A single proof of classical behaviour in da
Costa’s C,, systems

Mauricio Osorio, José Abel Castellanos

Universidad de las Américas, Sta. Catarina Martir, Cholula, Puebla,
72820 México
{osoriomauri, jose.castellanosjo}@gmail.com

Abstract. A strong negation in da Costa’s C, systems can be naturally
extended from the strong negation (—*) of Cy. In [1] Newton da Costa
proved the conectives {—, A, V, ="} in C; satisfy all schemas and infer-
ence rules of classical logic. In the following paper we present a proof that
all logics in the (), herarchy also behave classically as C:. This result tell
us the existance of a common property among the paraconsistent family
of logics created by da Costa.

Keywords: Paraconsistent logic, C), systems, Strong negation

1 Introduction

According to the authors in [1] a paraconsistent logic is the underlying logic for
inconsistent but non-trivial theories. In fact, many authors [2, 3] have pointed
out paraconsistency is mainly due to the construction of a negation operator
which satisfies some properties about classical logic, but at the same time do
not hold the so called law of explosion «, ~a = 8 for arbitrary formulas «, 3, as
well as others [1].

A common misconception related to paraconsistent logics is the confusion
between triviality and contradiction. A theory T is trivial when any of the
sentences in the language of T can be proven. We say that a theory T is con-
tradictory if exists a sentence « in the language of T such that T proves o and
—«. Finally, a theory T is explosive if and only if T is trivial in the presence of
a contradiction. We can see that contradictoriness and triviality are equivalent
if and only if for the underlying logic the law of explosion is valid [4]. One of the
greatest achievements of paraconsistent logic is to provide a general framework
to the study of inconsistent theories based on the distinction of contradiction
and triviality.

Paraconsistent logics were born in two different ways. In 1948, Jaskowski
gave the following conditions that any paraconsistent logic should satisfy [5]:

J1. When applied to inconsistent systems it should not always entail their triv-
ialization;
J2. Tt should be rich enough to enable practical inferences;

J3. It should have an intuitive justification.

Also, in 1963, we can find a new approach given by da Costa, who inde-
pendently defined a set of conditions that a paraconsistent logic should satisfy.
These conditions are the following:

dC1. In these calculi the principle of non-contradiction, in the form —(a A —a),
should not be a valid schema,;

dC2. From two contradictory formulae, a and —¢, it would not in general be
possible to deduce any arbitrary formula (3;

dC3. It should be simple to extend these calculi to corresponding predicate calculi;

dC4. They should contain the most part of the schemata and rules of the classical
propositional calculus which do not interfere with the first conditions.

Nowadays we can find paraconsistent logics applications in many fields such
as informatics, physics, medicine, etc. From Minsky’s comment we can see that
paraconsistent ideas are an approach in Artificial Intelligence [6]: "But I do not
believe that consistency is necessary or even desirable in a developing intelligent
system. No one is ever completely consistent. What is important is how one
handles paradox or conflict, how one learns from mistakes, how one turns aside
from suspected inconsistencies’.

In physics the authors in [7] have established an approach to formalize con-
cepts in quantum mechanics, the so called principle of superposition, via para-
consistent methods. In general most of scientific knowledge as theories can have
inconsistencies. Most of the time scientist do not throw away these theories if
they are successful in predicting results and describing phenomena [4].

In the literature we can find many proper paraconsistent logics [8] in the
sense of da Costa. The most known paraconsistent logic is C; which in [1] the
author also introduces an increasingly weaker family/hierarchy of logics called
the Cp,,1 < n < w. Also the authors mention that the strong negation defined
in the da Costa’s (), systems has all properties of the propositional classical
negation.

Finding a strong negation in the C,, herarchy is interesting because we can
collapse a fragment of these logics into classical logic, that is, we can have a
translation which provides an embedding of classical logic into any logic of this
Cy, system. This fact is mentioned in many papers [1,9], where the proof does
not explicitly appears. In this paper we present an inductive proof about the
relation between strong negation and classical behaviour in the C), systems. The
proof follows from three lemmas and two theorems. From this proof we can see
that many properties in C; can also hold in C),, excluding the obvious ones.

