption following a day and night Hmgt This daily course changes
in its height and temporal extent in both, the seunf the week, as well as with the
course of the year. Accordingly, it can be conctudleat the univariate time series
shows non-linear correlative effects between dailgekly, and yearly seasonal pat-
terns as well as autocorrelative effects even withaking other explanatory variables
into account.

The present study deals methodologically with rinadr correlative and autocor-
relative time series properties of the electrisippt price. Correlation effects are ade-
quately represented in classical fully connectionetworks but they cannot be mean-



ingfully analyzed due to the high complexity of $kenetworks. The research ques-
tions are, if the forecasting accuracy can be iwgdaby (i) using different and com-
plementary ANN-architectures to better reflect etation effects and (ii) using a
recurrent ANN-architecture to better reflect autoelation effects. To answer these
questions, we contribute the usage of non-fullynemtionist networks in relation to
fully connectionist networks to decompose non-linearelative time series proper-
ties.

Hence, we use (i) different ANN architectures witim-fully and fully connection-
ist networks to discover and to deal with correlateffects on exogenous side / input
layer, (ii) using a long short-term-memory netw@tSTM) to discover and to deal
with autocorrelation effects, and (iii) an ARIMAX adel with daily, weekly, and
yearly seasonal patterns reflected as binary codeidbles as a benchmark for the
aforementioned models.

The paper is organized as follows: In section tilue, current state of the literature
is presented, and the research gap is identifredettion three, sample and method-
ology are introduced. In section four, the resalts presented and discussed. The
study closes with a conclusion.

2 Literature Review and Research Gap

The number of electricity price forecasting articleas increased significantly in re-
cent years. A particularly good overview can beaot#td by Weron (2014). The au-
thor could identify 30 publications with a focus &RIMA and its extensions. We
could not identify further more recent articles tims special field of ARIMA-
modelling of electricity prices. More recent elégty price forecasting literature is
focused mainly on probabilistic forecasting andfiaral intelligence. With regard to
ANN, Weron could identify 56 publications. Subseuqflyg two further articles were
published on electricity price forecasting using MNhat were not included in
Weron'’s review (Dudek, 2016; Marcjasz, UniejewskiWeron, 2018).

Comparing ARIMA(X) models of the Spanish and thdiféenian market with and
without additional explanatory variables, Contrergspinola, Nogales,& Conejo
(2003) recognize that additional explanatory vddapsuch as hydropower, are only
required in months of a high correlation betweea é&xplanatory variable and the
price, while in months of low correlations theseaiables do not show significant
predictive power. The authors were able to showagedaily mean errors between
5% and 10% with and without explanatory variables.

When forecasting with ARIMA, Conejo, Contreras, bgpa, & Plazas (2005) ar-
gue that it could be necessary to use a differetstion of the model for nearly every
week. Accordingly, ARIMA-models turn out to be vempstable in their predictive
power over time. Especially in spring and summeemstthe volatility was very high
the ARIMA forecast provided poor results. The awushalso introduce several other
techniques, e.g. an ANN with a multilayer perceptand one hidden layer. The
ARIMA model outperforms the ANN in every period ext for the September. The



mean week errors with ARIMA are between 6% and 2vBéreas the ANN shows
errors between 8% and 32%.

Garcia, Contreras, van Akkeren, & Garcia (2005)nadal that ARIMA-GARCH
models show a better accuracy than seasonal ARIMWets. The authors present
mean weekly errors of around 10% for relativelyntaleeks. Misiorek, Trueck, &
Weron (2006) compare some linear and non-lineag series models. In contrast to
the aforementioned authors, the simple ARX modbk-exogenous variable is the
day-ahead load forecast - shows a better resuit thanodel with an additional
GARCH component.

Conejo, Plazas, Espinola, & Molina (2005) contrdzb specified ARIMA model
including wavelet transformation which was moreuwaate than the simple one. The
wavelet transformation is applied to decomposetitne series before predicting the
electricity prices with ARIMA. This model outperfos the benchmark with a weekly
error of 5% in winter and spring and 11% in sumaned fall.

