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Abstract

It has been argued before that Prolog is a strong candidate for research and code develop-
ment in bioinformatics and computational biology. This position has been based on both
the intrinsic strengths of Prolog and recent advances in its technologies. Here we strengthen
the case for the deployment and penetration of Prolog into bioinformatics, by introduc-
ing bio db, a comprehensive and extensible system for working with biological data. We
focus on databases that translate between biological products and product-to-product
interactions, the latter of which can be visualised as graphs. This library allows easy ac-
cess to high quality data in two formats: as Prolog fact files and as SQLite databases.
On-demand downloading of prepacked data files in these two formats is supported in all
operating system architectures as well as reconstruction from latest data files from the
curated databases. The methods used to deliver the data are transparent to the user and
the data are delivered in he familiar format of Prolog facts.

1 Introduction

Prolog’s traditional playground is that of knowledge representation and AI appli-

cations on crisp, logical inference and search. In addition to being a research tool

in these areas, Prolog implementations have been developing to full fledged general

purpose programming environments. These developments have start shaping a role

for logic programming in a variety of new areas.

Bioinformatics has been been the meeting point of a number of influences since

its emergence as a field of study. Being on the intersection of biology, statistics and

computing, it has meant that a multitude of languages, systems and paradigms

has been developed and utilised for bioinformatics research. One of the strongest

contestants in this field comes from the statistics community in the shape of the

R (R Core Team, 2014) language and its Bioconductor (Gentleman et al., 2004)

bioinformatics suite. The strength of these statistical tools is on providing a versatile

platform that can incorporate a menagerie of paradigms and programming styles.

Bridges between Prolog systems and R exist in two forms: (a) running the R

executable session and communicating with it via the standard i/o streams, and
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(b) connecting to an R shared library and exchange data and invoke functions via

a C language based interface. The former approach is suitable for working with R

code that depends on the executable’s running environment. An example of a session

based approach is r session (Angelopoulos, 2013). An example of a shared library

approach is Real, (Angelopoulos et al., 2013), which is suitable for communicating

large volumes of data between Prolog and R.

Using an interface to R would be one way to access biological databases via pack-

ages such as org.Hs.eg.db (Carlson, 2014). However, this approach would increase

reliance to R and create a further layer of complications. Here, we take a logical ap-

proach to incorporating biological knowledge. With the advances in modern Prolog

systems in database integration (Canisius et al., 2013; Wielemaker, 2014) and in-

dexing technologies (Santos Costa and Vaz, 2013; Morales and Hermenegildo, 2014)

working with big data within Prolog is set to become an important application area

for Prolog.

In this paper we describe the capabilities and design structure of an extensible

library for working with and managing biological databases. Distinctive features

of the package include: on-demand downloading of prepacked databases, ability to

download and reconstruct databases from primary sources, single entry interface

for accessing databases in 2 underlying serving mechanisms. Our library focuses

on Homo sapiens databases and uses high-quality curated databases. Furthermore,

it works on 2 Prolog systems, SWI-Prolog (Wielemaker et al., 2012) and YAP

Prolog (Costa et al., 2012). Although our current implementation only supports

SQLite databases due to their zero-configuration approach, it can be easily extended

to other relational database systems. The intuitiveness of bio db along with its

relational design principles make it a natural way for handling biological databases

in logic programming.

There are alternative ways to view this kind of data which depend on more

evolved technologies Mungall (2009); Vassiliadis et al. (2009). The strengths of

our approach in contrast are its intuitiveness, simplicity and the closeness of the

produced data to the way the data are stored in the source databases.

The remainder of this paper is structured as follows. Section 2 presents the

datasets readily available and the main mechanisms for using them. Section 3 de-

scribes the facilities for building the available datasets ab initio and how to incor-

porate new datasets. Section 4 shows some experimental results and example usage

regarding the available datasets. Finally, Section 5 holds the concluding remarks.

2 A logical approach to big biological datasets

Data from biological experiments and data codifying biological knowledge have

seen a sharp increase in the last decades due to the ever increasing number of high

throughput techniques and the explosion in the number of researchers working on

these areas. Here we will concentrate on two main categories of databases although

the methodologies employed can be readily applied to any database, biological or

otherwise.

