
Embedded Real-time Implementation of a
Computational Efficient Optical Flow Extraction Method

for Intelligent Robot Control Applications

Róbert Moni1, László Bakó2, Szabolcs Hajdú2, Fearghal Morgan3
 and Sándor-Tihamér Brassai2

1 Sapientia Hungarian University of Transylvania, Faculty of Technical and Human
Sciences, Tîrgu Mureş, 547367 Corunca 1C, Romania, robertmoni@ymail.com

2 Sapientia Hungarian University of Transylvania, Electrical Engineering Department,
Faculty of Technical and Human Sciences, Tîrgu Mureş, 547367 Corunca 1C, Romania

{lbako, hajduszabolcs, tiha}@ms.sapientia.ro
3 Bio-Inspired Electronics and Reconfigurable Computing (BIRC) Research Group, National
University Ireland Galway, University road, Galway, Ireland, fearghal.morgan@nuigalway.ie

Abstract. The main role of an autonomous car is tracking a path on a
determinate distance, while being able to notice road signs and to avoid
collisions. Essential parts of these functions are the sensors, which identify the
elements in the vehicle’s environment. Path following can be done by different
ways, from which we will underline the use of a new method, based on video
processing and Optical Flow extraction. The aim is to build a real-time system
suitable for implementation on resource-restricted platforms. Experimental
results with the embedded, real-time implemented – on a FPGA supported
Raspberry Pi platform – method are given in the paper, put to use in a line-
following mobile robot application with intelligent control. We also prove the
applicability of the new method in the take-off and landing stabilization of
autonomous UAVs.

Keywords: Optical Flow, Real-time, Embedded, Raspberry Pi, FPGA, edge
detection, image processing, robot control, mobile robot, UAV, quadcopter,
autonomous vehicles.

1 Introduction

Many advanced artificial vision systems make use of the information provided by
the extraction of Optical Flow (OF) from video signals. However, implementing the
state-of-the-art OF extraction methods with severe power consumption and computing
resource availability constraints can become quite a challenge. This problem can
become even more difficult to solve if there is also a need for real-time computation
that arises when the target application area is focused on autonomous mobile robots.

On the other hand, these application always rely on complex control algorithms
that might use OF as an additional input variable in this system. This leads to a
resource distribution that correlates with the role of these algorithmic components.

All in all, the OF extraction needs to execute fast, with high power and resource
usage efficiency. Even so, the OF determination is usually only an early phase of a
complex control algorithm, that poses the need for optimal resource distribution
between tasks. Since in embedded environments the available computational
resources and power availability are not as plentiful as in general purpose computing
platforms, the challenge to implement real-time image processing and artificial vision
algorithms becomes even greater and more appealing.

Several studies in the scientific literature present novel methods for OF
computation, discussing accuracy, vector field density and computing complexity [1],
[2]. As the classic platforms struggle to offer a viable solution for real-time OF
extraction with usable framerate, alternative platform implementations are gaining
momentum [3], [4]. Apart from ASICs (Application Specific Integrated Circuit), that
arguably could be the best choice, a possible compromising solution is offered by
SoCs (System on Chip) and FPGA (Field-Programmable Gate Array) circuit-based
hybrid platforms [5], similar to the one presented in this paper.

The essential features and properties of a video signal processing algorithm for a
line tracking robot are speed, precision and robustness. The high execution speed of
the algorithm is required in order to process in real-time the incoming camera images
in real-time transmitting the collected useful information as needed. The track
recorded by the camera from different directions, may suffer from different types of
noises. Such is the angle of incidence of light, shadows or appearance of bright spots.
For a robot control tasks, these have to be eliminated by a robust video signal
processing algorithm.

2 Embedded real-time OF extraction method for robot control

The main function of a line tracking robot is to follow a predetermined path with
the help of a sensor that collects data about the line position in an autonomous mode.
These robots are used in multiple industrial domains, especially in product
transportation inside storage spaces, in automated hospitals for delivering medication
and medical equipment. The most common and simplest way for a robot to follow a
line is by the usage of infrared sensors. In these applications the infrared sensors work
as a switch and transmit information about the position of the line under the robot.
Another frequently used sensor is the photoresistor. The disadvantage of the methods
presented above is the fact that these sensors only “see” a small portion of the line
thereby controlling the robot is not adaptive. In case of an automobile these methods
can’t be used. A newer method uses video signal processing which contains more
information about the path. The camera attached to the robot can “see” a larger
portion of the tracked line. This application can be adapted to aid the intelligent
control of autonomous vehicles, too.