Applying a seasonal ARMA(X) process with three eliéint explanatory variables
of the temperature, Knittel & Roberts (2005) idéetl an inverse leverage effect with
positive price reactions increasing the volatilitpre than negative ones. The authors
further show that a higher order autocorrelatiothin models is important to improve
the results. The authors were able to show rootnse@ared errors for the out-of-
sample week between 25.5 and 49.4 in the pre-giiond and between 66.6 and
88.6 during the crises period. It is mentionedHha article that the data has a high
frequency of large price deviations, which leadth&se high forecast errors.

Zareipour, Canizares, Bhattacharya, & Thomson (2@2dt an ARMAX and an
ARX model with an average error in the 24-hour-ahéarecast of 8.1 and of 8.4
respectively, which is slightly better than theiba®RIMA model with an average of
8.8. With these models, it could be shown that mtarkformation in low-demand
periods is not as useful as during high-demandogsriln general, the results have
confirmed the contribution of the authors that nedrétata improves the forecast re-
sults. Nevertheless, none of the models could &stethe extreme prices which in-
creasingly occur in times of high-demand periodsqately.

Zhou, Yan, Ni, Li, & Nie (2006) suggested that imdihg error correction will lead
to a more accurate result in forecasting with ARIMerefore, they developed an
ARIMA approach which is extended by an error serigss novel method turned out
to show quite good forecasting accuracies with eerage error of 2% and lower
despite of periods with a high price volatility.

Koopman, Ooms, & Carnero (2007) were using an ARKIModel, which is an
ARIMA model with seasonal periodic regressions, anthbined it with a GARCH
analysis. The authors pointed out the importanadagfof-the-week periodicity in the
autocovariance function when forecasting electripiices. Beneath the implementa-
tion of the day of the week, binaries were includedthe holiday effect to consider
demand variations.

With the increase in available computational poimerecent years, ANN became
more and more popular in forecasting and forecgstsearch. Both, classical multi-
layer perceptron (MLP) and recurrent networks (heddf 1982; Haykin, 2009), es-
pecially long short-term memory (LSTM) (Hochreit&r Schmidhuber, 1997) net-



works, are used for forecasting purposes of timeselata. Typically, all ANN archi-
tectures are composed of an input layer, a hidaiger lwith differing number of units,
and an output layer. In fully connectionist netwsgyrkypically, lags and partially re-
siduals are passed into the propagation functiomag, Patuwo, & Hu, 1998;
Adebiyi, Adewumi, & Ayo, 2014). Each node of a lay® usually fully connected to
the units of the subsequent layer. MLP as well &M networks are fed with differ-
entiated time series data. The reason is the ydgrtharacteristics of a time series
itself. If time is the explanatory factor for thalues of the endogenous variable, in
our case the electricity price, the time seriestrbesmade stationary by differentia-
tion to avoid spurious correlations.

Recurrent ANN have the possibility to incorpordte butput of latter layer units
again into earlier layer units, which is not potsiim MLP networks. Commonly, the
units of all hidden layers of recurrent networks &r a chain-like informational loop.
A hidden unit can use its output as input (direetdback), or it is connected to a hid-
den unit of the preceding layer (indirect feedback)it is connected to an unit of the
same layer (lateral feedback), or it is connectedlltother hidden units (fully recur-
rent). The recurrent type of LSTM is typically ditdeedback (Malhotra, Vig, Shroff,
& Agarwal, 2015). The LSTM network, with regardite inherent properties of “[...]
maintaining its state over time in a memory cell][.(Greff, Srivastava, Koutnik,
Steunebrink, & Schmidhuber, 2017), is predestirmrdusage in time series analysis.
In opposite to other recurrent network types a LSiddwork solves the vanishing
gradient problem (Hochreiter & Schmidhuber, 1997).