The first category of databases we consider is that of mapping biological products
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Pairwise maps
Database Abbv. Description

HGNC hgnc HUGO Gene Nomenclature Committee
NCBI/entrez entz Nat. Center for Biot. Inf.
Uniprot unip Universal Protein Resource
GO gont Gene Ontology

Interactions database

String string protein-protein interactions

Table 1. Supported biological databases and data sources.

and nomenclatures. A prime example in this area is the mapping genes to a unique

gene names. Due to the decentralised way gene names are assigned, particularly in

the early years of biological research before standardisation efforts took place, each

gene is usually known by a number of different names, this is an example of an

many-to-one mapping, from synonyms to unique gene name. Mapping proteins to

genes is also many-to-one, but in this case because a single gene can be transcribed

to a number of proteins. Many-to-many maps can be used to define membership

to multiple sets. Maps are conveniently and efficiently implemented as Prolog facts

of arity 2. The efficiency derives from first argument indexing (Warren, 1983; Aı̈t-

Kaci, 1991). When bi-directional translation is required, fact databases that reverse

the order of the arguments are constructed.

A summary of the databases supported are shown in Table 1. Here we give a brief

description of the databases included in bio db. HGNC (Gray et al., 2015), is our

primary gene naming data source. It is a curated and well cross referenced resource

that is held at EBI. Each gene is assigned a unique incremental integer identifier

and each current identifier is mapped to a unique symbol which is the short name

for each gene. Example of symbols are: LMTK3, EGFR and BRC1. We will use

hgnc to refer to both the database and the unique integer identifier field of the

database. Symbols are shorted to symb. As can be seen in Figure 1 HGNC database

entries play a central role in bio db. The HGNC identifier connects to protein and

gene resources, and Symbol connects to gene ontology terms and other naming

conventions (previously-known-as and synonyms). The data populating many of

the relation in Figure 1 come from the HGNC database which contains curated and

submitted data from the other databases.

The National Center for Biotechnology Information (NCBI) makes available a

large number of datasets (NCBI Resource Coordinators, 2013). Here we only incor-

porate their unique gene identifier. This is often referred to as gene id and was for

many years the main way to uniquely refer to genes. Including this ensures that a

number of tools and services can be used via translation of any of the other protein

and gene fields to gene ids (here shortened to entz which is a reference to NCBI’s

Entrez on-line tool that uses gene identifiers as a gateway to its services).
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Fig. 1. Mapping predicates connect vertices of the displayed graph. The legend shows
the database from which the field for each argument in the predicates is drawn from.

Uniprot (The UniProt Consortium, 2015) is a curated and well established data-

base of proteins and related information. The relation between proteins and genes

is a many to one correspondence. Each protein is transcribed from a single gene but

each gene can be transcribed to more than one protein. Many biological databases

record information at the protein level as this is the level at which physical interac-

tions take place. Uniprot contains two parts, a curated resource where each protein

is known to be transcribed from a specific gene and a non-curated part where not all

information is complete. As our approach is gene-centric we incorporate all those

proteins from both curated and non-curated parts that have an association to a

gene.

Gene ontology (GO) (The Gene Ontology Consortium, 2000) provides a con-

trolled vocabulary to describe biological knowledge. It has 3 main sections: biolog-

ical process, molecular function and cellular component. The basic representation

unit in GO are its GO terms. They are connected in a web of referential relations.

Each term, in addition to its relative position to other terms, contains a number

of genes which are involved in the process characterised by the term. Here we con-

centrate on this membership, which defines a many to many relation. Each term

contains a number of genes and each gene can potential belong to a number of

terms.
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Fig. 2. Populations of the main fields in the supported databases. Each bar corresponds
to a field in one of the databases. Colours correspond to databases from which the field
was drawn from. In the LHS are the fields associated with maps and in the RHS are the
String DB edges. The height correspond to number of items in each case and the two plots
are drawn in different scales

String (Szklarczyk et al., 2015) is a comprehensive protein-protein interactions

database that incorporates a large number of interactions present in one of a large

number of species. Here we concentrate on the 4850628 interactions in String that

pertain to human proteins (Figure 2). When mapped to symbols these form 1936162

interactions. This database collates information on each protein-protein interaction

from a variety of sources such as experimental and algorithmically predicted along

with publication information for papers that refer to specific links. In addition, an

overall integer score in (0, 1000) is provided. The closer to 1000 this score is, the

more confident the curators are that this is a real physical interaction between two

proteins. Bio db models interactions of proteins and genes as weighed graph edges

using the overall score as the weight for each edge.

3 Data management

In bio db the native representation of the biological knowledge described above is

as Prolog facts. The library presents those facts to the programmer as a unifying

level of abstraction. Beneath this, there are two mechanisms via which the data are

delivered to the predicates: (a) Prolog fact files and (b) SQLite databases.

3.1 Predicate naming

An example of a map predicate is

map_hgnc_hgnc_symb( Hgnc, Symb ).

