
Pattern-Based Ontology Design and Instantiation with
Reasonable Ontology Templates

Martin G. Skjæveland1, Henrik Forssell1, Johan W. Klüwer2, Daniel Lupp1, Evgenij
Thorstensen1, and Arild Waaler1

1 Department of Informatics, University of Oslo
{martige,jonf,danielup,evgenit,arild}@ifi.uio.no

2 DNV GL, Norway
johan.wilhelm.kluewer@dnvgl.com

Abstract. Reasonable Ontology Templates, OTTRs for short, are OWL ontology
macros capable of representing ontology design patterns (ODPs) and closely
integrating their use into ontology engineering. An OTTR is itself an OWL ontology
or RDF graph, annotated with a special purpose OWL vocabulary. This allows
OTTRs to be edited, debugged, published, identified, instantiated, combined, used
as queries and bulk transformations, and maintained—all leveraging existing W3C
standards, best practices and tools. We show how such templates can drive a
technical framework and tools for a practical, efficient and transparent use of ODPs
in ontology design and instantiation. The framework allows for a clear separation
of the design of an ontology, typically managed by ontology experts, and its bulk
content, provided by domain experts. We illustrate the approach by reconstructing
the published Chess Game ODP and producing linked chess data.

1 Introduction

Ontology-based methods have matured to where they offer knowledge workers practical
solutions for data management. In particular, tools that support W3C recommendations,
such as reasoning tools for OWL ontologies, are sufficiently stable and efficient to
allow wide-scale industrial use. However, from the perspective of product vendors
and consultancy companies in the IT industry, ontologies are still viewed as a fringe
technology. Hence ontology-based solutions are rarely proposed to enterprise customers,
and support from the software industry is quite limited. One factor that impedes uptake is
the high cost of establishing and maintaining a high-quality ontology. In part this is due
to the scarcity of ontology experts, with availability in most cases below critical mass.

Ontology design patterns (ODPs) [9] serve the purpose of alleviating some of the
difficulties involved with creating ontologies by offering reusable, best-practice building
blocks and structures for ontology construction, commonly implemented and published as
small OWL ontologies. Methods for combining and instantiating ODPs are described [20,8],
and a methodology for building ontologies using patterns exists [1]. However, while ODPs
are often presented as “practical building blocks” [20], we argue that ODPs in their current
form, i.e., as found on http://ontologydesignpatterns.org/ featuring a graphical
representation, a description and a “reusable OWL building block”, are not practical
enough, especially for the development of large ontologies—as using and adapting ODPs
to a particular modelling task currently often require considerable manual work. What is

http://ontologydesignpatterns.org/

needed are better tool supported methods for applying ODPs in ontology engineering.
Efficient tool support is imperative to industrial scale deployment of ontology-based
methods.

The work reported on in this paper has the potential to remedy the situation; Rea-
sonable Ontology Templates (OTTRs) are simple, but powerful, templates or macros for
ontologies, cf. [21], represented in OWL using a dedicated OWL vocabulary. An OTTR can
be viewed as a parameterised ontology which can be nested, i.e., defined using other
OTTRs, and instantiated by providing arguments to fit the parameters of the template.
By recursively expanding an OTTR by replacing any containing OTTR with the pattern
it represents, we obtain a regular OWL ontology. Using this feature, we can reason
both on the OTTR specification and its expansion, and additionally leverage existing
W3C languages and tools for different ontology engineering tasks—all driven by OTTRs.
Specifically, the implicit mapping between an OTTR’s parameters and its pattern may
be exploited to generate various format descriptions and transformation specifications,
e.g., queries for extracting pattern instances and transformations between tabular input
formats and OTTR pattern instances that may be processed by readily available desktop
tools. The only additional tool support that is needed to make use of OTTRs, are tools that
can perform the relatively simple operation of template expansion and instantiation.

In addition to supporting the work of the ontology engineer, we believe OTTRs
can provide a framework whereby a few ontology experts can serve a large number
of domain experts and put these in position to actively contribute to the development
and maintenance of ontologies. This is achieved by clearly separating the design of
an ontology and its bulk content: The ontology expert designs and combines patterns
represented as OTTRs to provide user-facing patterns on a level of abstraction suitable
for the domain experts. From the user-facing OTTRs a simple input format is generated
together with a transformation specification of the input format to ontology format. The
task of the domain expert is then “only” to provide instance arguments to the input
format.

Sec. 2 defines OTTR templates and introduces the OTTR OWL vocabulary for expressing
them for use on the semantic web. Furthermore, we explain how OTTRs may be used for
driving a technical framework for different ontology engineering tasks, and also give a
prototype implementation that can serve the various specifications for such a framework.
Sec. 3 discusses the particular application of OTTRs for using ODPs for ontology design
and instantiation, illustrated on the Chess Game ODP, and for linked data publication. In
Sec. 4 we discuss the benefits and shortcomings for OTTRs and compare with related
work. We conclude with Sec. 5.

2 Reasonable Ontology Templates

In the following we introduce the core concepts template, template instance and expansion
through examples and by alluding to basic description logic concepts; see [6] for a more
formal and thorough description.