Fully connectionist MLP are the most used type dfNAfor electricity price fore-
casting (Weron, 2014; Dudek, 2016). They differusage of different explanatory
variables, e.g. power consumption, weather, winttmns, in addition to lag varia-
bles. Furthermore, the results of a MLP serve aslmaarks in comparison with the
results of other forecasting models like ARIMA. Atilchally, MLP is often used as
the nonlinear part within a hybrid model, e.g. onmbination with ARIMA. A further
type of ANN, occasionally seen in the extent litera, is a recurrent network
(Weron, 2014), especially a nonlinear autoregressixogenous model (NARX), a
descendant of a recurrent network (Marcjasz, Unigfe & Weron, 2018).

Weron (2014) concluded that forecasting with uriatagrtime series models is well
known in the extent literature. Accordingly, inclod the right external input factors
into the models, as well as dealing with nonlingependencies between endogenous
and exogenous variables and among exogenous \ewiatill become more im-
portant. In contrast to the author, we do not baethe time for univariate time series
analysis of electricity prices is already overwas still cannot see a satisfactory ap-
proach to meaningfully deal with the time-seriegrelgteristics of electricity prices.
Although the Bayes-approach offers possibiliti¢ds irather unsuitable for practical
use due to the high load of computer capacitiemdwsimulation operations. Hence,
we see a research gap in handling the non-lineaglative effects between the exog-
enously modelled daily, weekly, and yearly seasqadterns as well as autocorrela-
tive effects within the time series and among tkegenously modelled variables. Our
contribution is to close this research gap by usingANN-based methodology. We
perform a time series analysis for the German EBKelix” Data using (i) different



ANN architectures with non-fully and fully connemtiist networks to discover and to
deal with correlation effects on exogenous sidepli layer, (ii) using a long short-
term-memory network (LSTM) to discover and to deéh autocorrelation effects,
and (iii) an ARIMAX model with time series featuras binary coded variables as a
benchmark for the aforementioned models.

3 Sample and Methodology

3.1 Sample Selection

At the European Energy Exchange (EEX), electrisippt prices (EPEX Spot), as
well as future contracts are traded. The vast nunolbeGerman municipal utility
companies, but also large industrial consumershendemand side, and European
electricity suppliers on the supply side take @arthe electricity trading at the EEX.
The electricity volumes can be traded on the saaye(idtraday) or for the following
day (day-ahead). Purchase and sale orders camtedpbn an hourly basis as well as
for time blocks. The blocks are “baseload” (0.00ani2.00pm) or “peakload”
(8.00am - 8.00pm). These orders can be placed1thfiOpm of every trading day for
the next calendar day and will be processed priynasier the internet. A computer
system ensures the automatic settlement of théhpsecand sale orders and the fixing
of the exchange price. Finally, around 12.40pmtiees for the next day will be
published via the internet and other data agencies.

The sample data used for this analysis is the EEX{iRDE day-ahead spot rate. It
has established itself as a benchmark contradfdoopean electricity. We considered
time series data from Januaryy 4015 until January®12018 (Fig. 1). Each individual
day has got 24 hourly price observations. The datierlying this analysis is com-
plete
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Fig. 1. Time Series for EPEX Spot

Since the storage of electrical power is not pdesithout significant efficiency
losses, the price shows daily, weekly, and yeagsenality patterns. The seasonality
of the time series certainly has its origin in #iectricity demand over a day and



night rhythm (Fig. 2). Due to the daily, weekly ayehrly seasonality patterns binary
variables (“dummies”) for these categories wereothticed. To capture the seasonali-
ty, our models contain 23 hour-dummies for the ydaéasonality, 6 weekday-
dummies for the weekly seasonality and 11 month+digs for the yearly seasonali-
ty.

Average electricty prices per hour for selected months
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Fig. 2. Average electricity prices per hour for seleateshth

Beneath seasonal and calendar day effects, thetetiéwind power and solar en-
ergy increase the volatility of the time series ethis particularly challenging in the
prediction of the spot prices (Bierbrauer, Mennchay, & Triick, 2007). More and
more often, even negative electricity prices areudeented at the EEX, which is
mainly observable in times of weak demand combiwid sunlight or strong wind.
Since the present study focusses on seasonaligrpst other explanatory variables
(e.g. wind or temperature) were not included ihi models.

