
Can FCA-based Recommender System Suggest a

Proper Classi�er?

Yury Kashnitsky and Dmitry I. Ignatov

National Research University Higher School of Economics
Scienti�c-Educational Laboratory for Intelligent Systems and Structural Analysis

Moscow, Russia
ykashnitsky@hse.ru, dignatov@hse.ru

Abstract. The paper brie�y introduces multiple classi�er systems and
describes a new algorithm, which improves classi�cation accuracy by
means of recommendation of a proper algorithm to an object classi�ca-
tion. This recommendation is done assuming that a classi�er is likely to
predict the label of the object correctly if it has correctly classi�ed its
neighbors. The process of assigning a classi�er to each object is based on
Formal Concept Analysis. We explain the idea of the algorithm with a
toy example and describe our �rst experiments with real-world datasets.

1 Introduction

The topic of Multiple Classi�er Systems (MCSs) is well studied in machine
learning community [1]. Such algorithms appear with di�erent names � mixture
of experts, committee machines, classi�er ensembles, classi�er fusion and others.

The underlying idea of all these systems is to train several (base) classi�ers
on a training set and to combine their predictions in order to classify objects
from a test set [1]. This idea probably dates back to as early as the 18th cen-
tury. The Condorcet's jury theorem, that was formulated in 1785 in [2], claims
that if a population makes a group decision and each voter most likely votes
correctly, then adding more voters increases the probability that the majority
decision is correct. The probability that the majority votes correctly tends to 1
as the number of voters increases. Similarly, if we have multiple weak classi�ers
(meaning that classi�er's error on its training data is less than 50% but greater
than 0%), we can combine their predictions and boost the classi�cation accuracy
as compared to those of each single base classi�er.

Among the most popular MCSs are bagging [3], boosting [7], random forests
[9], and stacked generalization (or stacking) [10].

In this paper, we present one more algorithm of such type � Recommender-
based Multiple Classi�er System (RMCS). Here the underlying proposition is
that a classi�er is likely to predict the label of the object from a test set correctly
if it has correctly classi�ed its neighbors from a training set.

The paper is organized as follows. In chapter 2, we discuss bagging, boosting
and stacking. In Section 3, we introduce basic de�nitions of Formal Concept

Analysis (FCA). Section 4 provides an example of execution of the proposed
RMCS algorithm on a toy synthetic dataset. Then, Section 5 describes the RMCS
algorithm itself. Further, the results of the experiments with real data are pre-
sented. Section 7 concludes the paper.

2 Multiple Classi�er Systems

In this chapter, we consider several well-known multiple classier systems.

2.1 Bagging

The bootstrap sampling technique has been used in statistics for many years.
Bootstrap aggregating, or bagging, is one of the applications of bootstrap sam-
pling in machine learning. As su�ciently large data sets are often expensive or
impossible to obtain, with bootstrap sampling, multiple random samples are cre-
ated from the source data by sampling with replacement. Samples may overlap
or contain duplicate items, yet the combined results are usually more accurate
than a single sampling of the entire source data achieves.

In machine learning the bootstrap samples are often used to train classi�ers.
Each of these classi�ers can classify new instances making a prediction; then
predictions are combined to obtain a �nal classi�cation.

The aggregation step of bagging is only helpful if the classi�ers are di�erent.
This only happens if small changes in the training data can result in large changes
in the resulting classi�er � that is, if the learning method is unstable [3].

2.2 Boosting

The idea of boosting is to iteratively train classi�ers with a weak learner (the
one with error better than 50% but worse than 0%) [4]. After each classi�er is
trained, its accuracy is measured, and misclassi�ed instances are emphasized.
Then the algorithm trains a new classi�er on the modi�ed dataset. At classi-
�cation time, the boosting classi�er combines the results from the individual
classi�ers it trained.

Boosting was originally proposed by Schapire and Freund [5,6]. In their Adap-
tive Boosting, or AdaBoost, algorithm, each of the training instances starts with
a weight that tells the base classi�er its relative importance [7]. At the initial step
the weights of n instances are evenly distributed as 1

n The individual classi�er
training algorithm should take into account these weights, resulting in di�er-
ent classi�ers after each round of reweighting and reclassi�cation. Each classi�er
also receives a weight based on its accuracy; its output at classi�cation time is
multiplied by this weight.