The organization of this document is as follows: In Section 2 we present basic
background in logic, including definitions of some basic properties (monotonicity,
cut-elimination, deduction theorem) of the paraconsistent logic C,, that we are
going to work with. In Section 3 we present a inductive proof about the classical
behavior of the strong negation defined in the C,, systems. Finally, in Section 4,
we present some conclusions about the proof presented.

2 Background

We first introduce the syntax of logical formulas considered in this paper. Then
we present a few basic definitions of how logics can be built to interpret the
meaning of such formulas.

2.1 Logic Systems

We consider a formal (propositional) language built from: an enumerable set £
of elements called atoms (denoted a, b, ¢, ...); the binary connectives A (conjun-
tion), V (disjunction) and — (implication); and the unary connective = (nega-
tion). Formulas (denoted «, 3,7, ...) are constructed as usual by combining these
basic connectives together with the help of parentheses. We also use a <> 5 to
abbreviate (o« —) A (8 — «). Finally, it is useful to agree on some conventions
to avoid the use of many parenthesis when writing formulas in order to make
easier the reading of complicated expressions. First, we may omit the outer
pair of parenthesis of a formula. Second, the connectives are ordered as follows:
-, \,V, —, <>, and parentheses are eliminated according to the rule that, first,
— applies to the smallest formula following it, then A is to connect the smallest
formulas surrounding it, and so on.

We consider a logic simply as a set of formulas that (i) is closed under Modus
Ponens (i.e. if @« and @ — § are in the logic, then so is 3) and (ii) is closed under
substitution (i.e. if a formula « is in the logic, then any other formula obtained
by replacing all occurrences of an atom b in « with another formula £ is also in
the logic). The elements of a logic are called theorems and the notation Fx « is
used to state that the formula « is a theorem of X (i.e. « € X). We say that a
logic X is weaker than or equal to a logic Y if X C Y, similarly we say that X
is stronger than or equal to Y if Y C X.

Hilbert proof systems There are many different approaches that have been
used to specify the meaning of logic formulas or, in other words, to define log-
ics. In Hilbert style proof systems, also known as axiomatic systems, a logic is
specified by giving a set of axioms (which is usually assumed to be closed under
substitution). This set of axioms specifies, so to speak, the "kernel" of the logic.
The actual logic is obtained when this "kernel" is closed with respect to some
given inference rules which include Modus Ponens. The notation Fx « for prov-
ability of a logic formula « in the logic X is usually extended within Hilbert style
systems; given a theory I', we use I' Fx « to denote the fact that the formula
« can be derived from the axioms of the logic and the formulas contained in I
by a sequence of applications of the inference rules.

As a example of a Hilbert style system we present next a logic that is relevant
for our work.

C,, [1] is defined by the following set of axiom schemata:

Posl: a = (8 — «)

Pos2: (a — B) = (o — (B —= 7)) = (@ —= 7))
Pos3: anNf — «

Posd: a NP — B

Posh: a— (8 — a A B)

Pos6: a — (aV)

Pos7: 8 — (aV B)

Pos8: (a =) = ((B—7) = (VB —=7))
Cyl: aV -«

Cp2: "ma— «

Note that the first 8 axiom schemata somewhat constrain the meaning of the
—, A and V connectives to match our usual intuitions. It is a well known result
that in any logic satisfying Posl and Pos2, and with Modus Ponens as its unique
inference rule, the deduction theorem holds [10].

Theorem 1. Let I' and A be two sets of formulas. Let 0, 01, 02, o and v be
arbitrary formulas. Let & be the deductive inference operator of C,. Then the
following basic properties hold.

I'+ a — « (identity theorem)

I't « implies I' U A+ « (monotonicity)

I'aand A,a by then TUAR ¢ (cut)

IO+ «if and only if I' -0 — « (deduction theorem)

I'-61 A0 if and only if ' 01 and '+ 65 (A - rules)

IOk« and I'=0 b « if and only if I' = « (strong proof by cases)

S Grds oo =

3 Strong negation in C,, systems

We will start giving some basic definitions in order to understand concepts
needed in the C), hierarchy.