In this study, our models are trained on a trairdaga set of two years prior the
predicted months. We predict the months March, J@eptember, and December
2017. The root mean squared error (RMSE) is salettieassess and compare the
different models. In most of the extent paperss thithe standard forecasting accura-
cy measure (Weron, 2014).

3.2 ARIMAX-Model with Seasonality

The ARIMAX-model used in this study is an extensioihthe classical ARIMA-
model, introduced by Box & Jenkins (1971). To imtduseasonality into the model,
the binary variables for hour, weekday, and momthapplied in the X-term of the
model, which means, that these variables are sopgpleed as additional regressor in
the AR-Term. We used the Hyndman-Khandakar algorith find the best notation
for the ARIMAX model (Hyndman & Khandakar, 2008)nd algorithm is using the
KPSS tests to determine the number of differendg$of the training dataset first. In
a second step, the values of (p) and (q) are chHosehe training time series by min-
imizing the Akaike Information Criterion (AIC) owf every probable combination of
these two parameters. As a result of this procecameARIMAX(3,1,3) model with
40 dummy variables is used for the analysis.



3.3 ANN-Models

As described above, usually ANN are designed dg fwinnectionist networks. We
suggest a slightly different approach to discoméorimation about correlation of ex-
ogenous variables. Therefore, a four step appraaéhtroduced: (i) Single Layer
Perceptron (SLP), (ii) Multilayer Perceptron (MLRith hidden layer and particular
mapping (non-fully connectionist network), (iii) Milayer Perceptron (MLP) with
hidden layer without particular mapping (fully camionist network), and (iv) Long
Short-Term Memory (LSTM) with hidden layer, withopérticular mapping and di-
rect feedback. A synopsis of the used architectisrifisistrated in Fig. 3.

ANN-Model (i) — Single Layer Perceptron ANN-Model (ii) — Multi Layer Perceptron (MLP,
(SLP) non-fully connectionis)
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ANN-Model (iii) - Multi Layer Perceptron ANN-Model (iv) — Long Short-Term Memory
(MLP, fully connectionist) (LSTM™)

Fig. 3. Synopsis of used ANN-architectures

The input layer is composed of units for hours, kdegs, and months as well as of
units for lags. The lag units are lag 1, lag 2 &gl 3 hours to be in line with the
ARIMAX-model later. The hidden layers in model (i (iv) consist of four units.
The first three units in the hidden layer in (ideaaggregated units. The first unit
stands for an aggregated hourly information and gstinformation only from the
corresponding hourly input units. The second hiddeit is an aggregated weekday
hidden unit and gets its information from all weaikdnput units. The third hidden



unit represents an aggregated month hidden unigatwdits information only from all
month input units. The fourth hidden unit can bersas an all-unit which gets its
information from all input units including the lagg variables. The hidden layer in
(iii) differs from (ii). Each unit in the hiddenyar gets its information from all units
of the input layer. There is not such a particatapping like in (ii). The LSTM mod-
el in (iv) is equally designed as the MLP modefii), despite the direct feedback for
each hidden unit.

The ARIMAX model, which is used as a benchmark nhadehis point, is able to
recognize endogenous autocorrelation of the timeseising the lag variables. The
binary-coded seasonal variables control the seéigoaa additive constants for cer-
tain hours, certain days of the week, and certainths via the ARX-term. Relation-
ships between these seasonal components cannetdgmnized by this type of model.

ANN-model (i) is essentially equivalent to OLS reggsion but additionally, it is
able to adopt to non-linearities. It is therefommparable to the ARX term of the
ARIMAX model. If ANN model (i) should yield betteresults than the ARIMAX
model, this is due to the ability to map nonlinesglationships as well.

The ANN model (ii) allows the explicit modeling daily, weekly and annual sea-
sonality through its aggregated units, but prevehés consideration of exogenous
correlative effects among these seasonalitiediignréspect, it serves as a benchmark
for model (iii), which explicitly allows the consdation of exogenous correlative
effects. If ANN-model (iii) now delivers better ndts than ANN-model (ii) we can
assume that one reason must be unconsidered exsgeanelation, but its’ nature
cannot be determined.