Freund and Schapire proved that, if the base classi�er used by AdaBoost
has an error rate of just slightly less than 50%, the training error of the meta-
classi�er will approach zero exponentially fast [7]. For a two-class problem the
base classi�er only needs to be slightly better than chance to achieve this error

rate. For problems with more than two classes less than 50% error is harder to
achieve. Boosting appears to be vulnerable to over�tting. However, in tests it
rarely over�ts excessively [8].

2.3 Stacked generalization

In stacked generalization, or stacking, each individual classi�er is called a
level-0 model. Each may vote, or may have its output sent to a level-1 model

� another classi�er that tries to learn which level-0 models are most reliable.
Level-1 models are usually more accurate than simple voting, provided they are
given the class probability distributions from the level-0 models and not just the
single predicted class [10].

3 Introduction to Formal Concept Analysis

3.1 Main de�nitions

A formal context in FCA is a triple K = (G,M, I), where G is a set of
objects, M is a set of attributes, and the binary relation I ⊆ G × M shows
which object possesses which attribute. gIm denotes that object g has attribute
m. For subsets of objects and attributes A ⊆ G and B ⊆ M Galois operators

are de�ned as follows:

A′ = {m ∈M | gIm ∀g ∈ A},
B′ = {g ∈ G | gIm ∀m ∈ B}.

A pair (A,B) such that A ⊆ G,B ⊆M,A′ = B and B′ = A, is called a formal

concept of a context K. The sets A and B are closed and called the extent and
the intent of a formal concept (A,B) respectively. For the set of objects A the
set of their common attributes A′ describes the similarity of objects of the set
A and the closed set A′′ is a cluster of similar objects (with the set of common
attributes A′) [11].

The number of formal concepts of a context K = (G,M, I) can be quite large
(2min{|G|,|M |} in the worst case), and the problem of computing this number
is #P-complete [12]. There exist some ways to reduce the number of formal
concepts, for instance, choosing concepts by stability, index or extent size [13].

For a context (G,M, I), a concept X = (A,B) is less general than or equal

to a concept Y = (C,D) (or X ≤ Y) if A ⊆ C or, equivalently, D ⊆ B.
For two concepts X and Y such that X ≤ Y and there is no concept Z with
Z 6= X,Z 6= Y,X ≤ Z ≤ Y , the concept X is called a lower neighbor of Y , and Y
is called an upper neighbor of X. This relationship is denoted by X ≺ Y . Formal
concepts, ordered by this relationship, form a complete concept lattice which
might be represented by a Hasse diagram [14]. Several algorithms for building
formal concepts (including Close by One) and constructing concept lattices are
studied also in [14].

One can address to [11] and [15] to �nd some examples of formal contexts,
concepts and lattices with their applications. Chapter 4 also shows the usage of
FCA apparatus in a concrete task.

However, in some applications there is no need to �nd all formal concepts of a
formal context or to build the whole concept lattice. Concept lattices, restricted
to include only concepts with frequent intents, are called iceberg lattices. They
were shown to serve as a condensed representation of association rules and fre-
quent itemsets in data mining [15].

Here we modi�ed the Close by One algorithm slightly in order to obtain
only the upper-most concept of a formal context and its lower neighbors. The
description of the algorithm and details of its modi�cation is beyond the scope
of this paper.

4 A toy example

Let us demonstrate the way RMCS works with a toy synthetic dataset shown
in Table 1. We consider a binary classi�cation problem with 8 objects comprising
a training set and 2 objects in a test set. Each object has 4 binary attributes
and a target attribute (class). Suppose we train 4 classi�ers on this data and try
to predict labels for objects 9 and 10.

Using FCA terms, we denote by G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} � the whole
set of objects, Gtest = {9, 10} � the test set, Gtrain = G\Gtest � the training
set, M = {m1,m2,m3,m4}� the attribute set, C = {cl1, cl2, cl3, cl4}� the set
of classi�ers.

Table 1. A sample data set of 10 objects
with 4 attributes and 1 binary target
class

G/M m1 m2 m3 m4 Label

1 × × × 1

2 × × 1

3 × × 0

4 × × × 1

5 × × × 1

6 × × × 0

7 × × × 1

8 × × 0

9 × × × × ?

10 × × ?

Table 2. A classi�cation context

G/C cl1 cl2 cl3 cl4
1 × × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × × ×
7 × ×
8 × × ×

Here we run leave-one-out cross-validation on this training set for 4 classi�ers.
Further, we �ll in Table 2, where a cross for object i and classi�er clj means that
clj correctly classi�es object i in the process of cross-validation. To clarify, a

cross for object 3 and classi�er cl4 means that after being trained on the whole
training set but object 3 (i.e. on objects {1, 2, 4, 5, 6, 7, 8}), classi�er cl4 correctly
predicted the label of object 3.