A template T is a knowledge base OT and a list of parameters param(T) =
(p1, . . . , pn) of distinguished concept, role, or individual names from OT . We write a
template as

T (p1, . . . , pn) :: OT .

and refer to the left side as the head and the right side as the body. For a list of parameters
(q1, . . . , qn) we call T (q1, . . . , qn) a template instance. Intuitively, a template instance is
shorthand for representing a specific occurrence or instance of a pattern. More precisely,
the expansion of T (q1, . . . , qn) is the ontology OT (q1, . . . , qn) obtained by replacing
each parameter occurrence of pi in OT with the argument qi, for all 1 ≤ i ≤ n.

Example 1. PartOf(part,whole) :: {whole v ∃hasPart.part} is the template PartOf
which has a single axiom knowledge base {whole v ∃hasPart.part} where hasPart is a
role name and part and whole are parameters. PartOf(SteeringWheel,Car) is an instance
of PartOf representing the ontology {Car v ∃hasPart.SteeringWheel}. Note that also
PartOf(part,whole) is an instance of PartOf, where the parameter names are substituted
for themselves; its ontology is {whole v ∃hasPart.part}.

In addition to ontology axioms, a template may also contain template instances in its
body. The notion of template instance expansion is then extended to a recursive operation
where any template instances in the template body are expanded tail-recursively. Cyclic
template definitions are not allowed.

Example 2. Let QualityValue be the template

QualityValue(x, hasQuality, uom, val) ::

{x v ∃hasQuality.(∀hasDatum.(∃hasUOM.{uom} u ∃hasValue.{val}))}

which intuitively expresses that x has a quality with a given value val with a given unit of
measurement uom. Using this template and the PartOf template from Ex. 1, and fixing
some of the parameters, the template PartLength is defined as

PartLength(whole, part, length) :: {PartOf(part,whole),
QualityValue(part, hasLength,meter, length)}

which expresses that the whole has a part with a given length measured in meters. An
example instance of the template is PartLength(2CV,SoftTop, 1.40) stating that (the
car) 2CV has a softtop (roof) of length 1.40 meters. The expansion of the instance
PartLength(whole, part, length) is

{2CV v ∃hasPart.SoftTop,
SoftTop v ∃hasLength.(∀hasDatum.(∃hasUOM.{meter} u ∃hasValue.{1.40}))}.

2.1 The OTTR OWL vocabulary

We adapt ontology templates to the semantic web by serialising them using RDF with
the OTTR3 OWL vocabulary defined specifically for this task. A template is associated
with an RDF graph [3] (document) available at the IRI of the template.4 The RDF graph
contains both the head, identifying the template and its parameters, and the body of

3 We use OTTR to designate the vocabulary. All other unprefixed, inline typewriter font words refer
to OTTR vocabulary elements.

4 Similarly as for OWL ontologies [17, section 3.2 Ontology Documents]

Template Parameter

[Resource]

TemplateInstance Argument

[Resource]

xsd:int

hasParameter 0..*
index 1

vari
able 1

withVariables *

hasArgument 0..*
inde

x 1

value 1
withValues *

templateRef

1

Fig. 1: High-level overview of the OTTR OWL vocabulary.

the template. The template body may contain template instances and other ontology
axioms, which are expressed using regular RDF/OWL serialisation [19]. (Note that the
RDF graph need not represent an OWL ontology. In fact, templates may be used in a more
generic way as “RDF macros”. However, we prefer to call them OWL macros in order
to clearly indicate their applicability to ontology engineering, reasoning and ontology
design patterns.) Parameters and arguments are represented as named variables and
named values, respectively, where the name is represented in RDF as an IRI, and variables
and values may be any RDF resource, i.e., any IRI or literal [3].

The most prominent elements of the OTTR vocabulary are the following, see also Fig. 1
for a graphical overview. A Template has zero or more Parameters. Each Parameter is
consecutively numbered by an integer valued index, starting at 1, and has a variable

which represents the parameter in the template body. The existence of a Template in an
RDF graph declares the graph as a template, and an RDF graph specifying a template must
contain only one Template object. A TemplateInstance must refer to a single Template

via a templateReference, and have Arguments to match the Parameters of the Template.
An Argument must have a value and refer a Parameter by using the same index value as
the Parameter’s. The range of the variable and value properties is any RDF resource.
These conditions and more are represented in OWL using the OTTR vocabulary available
from http://ns.ottr.xyz/.

We differentiate between the head and the body of a template represented in RDF
using the concept of graph neighbourhood, which informally are all the outgoing triples
from the template and parameter individuals.

Definition 1. Let G be an RDF graph (represented as a set of triples), and r an IRI.
We define the out-neighbourhood of r in G, denoted out(r,G) as the set of triples
〈r, x, y〉 ∈ G. Let G be the RDF graph associated with a template with IRI t and
parameter IRIs p1, . . . , pn. We define the head of the template in G as head(t) =⋃

x∈{t,p1,...,pn} out(x,G), and the body of t in G as body(t) = G \ head(t).

A template instance is expanded by copying the template RDF graph5 to which the instance
refers and for each template parameter substituting all occurrences of the parameter
variable in the RDF graph with its matching argument value. The expansion is applied
recursively.