2.1 Methods to extract the tracked line from the images

The basic characteristics of video signal processing algorithms are: execution
speed, precision and robustness. In articles studied during this research many methods

with the scope of line extraction from video images where examined. The first studied
method [3] processes the images transformed into the Hue Saturation Intensity (HIS)
color model which is very close to the human perception of color. In this model, the
Hue image is used which is separated based on light intensity eliminating these types
of noises. The second method [4] is based on artificial neural networks. In this
application, the robot equipped with a camera, learns to auto-navigate on a
predetermined path. The third method [6] processes binary images in black and white
and extracts the objects’ skeleton using morphology. With the methods for edge
detection, the tracked line can be extracted from the image precisely and in real time.
Methods frequently used for edge detection are Sobel [7], Canny [8], Prewitt [9] and
Marr Hildrett [10]. Two methods were tested and implemented for edge detection. In
these tests the velocity, precision and robustness of the image processing methods
where analyzed. Each of the methods uses filtering masks (see Figure 1 and Figure 2).

Fig. 1. Sobel masks for edge detection, Vertical (left, Gx) and Horizontal (right, Gy)

The OpenCV library was used that offers fast and optimal image processing
solutions based on C/C++ language. The Sobel mask of 3x3 pixels is computed as
follows, than the derivative of one pixel in the image is calculated:

[ݕ,ݔ]ܺܩ_݈݁ݔ݅ܲ = [0,0]ݔܩ ∗ ݔ]݃݉݅ − 1, ݕ − 1] + [1,0]ݔܩ ∗ ,ݔ]݃݉݅ ݕ − 1] + [2,0]ݔܩ
∗ ݔ]݃݉݅ + 1, ݕ − 1] + [0,1]ݔܩ ∗ ݔ]݃݉݅ − 1, [ݕ + [1,1]ݔܩ ∗ ,ݔ]݃݉݅ [ݕ
+ [2,1]ݔܩ ∗ ݔ]݃݉݅ + 1, [ݕ + [0,2]ݔܩ ∗ ݔ]݃݉݅ − 1, ݕ + 1] + [1,2]ݔܩ
∗ ,ݔ]݃݉݅ ݕ + 1] + [2,2]ݔܩ ∗ ݔ]݃݉݅ + 1, ݕ + 1] (1)

ܩ_݈݁ݔ݅ܲ ݔܻ] [ݕ, = [0,0]ݕܩ ∗ ݔ]݃݉݅ − 1, ݕ − 1] + [0,1]ݕܩ ∗ ݔ]݃݉݅ − 1, [ݕ + [0,2]ݕܩ
∗ ݔ]݃݉݅ − 1, ݕ + 1] + [1,0]ݕܩ ∗ ,ݔ]݃݉݅ ݕ − 1] + [1,1]ݕܩ ∗ ,ݔ]݃݉݅ [ݕ
+ [1,2]ݕܩ ∗ ,ݔ]݃݉݅ ݕ + 1] + [2,0]ݕܩ ∗ ݔ]݃݉݅ + 1, ݕ − 1] + [2,1]ݕܩ
∗ ݔ]݃݉݅ + 1, [ݕ + [2,2]ݕܩ ∗ ݔ]݃݉݅ + 1, ݕ + 1] (2)

where [x, y] = [0:5:n-1].
Afterwards, the results are combined to give the gradient so that the edges can be

extracted:

ܩ = ඥPixel_Gx[x, y] 2 + Pixel_Gy [x, y]2 (3)

The Canny method has more steps for edge detection, these steps are the following:
1. Filtering the image using the Gaussian method,

݆݅ܪ =
1

2ߪߨ2 exp ൭−
൫݅ − (݇ + 1)൯

2
+ ൫݆ − (݇ + 1)൯

2

2ߪ2 ൱ ; 1 ≤ ݅, ݆ ≤ (2݇ + 1)
(4)

2. Detecting the intensity of the gradient,
3. Filtering the weak edges,
4. Thresholding two times,
5. Thickening the dominant edges.

