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Abstract—In phenotype annotations curated from the biolog-
ical and medical literature, considerable human effort must be
invested to select ontological classes that capture the expressivity
of the original natural language descriptions, and finer annotation
granularity can also entail higher computational costs for partic-
ular reasoning tasks. Do coarse annotations suffice for certain
applications? Here, we measure how annotation granularity
affects the statistical behavior of semantic similarity metrics.
We use a randomized dataset of phenotype profiles drawn
from 57,051 taxon-phenotype annotations in the Phenoscape
Knowledgebase. We compared query profiles having variable
proportions of matching phenotypes to subject database profiles
using both pairwise and groupwise Jaccard (edge-based) and
Resnik (node-based) semantic similarity metrics, and compared
statistical performance for three different levels of annotation
granularity: entities alone, entities plus attributes, and entities
plus qualities (with implicit attributes). All four metrics examined
showed more extreme values than expected by chance when
approximately half the annotations matched between the query
and subject profiles, with a more sudden decline for pairwise
statistics and a more gradual one for the groupwise statistics.
Annotation granularity had a negligible effect on the position of
the threshold at which matches could be discriminated from noise.
These results suggest that coarse annotations of phenotypes, at
the level of entities with or without attributes, may be sufficient to
identify phenotype profiles with statistically significant semantic
similarity.
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I. INTRODUCTION

To make phenotype descriptions in the biological and medi-
cal literature amenable to large-scale discovery and compu-
tation, a variety of efforts have been launched to convert
such descriptions into logical expressions using ontologies and
to integrate them into the larger ecosystem of online, open
biological information resources [1]. Typically, this involves
curation and annotation of phenotypes in the Entity-Quality
(EQ) formalism [2], which is widely used by model organ-
ism communities for representation of gene phenotypes [3].
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The EQ formalism has more recently been adopted by the
Phenoscape project to curate phenotypes from the literature
that are reported to vary among evolutionary lineages [4] with
the goal of linking them to gene phenotypes and generating
hypotheses about the genetic bases of evolutionary transitions
[5].

In the EQ approach, an entity represents a biological ob-
ject, e.g. an anatomical structure, an anatomical space, or
a biological process, while a quality represents a trait or
property that an entity possesses, e.g, shape, color, or size.
Curators often create complex logical expressions called post-
compositions by combining ontology terms, relations, and
spatial properties from multiple ontologies in different ways
to create entities and qualities that adequately represent phe-
notypic descriptions. For example, “big supraorbital bone” is
represented as E: supraorbital bone (UBERON 0004747), Q:
enlarged size (PATO˙0000586). A more complex description
such as “parietal fused with supraoccipital bone” is repre-
sented by relating the two affected entities, supraorbital bone
(UBERON 0004747) and parietal (UBERON 2001997) using
the quality fused with (PATO 0000642).

Annotation of phenotypes at this level of ontological detail
is time consuming and expensive [6]. Annotating evolutionary
phenotypes at the finest level of granularity often requires
curators to create new ontology terms and request those terms
to be added to the ontology. Coarse annotation removes the
need for ontology development by limiting curators to a small
set of attribute level qualities already present in the ontology.
Reducing the effort on curatorial tasks such as ontology
development and data preparation improves the annotation rate
from two characters per hour to 14 characters per hour [6].
Thus coarse annotation can be part of an efficient annotation
workflow, and permit larger datasets to be curated for equiv-
alent resources. In addition, reasoning over the combinatorial
entity and quality ontology space for EQ annotations poses a
serious computational challenge.

Given these competing considerations, what level of anno-
tation granularity is optimal? The answer may depend on the
particular application. For Phenoscape, a major goal is to be
able to find sets of phenotypes that show greater semantic simi-
larity than would be expected by chance when comparing sets
of phenotypes from different biological domains (e.g. those
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observed in evolutionary lineages versus those induced by
genetic manipulations in the laboratory) [5]. When comparing
phenotypes with such different biological origins, we would
not expect to see congruence in fine detail for a variety of
reasons. For instance, even if the same or homologous genes
have contributed to the two profiles, independent changes to
those genes may underpin the phenotypes, they may be in
lineages for which the genetic networks have diverged, and
there may have been considerable evolutionary modification
of the phenotype since its first origin. Even if two biological
phenotypes are identical, the way in which the phenotypes
are observed and described by independent researchers may
lead to natural language descriptions, and thus profiles of
annotations, that are quite different. With such weak matches,
do finer annotations enable similarities to be detected, or are
finer annotations superfluous or even distracting?