The predicate translates between HGNC identifiers and HGNC symbols. The pred-

icate name consists of 4 components, the first of which determines the type of data,
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which in this case is a map. The second component, hgnc corresponds to the source

database and the third component, also hgnc, identifies the first argument of the

map to be the unique identifier field for that database (here a positive integer start-

ing at 1 and with no gaps. The last part of the predicate name corresponds to the

second argument, which here is the unique Symbol assigned to a gene by HGNC.

In the current version of bio db, all tokens in map predicate names are 4 charac-

ters long. The abbreviations for the database component are shown in the second

column of Table 1 whereas the abbreviations for the database fields are the cap-

italised parts of vertice’s names of Figure 1. The following interaction shows how

the predicate can be used to find the symbol of a gene given its HGNC identifier.

?- map_hgnc_hgnc_symb( 19295, Symb ).

Symb = ’LMTK3’.

3.2 Data serving methods

There are two mechanisms via which the library’s data predicates can be stored

and served. One is as plain Prolog fact files, and the other is via SQLite databases

as implemented in the proSQLite Prolog library (Canisius et al., 2013). The former

requires in-memory loading for serving, thus it requires more memory and time

for loading irrespective of the fact that a particular interaction with the predicate

may not require the whole data set. The benefits of Prolog facts is that there are

extremely fast particularly when requests for data instantiate the first argument of

their call. Memory itself is in our experience not a particular limitation as computer

memory is readily available in bioinformatic settings and SWI-Prolog along with

most modern Prolog systems are well tuned to dealing with such data.

The time taken when loading everything to memory is a more severe limitation

particularly in development settings where the data needs to be loaded a number

of times in short space of time. It might thus be desirable to use SQLite during

development and testing and Prolog for when big time consuming searches are

required. One additional considerations is that the fact that the Prolog facts are

stored in plain text files which can be helpful when debugging. Switching between

the mechanisms for serving the files is done via a simple call to a predicate,

bio_db_interface( ?Interface ).

All data predicates loaded after such a call will be following the interface method

dictated by Interface. The following example shows how the interface is switched

from the default prolog to prosqlite.

?- debug( bio_db ).

true.

?- bio_db_interface( Iface ).

Iface = prolog.

?- map_hgnc_symb_hgnc( ’LMTK3’, Hgnc ).
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% Loading prolog db: .../maps/hgnc/map_hgnc_symb_hgnc.pl

Hgnc = 19295.

?- bio_db_interface( prosqlite ).

% Setting bio_db_interface prolog_flag, to: prosqlite

true.

?- map_hgnc_prev_symb( Prev, Symb ).

% Loading prosqlite db: .../map_hgnc_prev_symb.sqlite

Prev = ’A1BG-AS’,

Symb = ’A1BG-AS1’;

Prev = ’A1BGAS’,

Symb = ’A1BG-AS1’ ;

Prev = ’A1BG-AS’,

Symb = ’A1BG-AS1’...

3.3 Downloading datasets

The library comes with placeholder code for each supported database table. On

first call the relevant datafile is downloaded from the web-server and consulted on-

the-fly after the place-holding code is removed. In each new interactive invocation,

hot-swapping and then consulting of the relevant and data file will make the data

available as facts. The facts are served transparently to the user by the two different

technologies detailed above.

The downloading of non-installed datasets occurs automatically and transpar-

ently to the user. This is triggered by a call to the corresponding data predicate

and the actual call is served within the same interaction as demonstrated below

?- debug( bio_db ).

?- map_hgnc_symb_hgnc( ’LMTK3’, Hgnc ).

% prolog DB:table hgnc:map_hgnc_symb_hgnc/2 is not installed,

do you want to download (Y/n) ?

% Trying to get: url_file(.../map_hgnc_symb_hgnc.pl,

.../hgnc/map_hgnc_symb_hgnc.pl)

% Loading prolog db: .../hgnc/map_hgnc_symb_hgnc.pl

Hgnc = 19295.

The data files are stored in a directory organised in maps and graphs reflecting the

two main type of information supported. Within these two sub directories data are

organised as per database of origin. The root of this filestore organisation defaults

to the data directory of the library or can be set via an environment variable or by

using the set prolog flag/2 predicate.

The default location for storing data files is at the level of an SWI-Prolog pack
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GO term GO name population

GO:0003674 molecular function 764
GO:0004674 protein serine/threonine kinase activity 340
GO:0004713 protein tyrosine kinase activity 89
GO:0005524 ATP binding 1488
GO:0005575 cellular component 497
GO:0006468 protein phosphorylation 557
GO:0010923 negative regulation of phosphatase activity 53
GO:0016021 integral component of membrane 200
GO:0018108 peptidyl-tyrosine phosphorylation 131

Table 2. Gene ontology terms and associated GO term names for LMTK3. Third

column shows the total of genes in the GO term

located at pack(bio db repo). Alternatively to loading each file piecemeal, users

can download the data with a single download as a pack via

?- pack_instal( bio_db_repo ).