Let us consider Table 2 as a formal context with objects G and attributes
C (so now classi�ers play the role of attributes). We refer to it as classi�cation
context. The concept lattice for this context is presented in Fig. 1.

Fig. 1. The concept lattice of the classi�cation context

As it was mentioned, the number of formal concepts of a context K =
(G,M, I) can be exponential in the worst case. But for the toy example it is
possible to draw the whole lattice diagram. Thankfully, we do not need to build
the whole lattice in RMCS algorithm � we only keep track of its top concepts.

Here are these top concepts: (G, ∅), ({1, 3, 5, 6}, {cl1}), ({2, 4, 5, 6, 7, 8}, {cl2}),
({1, 2, 4, 8}, {cl3}), ({1, 3, 6, 7, 8}, {cl4}).

To classify objects from Gtest, we �rst �nd their k nearest neighbors from
Gtrain according to some distance metric. In this case, we use k = 3 and Ham-
ming distance. In these conditions, we �nd that three nearest neighbors of object
9 are 4, 5 and 7, while those of object 10 are 1, 6 and 8.

Then, we take these sets of nearest neighbors Neighb9 = {4, 5, 7} and
Nieghb10 = {1, 6, 8}, and �nd maximal intersections of these sets with the ex-

tents of formal concepts presented above (ignoring the concept (G, ∅)). The in-
tents (i.e. classi�ers) of the corresponding concepts are given as recommendations
for the objects from Gtest. The procedure is summarized in Table 3.

Table 3. Recommending classi�ers for objects from Gtest

Gtest 1st

nearest
neighbor

2nd

nearest
neighbor

3rd

nearest
neighbor

Neighbors Classi�cation concept
which extent gives the
maximal intersection
with the Neighbors
set

Recommended
classi�er

9 4 5 7 {4, 5, 7} ({2, 4, 5, 6, 7, 8}, {cl2}) cl2
10 1 6 8 {1, 6, 8} ({1, 3, 6, 7, 8}, {cl4}) cl4

Finally, the RMCS algorithm predicts the same labels for objects 9 and 10
as classi�ers cl2 and cl4 do correspondingly.

Lastly, let us make the following remarks:

1. We would not have ignored the upper-most concept with extentG if it did not
have an empty intent. That is, if we had the top concept of the classi�cation
context in a form (G, {clj}) it would mean that clj correctly classi�ed all
objects from the training set and we would therefore recommend it to the
objects from the test set.

2. One more situation might occur that two or more classi�ers turn out to be
equally good at classifying objects from Gtrain. That would mean that the
corresponding columns in classi�cation table are identical and, therefore, the
intent of some classi�cation concept is comprised of more than one classi�er.
In such case, we do not have any argument for preferring one classi�er to
another and, hence, the �nal label would be de�ned as a result of voting
procedure among the predicted labels of these classi�ers.

3. Here we considered an input dataset with binary attributes and a binary
target class. However, the idea of the RMCS algorithm is still applicable for
datasets with numeric attributes and multi-class classi�cation problems.

5 Recommender-based Multiple Classi�er System

In this section, we discuss the Recommender-based Multiple Classi�er System
(RMCS). The pseudocode of the RMCS algorithm is presented in the listing
Algorithm 1.

The inputs for the algorithm are the following:

1. {Xtrain, ytrain} � is a training set, Xtest � is a test set;

2. C = {cl1, cl2, ..., clK} � is a set of K base classi�ers. The algorithm is in-
tended to perform a classi�cation accuracy exceeding those of base classi�ers;

3. dist(x1, x2) � is a distance function for objects which is de�ned in the
attribute space. This might be the Minkowski (including Hamming and Eu-
clidean) distance, the distance weighted by attribute importance and others.

4. k, n_fold � are parameters. Their meaning is explained below;
5. topCbO(context) � is a function for building the upper-most concept of a

formal context and its lower neighbors. Actually, it is not an input for the
algorithm but RMCS uses it.