To explore this issue, we have conducted experiments to
test the statistical sensitivity of semantic similarity at vary-
ing annotation granularity. Our approach involves simulating
phenotype profiles by sampling from real annotations drawn
from the Phenoscape Knowledgebase [5]. We measured sim-
ilarity between profiles that shared all, some or none of
their annotations, with the remainder drawn randomly from
the population of annotations. We assessed the decline of
semantic similarity to the point at which it could no longer
be discriminated from random chance. This was done for four
different semantic similarity statistics, and for three levels of
annotation granularity.

II. METHODS

A. Semantic similarity metrics
The four semantic similarity statistics we have chosen

represent extremes along two different dimensions by which
semantic similarity metrics vary [7–10]. Edge-based semantic
similarity metrics use the distance between terms in the on-
tology as a measure of similarity. Node-based measures use
the Information Content of the annotations to the terms being
compared and/or their least common subsumer. The similarity
metrics we have chosen are based on Jaccard (edge-based) and
Resnik (node-based) similarity, which are popular in biological
applications (e.g. [11]). For each, we have one version that
summarizes the distribution of pairwise similarities between
two sets of annotations, and another that calculates a groupwise
score directly.

1) Jaccard similarity: The Jaccard similarity (sJ ) of two
classes (A, B) in an ontology is defined as the ratio of the
number of classes in the intersection of their subsumers over
the number of classes in their union of their subsumers [12].

sJ(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)|

where S(A) is the set of classes that subsume A.
2) Resnik similarity: The Information Content of ontology

class A, denoted I(A) is defined as the negative logarithm of
the proportion of profiles annotated to that class f(A) out of
T profiles in total.

I(A) = − log
f(A)

T

Since the minimum value of I(A) is zero, at the root of the
ontology, while the maximum value is − log(1/T ), we can
compute a Normalized Information Content (In) with range
[0, 1]

In(A) =
I(A)

− log(1/T )

The Resnik similarity (sR) of two ontology classes is defined
as the Normalized Information Content of the least common
subsumer (LCS) of the two classes.

sR(A,B) = In(LCS(A,B))

B. Profile similarity
A set of ontology-based phenotype annotations is called a

phenotype profile. When comparing two profiles, X and Y ,
where each has at least one, and potentially many annotations,
we could either summarize all the pairwise combinations
of annotations, or we could compute a groupwise similarity
measure directly as a function of graph overlap.

1) Best Pairs: Pairwise approaches summarize the distribu-
tion of pairwise Jaccard or Resnik similarity scores between
annotations in the two profiles. Here we use the Best Pairs
score. For each annotation in X , the best scoring match in
Y is determined, and the median of the |X| resultant values
is taken. Similarly, for each annotation in Y , the best scoring
match in X is determined, and the median of the |Y | values
is taken. The Best Pairs score pz(X,Y ) is the mean of these
two medians. The index z can be used to denote whether the
pairwise values are Resnik (z = R) or Jaccard (z = J).

pz(X,Y ) = (1/2)[bz(X,Y ) + bz(Y,X)]

where

bz(X,Y ) = median
i∈{1...|X|},j=argmax

j=1...|Y |
sz(Xi,Yj)

{
sz(Xi, Yj)

}
Note that, as defined, pz(X,Y ) = pz(Y,X).

2) Groupwise: Groupwise approaches compare profiles di-
rectly based on set operations or graph overlap.

The Groupwise Jaccard similarity of profiles X and Y ,
gJ(X,Y ), is defined as the ratio of the number of classes
in the intersection to the number of classes in the union of the
two profiles

gJ(X,Y ) =
|C(X) ∩ C(Y )|
|C(X) ∪ C(Y )|

where C(X) is the set of classes belonging to X plus their
subsumers.

Similarly, the Groupwise Resnik similarity of profiles X
and Y , gR(X,Y ), is defined as the ratio of the normalized
information content summed over all nodes in the intersection
of X , Y to the information content summed over all nodes in
the union.

gR(X,Y ),=

∑
t∈{C(X)∩C(Y )} In(t)∑
t∈{C(X)∪C(Y )} In(t)

where C(X) is defined as above.
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Fig. 1. Profile decay via iterative replacement. Query profiles are selected
from the pool of simulated profiles (lower left). Filled circles represent
annotations, and annotations within the same profile are enclosed by boxes.
Circles of the same color represent the same annotation. At each iteration, one
of the remaining original annotations in the query profile is replaced with a
randomly selected annotation from the pool. The process continues until each
of the annotations in the original query profile has been replaced.
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C. Source data

The Phenoscape Knowledgebase contains a dataset of 661
taxa with 57,051 evolutionary phenotypes, which are phe-
notypes that have been inferred to vary among the taxon’s
immediate descendents [5]. A simulation dataset of subject
profiles having the same size distribution of annotations per
taxon was created by permutation of the taxon labels.