5 Also useful is the expansion procedure that only copies the template body.

http://ns.ottr.xyz/

Example 3. The PartOf template from Ex. 1 is represented is the OTTR vocabulary as
follows:6

@prefix ottr: <http://ns.ottr.xyz/templates#> .

@prefix partOf: <http://www.ontologydesignpatterns.org/cp/owl/partof.owl#> .

@prefix : <http://draft.ottr.xyz/i17/partof#> .

head:

<http://draft.ottr.xyz/i17/partof> a owl:Ontology , ottr:Template ;

owl:imports <http://www.ontologydesignpatterns.org/cp/owl/partof.owl> ;

ottr:hasParameter [ottr:index 1; ottr:variable :Whole] ,

[ottr:index 2; ottr:variable :Part] .

body:

:Part a owl:Class .

:Whole a owl:Class ;

rdfs:subClassOf [a owl:Restriction ;

owl:onProperty partOf:hasPart ; owl:someValuesFrom :Part] .

Observe that the RDF graph is a regular OWL ontology using the OTTR vocabulary to
identify the template and its parameters: The template contains a head and body as
indicated by the comments, and specifies two parameters with respectively the variables
:Whole and :Part. These variables are used in the template body as regular RDF resources.
An instance of this template, reflecting the instance in Ex. 1, is represented as follows.

[] ottr:templateRef <http://draft.ottr.xyz/i17/partof> ;

ottr:hasArgument [ottr:index 1 ; ottr:value ex:Car] ,

[ottr:index 2 ; ottr:value ex:SteeringWheel] .

The instance refers to the template with templateRef, and each argument refers to a
parameter of the template using indices. The expansion of the instance is created by
replacing, in a copy of the template RDF graph, all occurrences of :Whole with ex:Car,
and :Part with ex:SteeringWheel.

In order to support a more terse specification of templates and instances, the OTTR

vocabulary allows for the use of RDF lists [3] to specify template parameters and instance
arguments. Since the RDF list structure is reserved for the serialisation of OWL and
therefore not permissible for use in valid OWL2 DL ontologies, the OTTR vocabulary also
defines a linked list structure [4], called List. Lists may be serialised using either RDF
lists or OTTR’s Lists. The list feature may be used for directly giving the parameter
variables of a template, using withVariables; and the argument values of an instance,
using withValues.

Example 4. Using the RDF list format, the template PartLength given in Ex. 2 can be
compactly represented:

<http://draft.ottr.xyz/i17/partLength> a owl:Ontology , ottr:Template ;

ottr:withVariables (:Whole :Part 99)

[] ottr:templateRef <http://draft.ottr.xyz/i17/partof> ;

ottr:withValues (:Whole :Part) .

[] ottr:templateRef <http://draft.ottr.xyz/i17/qualityvalue> ;

ottr:withValues (:Part ex:hasLength ex:meter 99).

6 Note that all example templates are published at their IRI address.

Lists may also be used as argument values, supporting patterns which naturally permit
variable sized input. Expanding an instance of a template allowing list input, will for
each list valued argument replace all occurrences of lists in the template with the same
contents as the matching parameter value list.

Example 5. The EquivObjectUnionOf template takes two arguments, a class U and a
list of classes, and defines the union of the list of classes as equivalent to U .

<http://candidate.ottr.xyz/owl/axiom/EquivObjectUnionOf> a ottr:Template ;

ottr:withVariables (:U (:A :B)).

:U rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Class ; owl:unionOf (:A :B)] .

Notice that we here use the list format both to specify the template’s two variables,
and the second parameter’s list variable. An example instance of this template is the
following.

[] ottr:templateRef <http://candidate.ottr.xyz/owl/axiom/EquivObjectUnionOf> ;

ottr:withValues (ex:Fruit (ex:Apple ex:Orange ex:Melon)).

When expanding the instance, all occurrences of lists with the contents :A :B in the
template will be replaced with a list (copy) containing the elements ex:Apple ex:Orange

ex:Melon.

In addition to providing a vocabulary for expressing templates, the OTTR ontology
includes axioms that allows regular ontology reasoners to check the consistency of
OTTR templates, such as domain and range axioms, and functional and key constraints
of properties. Also, each parameter variable may be assigned a type using different
“variable” properties, such as classVariable, which informally are subproperties of the
variable property.7 The available types reflect the generic classes from the RDF(S) [2]
and OWL [19] vocabularies and are arranged in a taxonomy accordingly, where many
types are made incompatible using disjoint property ranges; consult the OTTR vocabulary
for details. This simple type checking feature is very useful when constructing templates
which typically pass on parameters as arguments to other templates, allowing a parameter
to be assigned multiple, and possibly incompatible, types. An ontology reasoner will
reveal such an inconsistency by reasoning on the OTTR vocabulary of the expanded
template. An implementation of the template mechanism should also exploit the type
information to check whether instance arguments respect the type of their matching
parameter.

Example 6. Assume the PartOf template from Ex. 3 types both parameter variables as
classes, using the classVariable property, here showing only the head:

<http://draft.ottr.xyz/i17/partof> a owl:Ontology , ottr:Template ;

ottr:hasParameter [ottr:index 1; ottr:classVariable :Whole] ,

[ottr:index 2; ottr:classVariable :Part] .