-1 0 +1
-2 0 +2
-1 0 +1

-1 -2 -1
0 0 0

+1 +2 +1

Fig. 2. Preprocessing the images using edge detection methods Sobel (left) and Canny (right)

2.2 The implemented line detection algorithm

The 2D images captured by the camera hold valuable information for the robot
about the tracked line. For a better understanding of the information processing
method first a research in flow direction determination will be presented which
resulted the development of a real time algorithm for optical flow direction
determination. There are many articles that explain the optical flow phenomena [11].
The evaluation of the gradient method is based on spatial-temporal derivatives. The
approaches in the articles of Horn and Schunk [12] or Lucas and Kanade [13] work
well and forms the base of the gradient method developed by the authors [5].

The gradient methods work by processing two consecutive images. As shown in
Figure 3, the object - in this case a pixel - acquired at time t in the position P moves to
position P’, acquired at time t+t. The difference can be determined with derivation
in the Cartesian coordinate system, therefore the optical flow can be calculated. For
the optical flow calculation it was specified that the object moves in one direction
from the point of view of the camera and the intensity of the object doesn’t change:

,)ܫܦ ݀, (ݐ߂ =)ܫ + ݀, ݐ + (ݐ߂ − ,)ܫ (5) (ݐ

where:
 DI – intensity difference,
 p – the point on the image,
 d – the motion.

Fig. 3. Optical flow detection with the gradient method

This paper proposes a new gradient based method, with the aim of optical flow
direction determination in real time. Two consecutive images are processed with the
help of a 5x5 pixel mask composed from four overlapping quadrants (A, B, C, D).
The optical flow direction is detected from the activated quadrants. The mask is
iterated trough the two consecutive images and is evaluated at the same position. A
quadrant is activated when it contains edge pixels and the number of these pixels
changes (decreases or increases) between the image captured at time t and the image
captured at time t+t. The method collects the information from the activated
quadrants, namely which quadrant has gained the most pixels and the number of
pixels accumulated. For example, on the left image of Figure 4 the pixels marked with
the number 1 represent the position of a detected edge at time t, and the pixels marked
with a * represent the position of a detected edge at time t+t. Thereby, in the C
quadrant the number of pixels has increased, meaning the quadrant was activated and
the optical flow was detected in the direction of the C quadrant. The center image of
Figure 4 shows the directions that the offered method can specify. Figure 5 presents
the steps taken to process the image and determine the optical flow direction.
Dividing the image into frames is achieved by placing a fitting number of mask
(kernels) instances on the captured images. At this point, each and every frame is
examined in both images at the same position. During examination the algorithm
searches for dominant quadrants and eliminates unneeded calculations, such as frames
with no edges.

Fig. 4. Mask for optical flow detection (left), Directions in the Cartesian coordinate system

(center), Example frames of the test video sequences (right)

Fig. 5. The optical flow direction extraction algorithm

3 Intelligent visual robot control based on extracted OF data

3.1 Components and structure of the designed robot platform

The robot platform has been designed and implemented as a real-time embedded
testing environment for the OF extraction method as well as for the intelligent, fuzzy-
like control algorithm, that will be presented in the following section. The robot has
three wheels, with two actively driven and one free wheel.

Fig. 6. The main components of the line tracking robot platform

The main computation unit of the robot is the Raspberry Pi 2 Model B (RPi)
embedded computer, consisting of a Broadcom BCM2835 SoC with a 900 MHz
Quad-core ARM Cortex-A7 CPU and a Broadcom VideoCore IV 250MHz GPU,
using 1 GB SDRAM memory. A Pi camera is connected to the dedicated port as the
main input signal acquisition module. As Figure 6 presents, the second computing
unit of the robot is a Nexys 3 FPGA development board with a Xilinx Spartan-6
LX16 FPGA circuit. This is responsible for interfacing the two 12V DC motors with
mounted Hall sensors via two PmodHB5 dual H-bridges that are driving the active
wheels of the robot.

The devised robot control system is split into two tasks that are executed in
parallel. The first part - that is responsible for the video signal acquisition, OF
direction extraction and computing the command signals for the motors (the reference
speed) - is executed on the RPi microcomputer.