Definition 1. ([1]) a® =4e5 (e A—a). We will refer to (°) as the consistency
operator.

In fact @® can be seen as a modal operator to the formula « that captures
the idea of consistency/well - behavior in Cf.

Definition 2. ([9]) We recursively define o™, 0 <n < w as follows:

(i) 0 =aes
(”) an-i—l =def (an)o

Definition 3. ([9]) We recursively define o™, 1 < n < w as follows:

(Z) Oz(l) =def Oél
(i) @D =40 p ™ A ant!

For the careful reader should not confuse o with a°. Basically a™ repre-
sents n applications of the consistency operator (°) to the formula a, and o™
represents a conjunction of !, ..., a".

Definition 4. ([1]) We define C,, as an extension of C, which also includes
the following axiom schemas:

Cpl: 8™ = ((a = B) = ((a = =B) — —a)
Cn2: (o™ ABM) = ((a— B)™ A(aVB) ™ A(anB)™)

Also, we can see that in C,, the axiom C,1 can be replaced by the axiom
schema (8 A =8 A (™) — . Intuitively from C,,2 we see that (™) propagates
the what we call n-consisteny in C,,. Finally we define a strong negation in both

C; and C,,.
Definition 5. ([1]) The strong negations for C1 and C,, are defined as:

(i) For Cy: =*a =gef ~x A
(i) For Cy: ()¢ =def TN am

Lemma 1. For all n € N we have that =(a™) k¢, «

Proof. By induction on n.

Base case (n = 1). By Definition 2 we have that o —(al) < —(a®). Also
by Definition 1, k¢, —(a®) < —(=(a A —a)), we can expand the last formula
to Fo, —(al) + =(=(a A —a)). We can use axiom schema ——a — « to prove
ke, —(al) = a A =a, which is by axiom schema Pos3 we have k¢, =(a!) — a.
From this we apply deduction theorem to obtain —(a') ¢, « as desired.

Inductive step. We assume by induction hypothesis that =(a™) k¢, a holds.
Accordingly to Definition 2 we have that k¢, =(a™™1) <+ =(a™)°, which in fact
is ke, —(a™)° <> ==(a™ A —(a™)). From this is easy to prove that —(a"*1) k¢
—(a™), and with the inductive hypothesis we have that —~(a"*!) k¢ a. O

Lemma 2. For alln € N we have that ¢, a Vo™

Proof. We can see that o™ F¢, oV a™. On the other hand, due to Lemma 1 we
have that =(a™) k¢, «, therefore —(a") ¢, oV ™. Applying strong proof by
cases we have that F¢, oV a™. a

Lemma 3. For alln € N we have that ¢, oV o™

Proof. By induction on n.

Base case (n = 1). From Lemma 1 we have that k¢, a V a° holds when n =
1.

Inductive step. We assume by induction hypothesis that ¢, aV a(™ holds.
We know from Lemma 2 that k¢, oV a™!. Thus ko, (aVa™) A (aVa™t?h).
Applying the distributive law to the last formula we have that ¢, oV (o™ A
a™), which in fact it is by definition F¢, oV a1, O

Theorem 2 (Excluded Middle). In C,,, we have that F¢, aV -«
Proof. In C,, we have the following:

Fe, (aV=Ma) < (aV(aAa™))
Fe, (aV=Ma) < (aV-a)A(aVa®™)
Fo, (aV-Ma) & aVva

Therefore it is only necessary to check that oV a(™ holds, but accordingly to
the Lemma 3 this is true. a

The next two theorems follows from a similar proof in [1] where the author
proved the same theorems in C}.