7 We say “informal” since, in order to support reasoning, the specialisations of the OWL annotation
property variable are either object properties or datatype properties, and these OWL property
types are mutually disjoint.

1. OTTR template
OWL

2. Input data
format

XSD + SAWSDL
4. Input data

format
ShEX

7. Ontology
prototype

OWL

3. lifting
XSLT

5. expansion
SPARQL

6. lowering
SPARQL/+XSLT

8. Data
XLS

9. Data
XML

10. Template
instance

OWL

11. Ontology
OWL

Fig. 2: OTTR-driven ontology construction. The nodes in the diagram each represent a
document used in the process. All data format and transformation W3C specifications
(2–7) are generated from a template specification, as indicated by the dotted edges. The
dashed edges indicate an “instance of” relation, and the solid edges show the flow of
the ontology bulk data, highlighting the main routes. The XSD document (2) specifies a
“tabular” template instance data input format for XML data (9) that is also supported by
some spreadsheet applications (8). The XML data is lifted [5] using XSLT transformations
(3) to either the RDF/OWL template instance format (10) which may be validated by a
ShEx shape expression (4), or directly to a regular OWL ontology (11). Instances (10) may
also be expanded with generated SPARQL queries (5), and be extracted and lowered [5]
with SPARQL and XSLT (6) to OWL/RDF and XML format, respectively. The lifting (3) and
lowering (6) scripts are identified using SAWSDL in (2).

Now assume the variable of the first parameter of the PartLength template in Ex. 4 is
(wrongly) typed as an annotation property using annotationPropertyVariable. Then
PartLength is inconsistent, since its :Whole variable is classified as the disjoint classes
Class and AnnotationProperty.

The OTTR ontology is defined by two ontology documents: templates-lite and
templates-core. The former declares only the vocabulary with domain and range axioms
and is useful when the task is primarily to instantiate templates, hence reasoning over
template specifications is usually not required. The latter ontology imports the first and
enables the reasoning capabilities presented above.

2.2 Ontology Construction Framework

A core feature of OTTR templates is the ability to relate a simple tabular input format, the
template head, to a rich ontological structure in the template body, possibly specified via
compositions of other templates. The fact that a template specifies both a tabular input
format, an output ontology, and a mapping between the two formats may be exploited by
leveraging the capabilities of existing W3C standards and implementations: In addition to
specifying an ontology representing a prototypical ontology of the template (the expanded
template) in OWL, a template can specify tabular and graph input format specifications
using, e.g., XSD and ShEx, and transformations to and from (liftings and lowerings [5])
the ontology output format using, e.g., XSLT and SPARQL. This means that data can be

captured in bulk using XML- or XSD-aware client tools, and efficiently processed using
XSLT and/or SPARQL processors, all of which are driven by specifications generated from
a template. The process is illustrated and explained in Fig. 2.

Using this framework the ontology engineering task can be split in two more or
less distinct responsibilities: one managed by the ontology engineer and the other by
the domain matter expert. The main task of the ontology engineer is to design and
maintain a library of interconnected templates capable of capturing the knowledge of the
domain matter expert at the correct abstraction level and using a vocabulary and format
recognisable by the expert. The specificity needed for the ontology engineering task
at hand is achieved by iteratively combining and composing basic and more complex
templates to result in user-facing templates. From such templates, tabular input format
specification and transformations may be generated from the template specification,
presenting a simple tabular format for the user to fill in which can be transformed directly
to OWL ontology format using readily available desktop tools.

This process ensures uniformity and completeness of the captured domain knowledge:
completeness, as the template specifies all the attributes that are necessary and variable;
and uniformity as the template instances are guaranteed to expand to the desired patterns.
The correctness of templates may be secured by consistency checking the prototype
ontology resulting from expanding the template, as well as for each of the comprising
templates in isolation. Additional syntactic constraints on the input data may be specified
for the input formats which also can be used to check completeness of the input data,
provided the format specification works under closed-world semantics.

2.3 Implementation

A prototype implementation that interprets the OTTR vocabulary and provides parts of the
technical framework presented in Sec. 2.2 is available as an online web application and
as a feature-limited standalone Java application from http://www.ottr.xyz.

Provided an OTTR template, specified with the IRI query parameter ?tpl, the web
implementation serves a variety of specifications and instances over HTTP: the template
specification, the expansion, lifting and lowering queries as different types of SPARQL
queries, and a simple XSD format and XML sample. Some services allow template
instances to be created by providing argument values as IRI query parameters. With these
services, the template and its different format specifications may be directly identified
and used by other specifications, e.g., in OWL ontology owl:import statements.

Example 7. We encourage the reader to visit http://osl.ottr.xyz/info/?tpl=http:
//draft.ottr.xyz/i17/partlength for a display of the PartLength template of Ex. 4.
The service lists the template’s parameters with type information and containing template
instances, together with links to all the other available services of the web application.