Part two is implemented in VHDL, therefore corresponding circuits are generated
on the FPGA of the Nexys 3 development board, that function in parallel and serve as
the actuator signal generators (PWM signals), applying the speed corrections based on
the reference values received from RPi. The two platforms are connected via a
custom-built 16-bit parallel communication port, using the GPIO pins of the RPi
(acting as master) and peripheral module (PMOD) ports of the FPGA board (slave).

The main steps of the control loop are represented in Figure 7.

Fig. 7. Execution diagram of the robot control algorithm

3.2 Fuzzy logic-like method for motor control - reference signal computation
from video-signal based OF values

In order to avoid controller parameter tuning difficulties, a hybrid proportional
controller has been devised and implemented that uses a two layer fuzzy-logic-like
rule-set system to compute the command signals. In the first layer, the image
processing algorithm assigns each kernel of the kernel grid covering the image frame
of the video signal a certain weight, both horizontally and vertically, according to the
rule-set presented in the left side of Figure 8. These form gain vectors that are further
used to gauge the actuator (DC motor) signal ratios according to the position of the
perceived line to be followed in the consecutive frames of the video signal.

These vectors are described by a sigmoid function represented on the right hand
side chart of Figure 8. The sum of these weights (vertical and the horizontal) is equal
to one, and will modulate the speed of the motors depending on where (on which
kernel row and column) has the line been detected on. These weights formed by the
gain vectors are not influenced by the extracted OF direction values, only by the
location of the line to be followed in images acquired by the Pi camera.

Actually, the images used for this calculation are filtered and all unnecessary
information is removed, leaving only the edge locations as useful data. For optimal
execution time, the two tasks – the line position detection and the OF direction
extraction – are computed by two separate threads of the C++ program run on the
Raspberry Pi.

The OF values are used as a second layer weighing factors, determining the preset
value of the proportional controller, in other terms, the preset speed of the DC motors
driving the active wheels of the robot.

Fig. 8. Fuzzy logic-like method for motor control reference signal computation

Fig. 9. Block diagram of the robot control structure

The rules in this second weighing layer are the following (the reference is the
robot’s direction of travel, considered to be 0◦, in trigonometric direction):
 If the extracted OF direction is either 90◦ or 270◦ then the weight computed in

layer one is unchanged, being applied as 100% of the actuator speed.
 If the determined OF direction is either 180◦ or 0◦, the weight computed in layer

one is applied to the motor at 85%, presuming the robot wobbles to the sides.
 When the computed OF direction is either 45◦, 135◦, 225◦ or 315◦, the weight

computed in layer one is applied to the motor at 75%, avoiding the line to be
followed to exit the field of view of the robot’s camera.

After all computations are completed on the RPi, the control signal values for the
two motors are transmitted to the FPGA board via a 16 data-bit custom parallel port.

The hardware implemented part (in the FPGA) of the project is then switched on to
use the two 8 bit values received to compute the PWM motor command signals,
setting the speed of motors. The feedback signal from the Hall sensors mounted on
the motors is also measured by the FPGA implemented modules (Figure 9). This
feedback is used to smooth the PWM changes in order to avoid sharp direction
changes of the robot. These circuits where implemented in VHDL, using Xilinx
PlanAhead and tested and verified in hardware using viciLab. viciLab [14] is a
remote/local FPGA prototyping platform that enables the user to create and
implement a digital logic component application and GUI console. It performs
automated creation of the design FPGA bitstream from a VHDL model description,
and performs remote or local module Xilinx Spartan-6 FPGA configuration.

4 Measurements and experimental results

4.1 Results of the introduced OF method with different edge-detection phases

The following measurements, presented in Figure 10 and Figure 11, are
investigating the accuracy of the algorithm, the sensitivity of the cases when Sobel
and Canny edge detection algorithms were used. After a pre-processing phase, the
edge detection method is applied to the images. The measurements show, that using
the Sobel edge detection method the results are noisier, but slightly faster. The use of
the Canny method yields a cleaner solution as a response to the shift in movement
direction, but shows a slightly slower execution time.

Measurements that used the Sobel method yielded an average running time of
40.3418 Frames per Second (FPS), while using the Canny method, the average
running time was 38.3453 FPS. The same figures show that the execution time
decreases when no motion is detected in a pair of frames. This is indicated as a zero
degree value on the motion direction plot. The spikes on the execution time plot
during the zero value of the direction curve are due to the resource sharing of the
system, managed by the Raspbian operating system.