Theorem 3 (Reductio Ad Absurdum). In C,, we have that:

(ru{altre, B),(TU{a} e, =B),(I'U{a} e, B™) =T ko, ~a

Proof. Using Deduction Theorem we can prove the following from the hypothesis
given: I' b, o = 8™, I' ¢, o — B and I' F¢, o — —B. By the transitive
rule and the axiom schema F¢, 8 — ((a = 8) — ((a — —8) — —a)) we
have that I' ¢, @ = ((a@ = 8) = ((« = =8) = —«)). By the application of
Modus Ponens twice we have that I' k¢, o — —a. From this, using theorem
Fe, ma — —a (as an instance of Identity theorem), and axiom schemas k¢,
aV-aand Fo, (o = —a) = ((ha — —a) = ((aV-a) = —a)) we can conclude
that I' ¢, —a. O

Theorem 4 (Explosive Principle). In C,, we have that:

Fo, a— (Mo — B)

Proof. According to the strong negation definition we have that: o, =™, =3 e,
—a A a™, therefore a,~™a,=f Fo, —a and a,~(Ma, -8 k¢, ™. Also
we have that a,—(™a, -3 Fc, «. By the theorem 3 is easy to prove that
a, (Mg Fc, ——pB. C) contains the axiom schemata ——a — «, which it let
us prove that o, =M« Fc, B. Finally, applying two times deduction theorem to
the last formula we have that k¢, a — (=(™a — B). O

Theorem 5. The connectives {—, A, V, ﬁ(”)} in C,, satisfy all the axiom schemata
and inference rules in classical propositional calculus.

Proof. Any logic in C,, extends the positive logic axioms from C,,. Then, it is
only necessary observe that the following axiom (=(Ma — =("pg) = (8 — a)
holds in C,,

1. Mg - =g Hypothesis
2. B Hypothesis
3. 8= (—\(")5 -) From Theorem j

4

Mg Modus Ponens (2, 3)

-Ma = a Transitivity (1, 4)
a— Identity theorem
(= a) = (Mo —a) = ((av-Ma) - a)) Axiom Pos8
(=Ma — a) = ((aV-"a) = a) Modus Ponens (6, 7)
(aVv-Ma) =« Modus Ponens (5, 8)
aVv-Mmq From Theorem 2
.« Modus Ponens (10, 9)
(Mo — =B B 1-11
(=M — =B e B — Deduction Theorem(12)
o, (Ma = =(MB) = (B = a) Deduction Theorem(13)
O

Conclusions

The presented work gives general ideas how to possibly extend a property in C
to C, mainly using inductive proofs. We know that all logics in the C), system
are strictly weaker than C; [1], perhaps many of them share many things in
common as a strong negation. In the future should be interesting to investigate
how much these logics are related each other among relevant properties.

References

10.

da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame
Journal of Formal Logic 15 (1974) 497-510

Béziau, J.Y.: (Adventures in the Paraconsistent Jungle, CLE e-Prints, Vol. 4(1),
2004 (Section Logic))

Arieli, O., Avron, A., Zamansky, A.: Ideal paraconsistent logics. Studia Logica 99
(2011) 31-60

Carnielli, W., Abilio, R.: (On the philosophical motivations for the logics of formal
consistency and inconsistency)

Marcos, J.: On a problem of da costa. Essays on the Foundations of Mathematics
and Logic 2 (2005) 53-69

Minsky, M.: A framework for representing knowledge. In Winston, P., ed.: The
Psychology of Computer Vision. Mcgraw-Hill, New York (1975) 211-277

N. da Costa, C.d.R.: The paraconsistent logic of quantum superpositions. Foun-
dations of Physics 43 (2013) 845-858

Carnielli, W.A., Marcos, J.: A taxonomy of C-Systems. In: Paraconsistency: The
Logical Way to the Inconsistent, Proceedings of the Second World Congress on
Paraconsistency (WCP 2000). Number 228 in Lecture Notes in Pure and Applied
Mathematics, Marcel Dekker, Inc. (2002) 1-94

Carnielli, W.A., Marcos, J.: Limits for paraconsistent calculi. Notre Dame Journal
of Formal Logic 40 (1999) 375-390

Mendelson, E.: Introduction to Mathematical Logic. Third edn. Wadsworth, Bel-
mont, CA (1987)