3 Ontology Design Patterns vs. Ontology Templates

As argued in the introduction, we believe that ODPs in their current form are not practical
ontology building blocks, in the sense of being actively and directly applicable in the

http://www.ottr.xyz
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/i17/partlength
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/i17/partlength

engineering of OWL ontologies. Rather they are conceptual building blocks that (only8)
represent best practices of common modelling challenges—which of course is extremely
useful. The practical ways of using an ODP in OWL ontology development are however
limited: the natural possibilities are either to import its OWL implementation, which
includes the whole pattern as-is, or by cloning (parts of) it. The included pattern may be
further engineered with different techniques such as specialisation and generalisation [20].
The XDP [7] tool offers the possibility to instantiate ODPs using so called template-based
and specialisation-based techniques [8]. However, in all these cases the process is largely
manual and does not scale.

Reasonable Ontology Templates offer a technical framework that allows patterns,
as represented by ODPs, to be applied to OWL ontology engineering in an efficient and
transparent manner, avoiding unnecessary manual intervention. Comparing ODPs and
OTTRs to software engineering, we believe that ODPs play the role of software engineering
patterns, “representing general reusable solution to a commonly occurring problem within
a given context[, but] not a finished design that can be transformed directly into source or
machine code” [22]. In contrast, we think of a set of OTTRs as representing an application
programming interface (API) for OWL ontology engineering, like the OpenGL API9 does
for graphics rendering, providing precise and transparent abstractions over the underlying
OWL syntax that are directly applicable in the construction of OWL ontologies.

The idea of an API for OWL patterns has been implemented by representing the
structural specification of OWL 2 to RDF graphs [19] as a set of OTTR templates. The
purpose is to demonstrate that OWL ontologies may be represented completely by a set of
OTTR instances, which, in its terse list input format, are arguably more readable than the
RDF serialisation of OWL axioms. The EquivObjectUnionOf of Ex. 5 is an example of an
OTTR template of an OWL axiom. Other examples are found in Fig. 3a. These templates,
including other templates of different maturity, are published in an online library of
OTTRs available at http://library.ottr.xyz and backed by open git repositories at
http://www.gitlab.com/ottr.

3.1 Building Ontologies and Linked Datasets with OTTRs

To illustrate how OTTRs can be applied for ontology modelling and publication of linked
data, we now demonstrate how OTTRs can be used to construct the Chess Game ODP [15]
and to produce linked data representations of chess games, cf. [14].

The Chess Game ODP [15] is presented as a worked example for modelling with
ODPs, using them to construct a chess game ontology intended to be used for describing
chess games, i.e., who the players were, the end result, the list of moves, the chess
opening, and where the game took place. To this end, the authors use adapted versions
of the Agent Role and Event ODP, where the Event ODP extends the Agent Role ODP.
They also make use of implicit OWL axiom macros for expressing scoped domains and
ranges, and regular axioms like cardinality restrictions. Although the exposition and the
graphical depictions of the chess game pattern are clear, its axiomatisation, and hence its

8 In the literature ODPs are often represented as both best practice modelling patterns and practical
building blocks.

9 URL: https://www.opengl.org/

http://library.ottr.xyz
http://www.gitlab.com/ottr
https://www.opengl.org/

Tv,∃(A,R,B) :: { A v ∃R.B } Tw,∃(A,R,B) :: { ∃R.B v A }
Tv,∀(A,R,B) :: { A v ∀R.B } Tw,∀(A,R,B) :: { ∀R.B v A }

Tv,=(A, i,R,B) :: { A v=i R.B } Tw,=(A, i,R,B) :: { =i R.B v A }

DisjointClasses(〈C1,C2, . . .〉) :: { DisjointClasses(C1,C2, . . .) }

(a) Basic OWL axioms represented as OTTR templates.

ScopedDomainRange(R,A,B) :: { Tw,∃(A,R,B), Tv,∀(A,R,B) }

AgentRole5(AgentRole,RoleProvider, providesRole,Agent, performedBy) :: {
Range(providesRole,AgentRole),

ScopedDomainRange(performedBy,AgentRole,Agent),

Tv,∃(AgentRole, providesRole
−,RoleProvider)

Tv,∃(AgentRole, performedBy,Agent),

DisjointClasses(〈AgentRole,Agent〉)}

Event10(Event, subEventOf,AgentRole, providesRole,Agent, performedBy,

Place, atPlace,TemporalExtent, atTime) :: {
AgentRole5(AgentRole,Event, providesRole,Agent, performedBy)

Tv,∃(Event, atPlace,Place),

Tv,∃(Event, atTime,TempExt),

ScopedDomainRange(atPlace,Event,Place),

ScopedDomainRange(atTime,Event,Time),

ScopedDomainRange(subEventOf,Event,Event),

DisjointClasses(〈Event,Place,TempExt,AgentRole,Agent〉)}

(b) Template-based OTTR templates: ScopedDomainRange, AgentRole and Event.

AgentRole2(xAgentRole, xRoleProvider) :: {
xAgentRole v AgentRole,

Tv,∃(xRoleProvider, providesAgentRole, xAgentRole),

Tv,=(xAgentRole, 1, providesAgentRole−, xRoleProvider)}

Event2(xEvent, xAgentRole) :: {
xEvent v Event,

AgentRole2(xAgentRole, xEvent)}

(c) Specialisation-based OTTR templates for AgentRole and Event patterns.