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

di
re

ct
io

n
de

tc
te

d

Sobel modszerrel

0 100 200 300 400 500 600 700 800 900
20

25

30

35

40

45

50

fp
s

Fig. 10. Optical flow extraction with Sobel edge-detection in the pre-processing phase

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400
Canny modszerrel

di
re

ct
io

n
de

tc
te

d

0 100 200 300 400 500 600 700 800 900
25

30

35

40

45

fp
s

Fig. 11. Optical flow extraction with Canny edge-detection in the pre-processing phase

4.2 Measurement results on the processing speed of the introduced OF method

Table 1 presents the execution speed of the developed algorithm for determining
the optical flow direction using different resolutions and programing languages. One
of the goals of the research was for the algorithm to work in real time namely to
achieve 25 FPS or more.

In the presented table one can observe that the algorithm is well capable of
reaching the expected results. The algorithm has been tested using pre-recorded
video-sequences, showing a black line moving in eight different direction on a white
background (see the image on the right of Figure 4). The recording resolution of the
sequences used for testing was 640x480 at 30 FPS. The recording and the frame
breakdown was performed using the OpenCV library.

Note that the video player function used in the OpenCV library solution is
significantly slower than reading directly from the dedicated camera of the Raspberry
Pi, so it influences the running time of the algorithm, expressed in FPS.
Table 1. Execution speed of the OF extraction algorithm with different scenarios

4.3 Experimental results on the OF method’s applicability in UAV motion
detection

Another potential application group that might make use of the OF extraction
method developed by us is the take-off and landing stabilization of autonomous
UAVs. In order to prove this, we have built a custom experimental test-bench. In the
previously presented application, the Pi camera was mounted externally, on a wheeled
mobile robot facing the direction of movement.

For this experiment, we have mounted the camera inside the RPi’s case, in its
dedicated slot. In order to simulate the rotating displacement during take-off and
landing of a UAV (for instance a quadcopter) we have placed the cased
microcomputer on the rotor of a servomotor, also commanded by the RPi. Patterns,
similar to those presented in the right side of Figure 4, but containing several lines
placed in different angles, have been situated in front of the camera. By commanding
(with PWM signals generated by the RPi via GPIO pins) the servomotor to turn in
both directions, to different angles and with various speed values, we have set up an
environment that resembles the motion of a flying robot. The plots in Figure 12
present the results of these experiments.

Programing
Language

Captured image
Resolution

Processed image
resolution

Multi-
threading

Processing
speed [fps]

C++ 640x480 640x480 8.5
C++ 640x480 100x100 22
C++ 320x240 320x240 21
C++ 320x240 100x100 89
C++ 160x120 160x120 105
C++ 320x320 320x320 Yes 25

Python 640x480 640x480 2
Python 640x480 100x100 10
Python 320x240 320x240 7
Python 320x240 100x100 12
Python 160x120 160x120 15
Python 320x320 320x320 Yes 28

Fig. 12. Measurement results of the UAV motion detection experiments

One can observe two separate measurements in the left side of this figure, both
represented by a graph showing the motor position (angle) and another graph
presenting the OF direction value extracted using the same method described earlier.
The O.F. value plots show the direction value (as in the center of Figure 4) of the
perceived motion in the video signal determined in real-time by our algorithm running
on the RPi. The Motor position plots in these figures show the servo-motor’s rotor
angle value as it was turning the RPi. One can notice that the motor was commanded
to make turns in both directions (plot is zero where the motor stopped), with a preset
speed (degrees/sec). This resulted in a motion of the pattern of lines placed in front of
the Pi camera. The placement of these lines and the motor’s rotation direction
determined the preset OF value (Target angle in the upper right side of Figure 12) to
be measured by the implemented system. This plot shows, that the measured O.F.
value is computed with a delay (until the lines turned to the FOV of the camera) at the
beginning of the test and when the motor changed direction. The error plot (bottom
right of Figure 12) shows high values at the same phases of the measurement. The
usual performance measures and the evaluation methodology of Optical Flow
implementations were introduced by Barron et al. [15]. We focused our attention on
one error metric, the flow endpoint error (or pixel distance) defined in [16]. Table 2
summarizes our results compared to similar implementations given in [17].
Table 2. Comparison of the introduced method (BakoMon-OF), with other methods [17]