Expected better results of ANN-model (iv) would egeethe conclusion that the
time series must have autocorrelative effects betveeasonal binary variables, too.

4 Results

The model forecasting accuracies in terms of tie¢ mean squared error (RMSE) for
the five models as well as for all tested casesbeafound in Table 1. In the light of a
monthly forecast horizon, the forecasting accuaaie in line with the expectation.
In the extent literature, winter season is knowrbéomore volatile and the price is
more influenced by exogenous correlation effect, wind power. Accordingly, the
comparatively poorer forecasting result in Decenibealso in line with expectations
from literature. It is striking, that the ARIMAX Ipehmark outperforms the SLP as
well as both MLP in three out of four tested pesio@nly in the December period all
ANN models show better results than the ARIMAX mibd@verall, however, the
LSTM network provides the best results comparealltother models.



Table 1. Model Forecasting Accuracy Results

RMSE

M Ju Se De

Model Type ar n p c
Bench 7.9 8.8 8.4 28.
mark ARIMAX 40 42 29 554
ANN 10. 10. 11. 22.
0] SLP 736 879 523 715
ANN MLP (non-fully connec- 9.7 11. 11. 20.
(ii) tionist) 59 051 078 171
ANN 8.9 11. 11. 19.
(iii) MLP (fully connectionist) 14 433 643 462
ANN 6.9 8.1 9.5 19.
(iv) LST™M 47 89 51 273

The coefficients and model statistics of the ARIMAXodel are given in Table 2
in the appendix. The coefficients show well prormmah daily, weekly and yearly
seasonalities. Although the results are in lindhwikpectation, the annual seasonality
is based on only a few observations, resultingigh Istandard errors. The daily and
weekly seasonality, on the other hand, can be ibestras stable, as inference is
based on a large number of observations. It iseenithat the daily and weekly sea-
sonalities are far less exposed to structural cbsutigan the annual ones. Neverthe-
less, the drift term of the ARIMAX model shows orbyw coefficients. By visual
examination of the forecast, it can be seen tr@RIMAX model predicts repetitive
daily patterns that oscillate slightly across tlerrse of the week. Examples of this
behavior for the months of March and December @folnd in the charts in appen-
dix 2.

The daily, weekly and annual seasonality alreadglext in the ARIMAX model
coefficients are reflected in the weights of thePSas well. Accordingly, it can be
assumed, that due to the similarity to the ARX tefimthe ARIMAX, the poorer fore-
casting accuracy of the SLP is due to the nonexgstef the MA term in ANN or due
to poorer adoption to the data as a consequente afonlinear activation function in
the ANN. In the visual inspection, the model shawvkess predictable behavior, in
which daily patterns are recognizable but in artyedistorted manner. The weaker
forecasting quality is not surprising in this restpalthough not in line with expecta-
tions. Which factor determines these distortionsoisrecognizable.

The importance of individual hidden units can beedwrined in ANN model (ii) by
their weights to the output layer. It is strikingat both, the hour unit, the day unit,
and the month unit receive almost no weight andtaeefore almost irrelevant to the
model result. Only through the all-unit the eledityi price forecast is achieved. Since
the all-unit is comparable to the SLP, ANN modél does not lead to a much better
result than the SLP model. A possible explanatmmtliis behavior is that only the
interaction of the seasonal components and thedemsdde a sufficient basis for the
forecast. By visual examination of the forecastaib be seen that the model shows a
more repetitive result than the SLP, although laése unforeseeable distortions char-
acterize the forecast.



In contrast to ANN model (ii), the weights in ANNoatel (iii) do no longer show
seasonal structures. An interpretation of the iiddial weights is no longer possible.
Even if there is still a strong weighting of a debidden unit, the strongly correlative
influence of the other hidden units on the forecasiearly given. As already seen in
the other MLP models, unpredictable distortion® alkape the visual image of this
model.