[] ottr:templateRef <http://draft.ottr.xyz/chess/iChessGameReport> ;

ottr:withValues ("WCh 2013" "Chennai IND" "2013.11.09" "Carlsen, Magnus"

"Anand, Viswanathan" "1/2-1/2" "2870" "2775" "A07" ("Nf3" "d5" [...]))) .

(d) OTTR template instance of the ChessGameReport template, including only two chess moves.

Fig. 3: OTTR templates used for the Chess Game pattern and for linked data publication.

OWL implementation,10 reveals shortcomings of the presentation. These problems stem
mainly from the fact that no abstraction mechanism that can encapsulate patterns and
present clear interfaces for use is available: The agent role and event patterns are not
clearly identified and encapsulated, and it is not clear which axioms belong to which
patterns. (This is only made clear by the document formatting.) These patterns are also
specialised, but it is difficult to identify exactly how, e.g., for which parts of the pattern
are specialisations introduced. The scoped domain and range axioms are often used, and
usually in pairs, but this is not easy to spot.

A sample of the OTTR templates used to reconstruct the Chess Game pattern is found
in Fig. 3. The ScopedDomainRange template in Fig. 3b illustrates the how to basic OWL
axiom templates (found in Fig. 3a) can be combined. The Event10 template succinctly
presents that its definition relies on the AgentRole5 template and other templates, some
which represent regular OWL axioms like existential restrictions (Tv,∃(·, ·, ·)). Note that
all of these OTTR templates represent template-based instantiatations [8], which can be
seen by the fact that all vocabulary elements are parameterised; the user can (and must)
introduce the vocabulary, the only fixed vocabulary is the logical vocabulary. Fig. 3c
contains two specialisation-based [8] OTTR templates, where (some) fixed non-logical
vocabulary elements are specialised by template arguments. In our modelling of the
chess game pattern we use template-based OTTRs to introduce the basic vocabulary of
the pattern. This vocabulary is then used in specialisation-based OTTRs to provide the
user with patterns which do not necessarily represent any “self-contained semantic unit”,
but merely represents a combination of often used axioms packaged in a template to
avoid tedious repetitions. From this observation it follows that template-based OTTRs
arguably better fit the idea of a publicly available API, while specialisation-based OTTR
templates are naturally closer tied to specific ontology models. The complete Chess
Game OTTR can be found at http://osl.ottr.xyz/info/?tpl=http://draft.ottr.
xyz/chess/ChessGame.ttl.

Krisnadhi et al. [14] demonstrate how linked data representations can be supported by
ODPs with the central operations of pattern flattening and view expansion (in Sec. 2.2 we
call these operations lowering and lifting) implemented using SPARQL UPDATE queries to
transform compact linked data formats (views) to pattern representations, and vice versa.
They also show how graph pattern conformance can be checked using SHACL [13].

This resembles the framework described in Sec. 2.2. However, a benefit of our
approach is that, while all queries and format descriptions in the referenced work appears
to be hand-crafted, similar lifting and lowering format descriptions and transforma-
tion can be automatically generated given an appropriate template specification. To
demonstrate the abilities of OTTR templates for linked data publication, we have built
the user-facing iChessGameReport template with which individual chess games may
be expressed. (This template, and its nested templates, are equal in form to the Chess
Game pattern templates, but are designed to take individuals and data values as input,
rather then classes and properties.) The template may be found at http://osl.ottr.xyz/
info/?tpl=http://draft.ottr.xyz/chess/iChessGameReport. From this page differ-
ent lifting and lowering queries and formats are available, as described in Sec. 2.3.
Using the template instance format we can now compactly represent chess game in-
stances which may be expanded to a full OWL pattern. Fig. 3d contains an instance of
10 See http://ontologydesignpatterns.org/wiki/Submissions:ChessGame

http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/chess/ChessGame.ttl
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/chess/ChessGame.ttl
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/chess/iChessGameReport
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/chess/iChessGameReport
http://ontologydesignpatterns.org/wiki/Submissions:ChessGame

the iChessGameReport template, available at http://osl.ottr.xyz/info/?tpl=http:
//draft.ottr.xyz/chess/iChessGameReportExample. Note that template instances can
be regarded as “standardised” pattern views, representing patterns in a compact format
using a specific vocabulary. We do recognise that this format may not be fit for linked
data publication and that user-defined template views are necessary; see also the future
work section in Sec. 5.

Finally, we note that OTTR templates can also be used to identify pattern instantia-
tions or template instances. For instance, using the generated SPARQL query from the
ScopedDomainRange we can successfully extract all the macro applications from the
published version of the Chess Game ODP [14].

4 Discussion and Related Work
We now highlight the main benefits and shortcomings that are inherent to the template
mechanism and the representation language of OTTRs, and compare them with related
work. As for benefits:

– OTTRs provide a simple, but powerful abstraction mechanism based on the well-
known concept of nested non-cyclic macros and syntactic substitutions. This allows
complex ontology expressions to be compactly represented by a naturally com-
positional structure which we believe supports more efficient construction and
maintenance of ontologies following “don’t repeat yourself” (DRY) principles.

– OTTR templates lets patterns to be explicitly identified as such and clearly encapsu-
lated. This improves provenience and interoperability between ontologies using the
same or related templates, as patterns need not be discovered.