D. Simulating profile ‘decay’

To simulate decay of profile similarity, five query profiles
of size ten were randomly selected from the simulated dataset.
For each, there is one profile among the set of subjects for
which each annotation has a one-to-one perfect match. For
each of the five profiles, ten progressively decayed profiles
were obtained by iteratively replacing one of the original
annotations with an annotation randomly selected from among
the 57,051 available (Figure II-D). Thus, for each original
profile, there is a profile in which one original annotation has
been replaced with random annotation, another in which two
have been replaced, and so on, through to a fully decayed
profile in which all original annotations have been replaced
with a random one. To characterize the noise distribution for
each metric in the absence of semantic similarity, we also
generated 5,000 profiles of size ten by drawing annotations
randomly from among the 57,051 available. These profiles
would not be expected to have more than nominal similarity
with any of the simulated subject profiles.

E. Adjusting annotation granularity

The evolutionary phenotypes available from Phenoscape
have been annotated with both entities and qualities, and
the intermediate level of attribute is implicit in the quality
annotation due the structure of the PATO quality ontology
[4]. In order to measure semantic similarity for three levels of
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Fig. 2. Pattern of similarity decay with E, EA, and EQ data as profiles
are decayed via Random Replacement. Solid lines represent the mean best
match similarity of the 5 query profiles to the database after each annotation
replacement. Error bars show 2 standard errors of the mean. Dotted lines
represent the 99.9th percentile of the noise distribution.

granularity: entity only (E), entity-attribute (EA), and entity-
quality (EQ), we used three different phenotype ontologies,
one for each granularity level, containing phenotype concepts
combining terms from Uberon (entities) and PATO (attributes
and qualities). In each evaluation, annotations in the query pro-
files and the simulated database will match at the granularity
level available in the generated phenotype ontology.

III. RESULTS AND DISCUSSION

We measured semantic similarity between each of the five
query profiles and their decay series to all 661 profiles in
the subject database. This was done for each of the four
semantic similarity metrics (Best Pairs and Groupwise variants
of Jaccard and Resnik metrics) and for each of the three
granularity levels (E: Entity only, EA: Entity-Attribute, and
EQ: Entity-Quality). The results are shown in Figure 2). For
ease of interpretation, we take the upper 99.9% of the simi-
larity distribution for random profile matches as an arbitrary
threshold for comparing the sensitivity of the different series.
All series cross this threshold when approximately half of
the annotations have been replaced, with a sudden decline
in similarity for the Best Pairs statistics and a more gradual
decline for the groupwise statistics. While the differences
in sensitivity among the annotation granularity levels are
subtle, the annotations of intermediate granularity (EA) have
marginally greater sensitivity for all four statistics.

The sharp decline in similarity under the Best Pairs statistics
at approximately 50% decay can be understood as a result
of summarizing the pairwise distribution with the median. In
future work, we aim to explore how the sensitivity of pairwise
statistics might be tuned by using different percentiles. Given
the relatively flat performance of the Best Pairs statistics when
decay was under 50%, we suggest that groupwise statistics are
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likely to provide greater discrimination between true matches
of varying quality and thus better for rank ordering the
outcome of semantic similarity searches, e.g. [5]. Our results
also illustrate how difficult it can be to statistically discriminate
weakly matching profiles from noise, something which has
received relatively little consideration in many applications of
semantic similarity search to date.

The relatively minor differences in statistical perfor-
mance with varying annotation granularity, with EA showing
marginally greater sensitivity, has implications both for the
process of generating annotations and the implementation of
semantic similarity computation. As noted in the Introduction,
annotation to EA requires considerably less human curation
effort than EQ, and is almost identical in effort to curation
to E. Restricting annotation granularity to EA may also ease
the challenge of speeding of curation through machine-aided
natural language processing, e.g. [13].

Second, the computational expense of measuring semantic
similarity can be prohibitive for fine-grained annotations due
to an explosion in the number of classes required for reasoning
when annotations draw from multiple ontologies [14]. If the
inclusion of qualities does not improve sensitivity, that opens
up the possibility of conducting fast, scalable on-the-fly web-
based semantic searches at coarser annotation levels.

One of the contributions of this work is in introducing a
framework for evaluating the statistical sensitivity of semantic
similarity metrics. Nonetheless, the results reported here are
specific to one particular model for the decay of similarity
between two profiles, in which some portion of annotations
that match perfectly while others do not match at all. We
recognize a need to explore other models, especially ones
where pairs of annotations may match imperfectly. We also
propose that other evaluation criteria should be examined
to more fully understand the trade-offs involved in building
datasets with a particular level of annotation granularity.
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