Comparable to ANN model (iii), the LSTM of ANN mddév) shows strongly
correlative influence, but strictly divided in twddden units, whereof one hidden unit
shows an excitatory and another hidden unit arbitdry behavior. Two further hid-
den units show low weights, so that their influereceery limited. Due to the compa-
rable architecture with ANN model (iii) the sigmidintly higher forecasting accuracy
is due to the ability to store the output of eacit and to feed it into this unit again
(direct feedback). In other words: Not only theethitag variables fed into our model
reflect autocorrelative effects but also the valsesed inside the nets’ units to deal
with long-term dependencies. Accordingly, the LSabhieves significantly smooth-
er daily patterns, similar to the ARIMAX model. llall other models, the LSTM is
also unable to predict exogenous shocks, leadisgne distortions.

The superiority of the ARIMAX model and the LSTMtwerk in comparison to
the other ANN-architectures clearly shows that dditave consideration of seasonal
effects for electricity prices is entirely suffioie An alternative consideration of cor-
relation effects does not provide improved foréogsaccuracy. Thus, the problem of
electricity price prediction focuses on autocortiela effects, which can be better
considered in the LSTM network than in ARIMAX.

Due to the fact, that all models are fed with tame data — including lagged vari-
ables — it is surprising, that the SLP and the Mhdtlels are not able to smoothen the
forecast.

5 Conclusion

The electricity price at the electricity exchangeXeshows daily, weekly, and annual
seasonality patterns. Due to the cyclicality of tumsidered seasonal components
there are non-linear correlative relationships leetwthem. Thus, the present study
deals methodologically with non-linear correlatimsad autocorrelative time series
properties of the electricity spot price. We prapassystematic ANN-based approach
to address this problem. The usage of differenhitectures sheds light on the
strength of these relationships and their influemcelectricity price prediction.

A single layer perceptron shows lower forecastingusacy than a standard
ARIMAX model with binary coded seasonalities usedaabenchmark. Possible rea-
sons for the poorer predictive quality can be djgti The non-linear activation func-
tion of the SLP and, above all, the missing MA tewhich smooths the results in the
ARIMAX model.

A non-fully connectionist multi-layer perceptron ) with seasonally specified
aggregated units in the hidden layer is able torawg the forecasting accuracy only
slightly, as correlative relationships of the coments are taken into consideration



individually. The non-fully connectionist MLP shovwemly low correlations and a

specialization of one unit considering all inforinat Accordingly, the forecasting

accuracy cannot be better than in the single Ipgeceptron by large extent. This gap
is closed by the fully-connectionist MLP, where ialleractive relationships between
these components find their way into the forecastimodel. Last but not least, the
long short-term memory (LSTM) model provides thesiaccurate forecast, which,
in addition to the correlative relationships alngadentioned, also included autocor-
relative relationships on the endogenous side s&eeral periods into the forecast.