– The implicit mapping between the template head and the body provides the basics for
an extensible framework for handling semantic data that can represent and transform
data on and between different formats and abstractions.

– Templates are formally defined as parameterised ontologies. This allows the se-
mantics of the pattern to be verified using regular ontology reasoners. Furthermore,
it makes the organisation of templates and the study of relations between them
essentially an extension of the same well-studied issues regarding ontologies, and
familiar terminology and theoretical machinery can be reused.

– OTTRs can be compactly represented in RDF as OWL ontologies using the OTTR

vocabulary. This allows us to leverage the stack of existing W3C languages and tools,
such as ontology editors and reasoners.

– As the expansion mechanism is based on syntactic substitutions, templates can
take any RDF resource as input, i.e., classes, properties, individuals and data values,
including also resources from the “logical” OWL and RDF(S) vocabularies.

As for shortcomings, some of the benefits have a negative dual side:

– The simple nature of our macro mechanism leaves OTTRs with limited expressivity:
for instance, they do not allow for loop structures or conditionals and they do
not return values. As an example, we cannot currently apply a template to all the
subclasses of a given class without explicitly listing all the subclasses. Current and
future work is directed at allowing for more complex and efficient expressions, and
at precisely delimiting the expressive power of OTTRs.

http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/chess/iChessGameReportExample
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/chess/iChessGameReportExample

– The compact representation of OTTR templates as RDF graphs using the notion of
graph neighbourhood, results in a somewhat implicitly defined head and body of
the template. This again requires that an RDF document can only contain a single
template. It would be convenient to be able to collect multiple templates in one
document, and to package templates which only are used by one ontology together
with that ontology.

– In the RDF representation of OTTRs regular RDF resources play the role of variables.
This means that special care must be taken when minting parameter variables, since
upon instantiating the template all occurrences of the parameter variable will be
replaced with the argument value. Elements from established vocabularies, such as
the OWL vocabulary [19], should be avoided as variables or used with extreme care.
Less obvious potential problem variable values are literals, where the same value
may unintentionally be used in different contexts, e.g., as cardinality restrictions on
properties.

A predecessor and inspiration to the current form of templates dates back to 2008 [12].
A recent paper by authors of the current paper presents a formal definition of templates
and investigates their formal properties: using templates as macros, queries, and for data
exchange; and reasoning over templates [6]. The paper at hand is the first account of the
practical aspects of OTTR templates.

The Ontology Pre-Processor Language (OPPL) [11] is similar in function, but different
in form to OTTRs. Like OTTRs, OPPL patterns are parameterised ontology expressions
which can be nested and can specify pattern instances and patterns directly in OWL
ontologies. OPPL is a more powerful language than the template mechanism allowing
OPPL patterns to return values, which supports a more elegant composition of patterns.
On the other side, as OPPL was originally designed as an ontology manipulation language
for adding and removing ontology axioms, OPPL patterns are expressed as a series of OWL
axiom insertions. This, and the fact that the OPPL pattern is represented “in verbatim” as
an OPPL script in OWL annotation properties, places the pattern out of reach for ontology
reasoners and requires the correctness of the pattern to be checked by reasoning on the
effects of applying the pattern, rather that the pattern itself. Also, it is not clear if formal
semantics for OPPL patterns are developed. The application focus of OPPL is somewhat
different from OTTRs: OPPL patterns are intended to be fully expanded once they are
used in the ontology. In contrast, we believe that OTTR template instances can appear
in ontologies as instances lifted or lowered to the abstraction level suited for the given
user. For instance, an ontology expert may prefer to examine an ontology formatted
as a set of OWL axiom OTTR templates, while the domain experts might prefer to see
only the user-facing template instances. Additionally, OPPL patterns are limited to OWL
expressions in Manchester syntax [10], while OTTRs supports RDF macros and is designed
to be applicable in a larger framework, cf. Sec. 2.2.

XDP [7], built on top of WebProtégé, provides a convenient graphical tool for selecting
and instantiating templates using a template-based or specialisation-based approach, but
does not offer additional capabilities for ODP instantiation at scale.

The M2 mapping language [18] extends the OWL Manchester syntax [10] with
ontology pattern descriptions to include direct references into spreadsheets for translating
spreadsheet data into ontologies. It has hence a more narrow focus than OTTRs, but makes
direct use of the underlying representation language in a similar manner as OTTRs.

Taking a broader approach, Tawny-OWL [16] provides an environment for build-
ing OWL ontologies using Clojure, with all the advantages of using a fully fledged
programming language.

5 Conclusion and Future Work

We have presented the simple, but novel technique of using RDF(S) and OWL for rep-
resenting Reasonable Ontologies Templates (OTTRs). OTTRs are ontology macros or
templates that provide an extensible and transparent framework for creating and using
ontology design patterns in the design and construction of ontologies. Templates are in
essence n-ary relations that relate a simple tabular input format, defined by its template
head, to a rich ontological structure in the template body, possibly via compositions of
other templates. From the template head, different tabular data input formats may be
generated. This allows ontology experts to design “user-facing” templates for the purpose
of collecting domain knowledge from expert users on tabular format. The ontological def-
inition of the template is produced by expanding the template to a regular ontology. Bulk
transformation specifications of the input data to ontology format may also be generated
from the template. Templates are formulated in OWL using a special purpose OTTR OWL
vocabulary. By virtue of being OWL ontologies, templates may be shared, reused, and
debugged using existing semantic web technologies and tools. Additionally, the OTTR

vocabulary supports simple type checking and terse formats for template specifications.
A prototype implementation for expanding and generating various specifications from
templates is available online at http://www.ottr.xyz.