Algorithm Endpoint Error Memory Space (MB) Number of GOPS
fSGM [17,18] 4.54% 20.68 37.53
Lucas-Kanade [17] 15.78% 1.47 3.15
NG-fSGM [17] 4.71% 4.39 4.31
BakoMon-OF 14.2% 0.23 5.36

5 Conclusions
We have successfully introduced a new real-time OF extraction method,

implemented on resource restrictive embedded platforms. The method is accurate
enough to be used – possibly in conjunction with, or complemented by data acquired
from IMUs (Inertial Measurement Unit) – as the input value to intelligent robot

control algorithms. In order to prove this, we have designed and built a line tracking
mobile robot, with on-board OF computation. The robot can autonomously follow a
line drawn on any surface, driven by a custom, fuzzy-logic-based control algorithm,
also devised by our team. Using a different experimental setup, we have also shown
that the developed systems can be put to use in the intelligent flight control of UAVs.

Acknowledgments. The research presented in this paper was supported by the
Sapientia Foundation - Institute for Scientific Research.

References
1. Basch, M.E., Cristea, D.G., Tiponut, V., Slavici, T.: Elaborated motion detector based on

Hassenstein-Reichardt correlator model. Latest Trends on Systems, 1, 192-195, 2010.
2. Xiaofeng, R.: Local grouping for optical flow, Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on. IEEE, 2008.
3. Elhady, W.E., Elnemr, H.A., Selim, G.: Implementation of autonomous line follower robot,

Journal of Computer Science 10 (6): 1036-1044, 2014.
4. Gonzalez, R.C., R.E. Woods and S.L. Eddins: Digital Image Processing Using MATLAB, 2nd

Edition, Gatesmark Publishing, ISBN 10:0982085400, pp: 827, 2009.
5. Bakó, L., Morgan, F., Hajdú, Sz., Brassai, S.T., Moni, R., Enăchescu, C.,: Development and

Embedded Implementations of a Hardware-Efficient Optical Flow Detection Method, Acta
Universitatis Sapientiae Electrical and Mechanical Engineering, 6 (2014) 5-19

6. Duhamel, P.E. et al.: Hardware in the Loop for Optical Flow Sensing in a Robotic Bee, in IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, 2011, pp. 10991106.

7. Duda, R., Hart, P.: Pattern Classification and Scene Analysis, John Wiley and Sons,'73, pp.271-277
8. Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach.

Intell. 8, 6, pp.679-698, 1986.
9. Prewitt, J.M.S.: Object Enhancement and Extraction, in "Picture processing and

Psychopictorics", Academic Press, 1970.
10. Marr, D., Hildreth, E.: Theory of Edge Detection, Proceedings of the Royal Society of

London. Series B, Biological Sciences 207, (1167): 187–217, 1980.
11. Thota, S.D., Vemulapalli, K.S., Chintalapati, K., Gudipudi, P.S.S.: Comparison Between

The Optical Flow Computational Techniques, International Journal of Engineering Trends
and Technology (IJETT) Vol. 4 Issue 10, 2013.

12. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow, Technical Report. Massachusetts
Institute of Technology, Cambridge, MA, USA, 1980.

13. Lucas, B., Kanade, T.: An iterative image registration technique with an application to
stereo vision, In Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 674679, 1981.

14. Morgan, F., Cawley, S., Kane, M., Coffey, A., Callaly, F.: Remote FPGA Lab Applications,
Interactive Timing Diagrams and Assessment, Irish Signals & Systems Conference, 2014.

15. Barron, J., Fleet, D., & Beauchemin, S.: Performance of optical flow techniques.
International Journal of Computer Vision, 12 (1), 43–77, 1994.

16. Otte, M., & Nagel, H.-H.: Optical flow estimation: advances and comparisons, in
Proceedings of the European conference on computer vision (pp. 51–60), 1994.

17. Xiang, J., Li, Z., Blaauw, D., Kim, H.S. and Chakrabarti, C.: Low complexity optical flow
using neighbor-guided semi-global matching, 2016 IEEE International Conference on
Image Processing (ICIP), Phoenix, AZ, USA, pp. 4483-4487, 2016.

18. Hermann, S. and Klette, R.: Hierarchical scan line dynamic programming for optical flow
using semi-global matching, Computer Vision-ACCV Workshops, pp. 556-567, 2012.