The algorithm includes the following steps:

1. Cross-validation on the training set. AllK classi�ers are trained on n_folds−
1 folds of Xtrain. Then a classi�cation table (or context) is formed where a
cross is put for object i and classi�er clj if clj correctly classi�es object i
after training on n_folds− 1 folds (where object i belongs to the rest fold);

2. Running base classi�ers. All K classi�ers are trained on the whole Xtrain.
Then, a table of predictions is formed where (i, j) position keeps the pre-
dicted label for object i from Xtest by classi�er clj ;

3. Building top formal concepts of the classi�cation context. The topCbO al-
gorithm is run in order to build upper formal concepts of a classi�cation
context. These concepts have the largest possible number of objects in ex-
tents and minimal possible number of classi�ers in their intents (not counting
the upper-most concept);

4. Finding neighbors of the objects from Xtest. The objects from the test set
are processed one by one. For every object from Xtest we �nd its k nearest
neighbors from Xtrain according to the selected metric sim(x1, x2). Let us
say these k objects form a set Neighbors. Then, we search for a concept of a
classi�cation context which extent yields maximal intersection with the set
Neighbors. If the intent of the upper-most concept is an empty set (i.e., no
classi�er correctly predicted the labels of all objects from Xtrain, which is
mostly the case), then the upper-most concept (G, ∅) is ignored. Thus, we
select a classi�cation concept, and its intent is a set of classi�ers Csel;

5. Classi�cation. If Csel consists of just one classi�er, we predict the same label
for the current object from Xtest as this classi�er does. If there are several
selected classi�ers, then the predicted label is de�ned by majority rule.

6 Experiments

The algorithm, described above, was implemented in Python 2.7.3 and tested
on a 2-processor machine (Core i3-370M, 2.4 HGz) with 3.87 GB RAM.

We used four UCI datasets in these experiments - mushrooms, ionosphere,
digits, and nursery.1 Each of the datasets was divided into training and test
sets in proportion 70:30.

1 http://archive.ics.uci.edu/ml/datasets

Algorithm 1 Recommender-based Multiple Classi�er System

Input: {Xtrain, ytrain}, Xtest � are training and test sets, C = {cl1, cl2, ..., clK} �
is a set of base classi�ers, topCbO(context, n) � is a function for building the upper-
most concept of a formal context and its lower neighbors, dist(x1, x2) � is a distance
function de�ned in the attribute space, k � is a parameter (the number of neighbors),
n_fold � is the number of folds for cross-validation on a training set
Output: ytest � are predicted labels for objects fromXtest

train_class_context = [][] � is a 2-D array
test_class_context = [][] � is a 2-D array
for i ∈ 0 . . . len(Xtrain)− 1 do

for cl ∈ 0 . . . len(C)− 1 do

train classi�er cl on (n_fold− 1) folds not including object Xtrain[i]
pred = predicted label for Xtrain[i] by classi�er cl
train_class_context[i][cl] = (pred == ytrain[i])

end for

end for

for cl ∈ 0 . . . len(C)− 1 do

train classi�er cl on the whole Xtrain

pred = predicted labels for Xtest by classi�er cl
test_class_context[:][cl] = pred

end for

top_concepts = topCbO(class_context)
for i ∈ 0 . . . len(Xtest)− 1 do

Neighbors = k nearest neighbors of Xtest[i] from Xtrain according to sim(x1, x2)
concept = argmax(c.extent ∩ Neighbors), c ∈ top_concepts
Csel = concept.intent
labels = predictions for Xtest[i] made by classi�ers from Csel

ytest[i] = argmax(count_freq(labels))
end for

Table 4. Classi�cation accuracy of 6 algorithms on 4 UCI datasets: mushrooms (1),
ionosphere (2), digits (3), and nursery (4)

Data SVM,
RBF kernel
(C=1, γ=0.02)

Logit
(C=10)

kNN
(euclidean,
k=3)

RMCS
(k=3,
n_folds=4)

Bagging SVM
(C=1, γ=0.02)
50 estimators

AdaBoost
on decision
stumps,
50 iterations

1 0.998
t=0.24 sec.

0.996
t=0.17 sec.

0.989
t=1.2*10−2 sec.

0.997
t=29.45 sec.

0.998
t=3.35 sec.

0.998
t=44.86 sec.

2 0.906
t=5.7*10−3 sec.

0.868
t=10−2 sec.

0.858
t=8*10−4 sec.

0.933
t=3.63 sec.

0.896
t=0.24 sec.

0.934
t=22.78 sec.

3 0.917
t=0.25 sec.

0.87
t=0.6 sec.

0.857
t=1.1*10−2 sec.

0.947
t=34.7 sec.

0.92
t=4.12 sec.

0.889
t=120.34 sec.