Each dataset contains a set of house keeping information that show among other

things the date the set was downloaded and built.

map_hgnc_hgnc_symb_info(date, date(2015, 4, 28)).

map_hgnc_hgnc_symb_info(map_type, map_type(1, 1)).

map_hgnc_hgnc_symb_info(unique_lengths, c(43592, 43592, 43592)).

map_hgnc_hgnc_symb_info(header, row(’HGNC ID’, ’Approved Symbol’)

3.4 Reconstruction and new datasets

The Prolog scripts used to download and convert the data are given in the library

source code. The overall work-flow normally is as follows: (a) download a remote

file to a local date-stamped file, (b) read the downloaded file, (c) produce bio db

outputs, and (d) move or link files from downloads directory to loadables directory.

These scripts can be used to reconstruct the datasets in different time points to

those provided by bio db repo, thus affording more autonomy to the users.

4 Examples

Gene ontology terms are routinely used in the analysis of biological data, particu-

larly functional analysis of target lists. For instance from a list of genes differentially

expressed in an set of microarray experiments, GO term over-representation seeks

to identify GO terms in which members of the differential list are present in numbers

more than expected by random selection (Falcon and Gentleman, 2007).

Here we will look into the GO terms of the LMTK3 tyrosine kinase (Giamas

et al., 2011). The following code shows how to produce the GO terms, their names

and their populations, which are shown in Table 2.
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Fig. 3. Gene ontology term GO:0010332: response to gamma radiation. Edges are provided
by the String database. The width and darkness of edge colour signify higher belief in the
interaction being a real protein-protein interaction

lmtk3_go :-

map_gont_symb_gont( ’LMTK3’, Gont ),

findall( Symb, map_gont_gont_symb(Gont,Symb), Symbs ),

map_gont_gont_gonm( Gont, Gonm ),

sort( Symbs, Oymbs ),

length( Oymbs, Len ),

fail.

lmtk3_go.

?- lmtk3_go.

As a second example we combine GO terms with String interactions. For a given

GO term we can construct a weighted graph reflecting the interactions from the

String database. This is build by first mapping an input GO term to the list of

symbols it contains and then collecting all edges amongst these symbols that have

a weight that exceeds that of a provided limit. The graph in Figure 3 shows such a

graph for term GO:0010332 for a minimum weight of 500.
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go_term_graph(GoTerm,Min,Graph):-

findall( Symb, map_gont_gont_symb(Gont,Symb), Symbs ),

findall( Symb1-Symb2:W, (

member(Symb1,Symbs),

member(Symb2,Symbs),

edge_string_hs_symb(Symb1,Symb2,W),

Lim < W

),

Graph ).

?- go_term_graph( ’GO:0010332’, 500, W ).

4.1 Availability

The software described in this paper is available as an easy to install library for the

SWI-Prolog system. Installation can be done within the system with a single call

?- pack_install( bio_db ).

This will only install the library source code but not the datasets. These will be

downloaded on demand and transparently to the user upon the first call to a pred-

icate.

All but one dataset, which have been excluded due to its size, can be also uploaded

proactively with a single call,

?- pack_install( bio_db_repo ).

5 Conclusions

We have argued that Prolog is a powerful language for building bioinformatics

pipelines and that its role can be of crucial importance as biological data is in-

creasingly needed to be viewed as knowledge both in the contexts of analysis and

that of statistical inference or machine learning. Prolog’s knowledge representation

credentials are highly relevant in this context.

We presented a library that is easily installed from within SWI-Prolog (Wiele-

maker et al., 2008). This library presents a convenient and intuitive way for working

with biological data. All available data have been sourced from high quality and

wherever possible curated databases. The emphasis of our approach is to provide

easy of use, via automatically downloading datasets and using code hot-swapping,

as well as flexibility by de-coupling data from code and allowing transparent ways

of only downloading the necessary datasets.

There are alternative ways to view this kind of data which depend on more

evolved technologies Mungall (2009); Vassiliadis et al. (2009). The strengths of

our approach in contrast are its intuitiveness, simplicity and the closeness of the

produced data to the way the data are stored in the source databases. Current

work on the library includes extending to other databases and particularly the
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Reactome database (Croft et al., 2014), as well as to other database interfaces such

as ODBC. Prolog is well suited for research and code development in the areas

of bioinformatics and computational biology. The code presented here, can play a

strong role in promoting Prolog in these areas.
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