Future work. The present proposal for templates has been developed in close interaction
with industrial user communities, and we intend to apply it to various existing enterprise
ontologies in the immediate future. This will serve to evaluate, verify and refine the
concept, and will help us develop an efficient and reliable set of tools and web services.
We believe that templates can be important for development and use of open, validated
modelling patterns, as is required for shared models, and for enabling ontology-based
collaboration. In order to develop templates that cover typical needs of industrial users,
we will work with standardisation bodies and make these templates available through a
public repository. This should lower the cost of translating existing data into ontology,
opening up the benefits of ontology-based methods to new users.

To support this work, tools and methods for constructing, structuring and managing
templates are necessary. To this end, we intend to further develop the prototype implemen-
tation to support more input representation and validation formats, such as spreadsheets
and RDF graph shape validations, and to develop a Protégé plugin for developing and
applying OTTR templates to ontology development.

We also intend to continue the initial efforts on the logical properties of templates as
is found in [6]. A template can dually be regarded as a macro or as a (higher-order) query;
whether one is asking for a pattern to be added to an ontology or asking for occurrences
of the pattern in the ontology is a difference of use of the template, and not of the template
itself. Furthermore, this duality makes it easy to extend the use of templates to adding a
pattern conditionally on another pattern occurring in the ontology, or to use templates as
constraints on ontologies. The latter observation can for instance be used to implement

http://www.ottr.xyz

pattern views, allowing template instances to be specified using a custom vocabulary. A
different problem is if this possible to (elegantly) represent in OWL.

References

1. E. Blomqvist, K. Hammar, and V. Presutti. Engineering Ontologies with Patterns – The
eXtreme Design Methodology, chapter 2, pages 23–50. Volume 025 of Hitzler et al. [9], 2016.

2. D. Brickley and R. Guha. RDF Schema 1.1. Technical report, W3C, 2014.
3. R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and Abstract Syntax. Technical

report, W3C, 2014.
4. N. Drummond et al. Putting OWL in Order: Patterns for Sequences in OWL. In OWLED,

2006.
5. J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema. Technical

report, W3C, 2007.
6. H. Forssell, D. P. Lupp, M. G. Skjæveland, and E. Thorstensen. Reasonable Macros for

Ontology Construction and Maintenance. In DL Workshop, 2017.
7. K. Hammar. Ontology Design Patterns in WebProtege. In Proceedings of the ISWC 2015

Posters & Demonstrations Track, 2015.
8. K. Hammar and V. Presutti. Template-Based Content ODP Instantiation. Workshop on

Ontology and Semantic Web Patterns, WOP 2016.
9. P. Hitzler et al., editors. Ontology Engineering with Ontology Design Patterns: Foundations

and Applications, volume 025. IOS Press, Amsterdam, 2016.
10. M. Horridge and P. F. Patel-Schneider. OWL 2 Web Ontology Language Manchester Syntax.

Technical report, W3C, 2012.
11. L. Iannone, A. L. Rector, and R. Stevens. Embedding Knowledge Patterns into OWL. In

ESWC, pages 218–232, 2009.
12. J. W. Klüwer, M. G. Skjæveland, and M. Valen-Sendstad. ISO 15926 templates and the

Semantic Web. W3C Workshop on Semantic Web in Oil & Gas Industry, 2008.
13. H. Knublauch and D. Kontokostas. Shapes Constraint Language (SHACL). Technical report,

W3C, 2017.
14. A. Krisnadhi et al. Ontology Design Patterns for Linked Data Publishing, chapter 10, pages

201–232. Volume 025 of Hitzler et al. [9], 2016.
15. A. Krisnadhi and P. Hitzler. Modeling With Ontology Design Patterns: Chess Games As a

Worked Example, chapter 1, pages 3–21. Volume 025 of Hitzler et al. [9], 2016.
16. P. Lord. The Semantic Web takes Wing: Programming Ontologies with Tawny-OWL. In

OWLED, 2013.
17. B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax. Technical report, W3C, 2012.
18. M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen. M2: A Language for Mapping

Spreadsheets to OWL. In OWLED, 2010.
19. P. F. Patel-Schneider and B. Motik. OWL 2 Web Ontology Language Mapping to RDF Graphs.

Technical report, W3C, 2012.
20. V. Presutti and A. Gangemi. Content Ontology Design Patterns As Practical Building Blocks

for Web Ontologies. In ER, pages 128–141. Springer, 2008.
21. D. Vrandec̆ić. Explicit knowledge engineering patterns with macros. In Proceedings of the

Ontology Patterns for the Semantic Web Workshop at the ISWC 2005, 2005.
22. Wikipedia. Software design pattern—Wikipedia, the free encyclopedia, 2017. [Online;

accessed 27-July-2017].

	 Pattern-Based Ontology Design and Instantiation with Reasonable Ontology Templates