Appendix
Table 2. Results of the ARIMAX-Model
March June September December

value s.e. value s.e. value s.e. value s.e.
arl 16,785 0.0818 17,605 0.0824 16,935 0.0894 0.7862 1256.
ar2 -11,043 0.1066 -12,112 0.1092 -11,114 0.1202 0.1662 0.1668
ar3 0.3519 0.0380 0.3903 0.0381 0.3529 0.0425 -0.0721 .0563
mal -15,174 0.0814 -16,130 0.0824 -15,439 0.0894 -®635 0.1257
ma2 0.8308 0.0931 0.9595 0.0970 0.8666 0.1068 -0.2651 .1490
ma3 -0.3018 0.0280 -0.3372 0.0285 -0.3128 0.0306 -@2077 0.0371
Drift 0.0005 0.0044 0.0001 0.0042 0.0002 0.0042 0.0010 005@.
hour_2 -18,453 0.1422 -17,613 0.1392 -17,176 0.1398 -17,15 0.1446
hour_3 -30,859 0.2203 -29,943 0.2139 -29,378 0.2151 -28,78 0.2218
hour_4 -37,111 0.2784 -36,319 0.2701 -35,291 0.2719 -381,84 0.2807
hour_5 -32,652 0.3187 -3,191 0.310 -31,394 0.3122 -30,797 0.3232
hour_6 -14,848 0.3459 -14,952 0.3372 -15,193 0.3402 -B3,67 0.3559
hour_7 41,501 0.3649 38,950 0.3562 37,464 0.3600 39,900 381a.
hour_8 109,063 0.3791 105,241 0.3704 101,211 0.3750 183,16 0.4006
hour_9 129,781 0.3905 126,016 0.3816 121,805 0.3868 124,47 0.4156
hour_10 116,282 0.3994 115,104 0.3906 111,091 0.3960 172,70 0.4266
hour_11 97,316 0.4059 95,963 0.3972 92,259 0.4027 94,941 434Q.
hour_12 90,601 0.4097 89,239 0.4012 85,333 0.4066 88,454 4380.
hour_13 6,581 0.411 65,081 0.4026 61,004 0.4080 62,931 00.44
hour_14 50,199 0.4097 49,358 0.4012 44,923 0.4066 46,252 4380.
hour_15 42,780 0.4059 41,889 0.3972 37,259 0.4027 38,261 434Q.
hour_16 53,135 0.3994 52,199 0.3906 48,610 0.3961 50,092 4266.
hour_17 70,571 0.3905 69,398 0.3816 66,280 0.3868 69,080 4156.
hour_18 123,009 0.3792 121,728 0.3704 117,915 0.3750 121,33 0.4007
hour_19 152,748 0.3649 149,034 0.3562 145,497 0.3600 188,91 0.3811
hour_20 158,221 0.3460 152,503 0.3373 149,039 0.3402 1%1,11 0.3560
hour_21 121,306 0.3188 117,335 0.3101 114,028 0.3123 186,18 0.3233
hour_22 83,177 0.2784 80,509 0.2702 77,582 0.2719 80,662 2808.
hour_23 66,735 0.2204 63,935 0.2140 61,303 0.2152 63,509 2216.
hour_24 18,964 0.1423 17,294 0.1393 17,434 0.1400 19,562 1448.
month_2 22,998 22,506 0.0658 22,414 -0.1652 22,475 0.7607 3,862
month_3 46,908 35,353 0.9387 30,205 0.3728 30,296 19,532 ,2482



month_4 147,643 39,119 -19,747 35,096 -27,742 35,208 -P1,06 37,491
month_5 103,643 41,226 180,039 39,284 168,511 39,372 188,80 41,808
month_6 93,538 42,189 147,728 42,176 156,443 41,431 192,500 44,097
month_7 87,065 42,244 137,409 42,218 149,274 42,407 189,62845,211
month_8 53,909 41,181 95,537 41,188 118,970 42,519 160,880 45,387
month_9 61,107 39,078 92,912 39,026 100,672 39,184 161,78044,395
month_10 73,183 35,688 97,470 35,608 104,586 35,773 89,663 2,306
month_11 23,042 30,485 36,872 30,405 42,197 30,533 59,004 ,9337
month_12 47,579 23,006 52,791 22,842 55,008 22,983 57,146 ,2384
wd 1 0.9330 0.3424 12,777 0.3340 11,154 0.3353 11,521 348G
wd 2 2,440 0.436 26,445 0.4270 24,740 0.4301 25,381 50.44
wd 3 29,576 0.4654 29,748 0.4607 29,731 0.4627 29,139 4810.
wd 4 27,587 0.4625 27,150 0.4577 28,138 0.4592 25,464 4776.
wd 5 23,663 0.4211 25,284 0.4171 25,871 0.4173 22,658 4356.
wd 6 20,898 0.3233 21,893 0.3221 20,446 0.3230 17,206 3370Q.
sigma’2 1351 13.17 13.28 14.38

log likeli -47705.96 -47481.28 -47557.49 -48251.5

AIC 95507.92 95058.56 95210.98 96599.01

AlCc 95508.19 95058.83 95211.25 96599.27

BIC 95881.00 95431.63 95584.05 96972.08
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Fig. 4. Out of Sample Excerpt: Forecast vs Real Time Sendglarch (I) and December (r).
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