4 0.914
t=3.23 sec.

0.766
t=0.3 sec.

0.893
t=3.1*10−2 sec.

0.927
t=220.6 sec.

0.913
t=38.52 sec.

0.903
t=1140 sec.

Data SVM,
RBF kernel
(C=103, γ=0.02)

Logit
(C=103)

kNN
(minkowski,
p=1, k=5)

RMCS
(k=5,
n_folds=10)

Bagging SVM
(C=103,
γ=0.02)
50 estimators

AdaBoost
on decision
stumps,
100 iterations

1 0.998
t=0.16 sec.

0.999
t=0.17 sec.

0.999
t=1.2*10−2sec.

0.999
t=29.45 sec.

0.999
t=3.54 sec.

0.998
t=49.56 sec.

2 0.906
t=4.3*10−3 sec.

0.868
t=10−2 sec.

0.887
t=8*10−4 sec.

0.9
t=3.63 sec.

0.925
t=0.23 sec.

0.934
t=31.97 sec.

3 0.937
t=0.22 sec.

0.87
t=0.6 sec.

0.847
t=1.1*10−2 sec.

0.951
t=34.7 sec.

0.927
t=4.67 sec.

0.921
t=131.6 sec.

4 0.969
t=2.4 sec.

0.794
t=0.3 sec.

0.945
t=3*10−2 sec.

0.973
t=580.2 sec.

0.92
t=85.17 sec.

0.912
t=2484 sec.

We ran 3 classi�ers implemented in SCIKIT-LEARN library 2(written in Python)
which served as base classi�ers for the RMCS algorithm as well. These were a
Support Vector Machine with Gaussian kernel (svm.SVC() in Scikit), logis-
tic regression (sklearn.linear_model.LogisticRegression()) and k Nearest
Neighbors classi�er (sklearn.neighbors.classification.
KNeighborsClassifier()).

The classi�cation accuracy of each classi�er on each dataset is presented in
Table 4 along with special settings of parameters. Moreover, for comparison, the
results for Scikit's implementation of bagging with SVM as a base classi�er
and AdaBoost on decision stumps 3 are presented.

As we can see, RMCS outperformed its base classi�ers in all cases, while it
turned out to be better than bagging only in case of multi-class classi�cation
problems (datasets digits and nursery).

7 Conclusion

In this paper, we described the underlying idea of multiple classi�er systems,
discussed bagging, boosting and stacking. Then, we proposed a multiple classi-
�er system which turned out to outperform its base classi�ers and two particular
implementations of bagging and AdaBoost in two multi-class classi�cation prob-
lems.

Our further work on the algorithm will continue in the following directions:
exploring the impact of di�erent distance metrics (such as the one based on
attribute importance or information gain) on the algorithm's performance, ex-
perimenting with various types of base classi�ers, investigating the conditions
preferable for RMCS (in particular, when it outperforms bagging and boosting),
improving execution time of the algorithm and analyzing RMCS's over�tting.

2 http://scikit-learn.org
3 https://github.com/pbharrin/machinelearninginaction/tree/master/Ch07

Acknowledgements. The authors would like to thank their colleague from
Higher School of Economics, Sergei Kuznetsov, Jaume Baixeries and Konstantin
Vorontsov for their inspirational discussions which directly or implicitly in�u-
enced this study.

References

1. Izenman, A. J.: Committee Machines. Modern Multivariate Statistical Techniques.
pp. 505�550. Springer New York (2008).

2. Condorcet, M.-J.-A.-N.: Essay on the Application of Analysis to the Probability of
Majority Decisions. (1785)

3. Breiman, L.: Bagging predictors. Machine Learning. 24(2), 123�140. (1996)
4. Schapire, R. E.: The Strength of Weak Learnability. Machine Learning. 5, 197�227

(1990)
5. Freund, Y: Boosting a Weak Learning Algorithm by Majority. Information and

Computation. 121(2), 256�285 (1995)
6. Freund, Y., Schapire, R. E.: A Decision-Theoretic Generalization of On-Line Learn-

ing and an Application to Boosting. Journal of Computer and System Sciences. 55,
119�139 (1997)

7. Freund, Y., Schapire, R. E.: A Short Introduction to Boosting. (1999).
8. Dietterich, T.G.: Ensemble Methods in Machine Learning. Multiple Classi�er Sys-

tems, LBCS-1857. pp. 1�15. Springer (2000).
9. Breiman, L.: Random Forests. Machine Learning. 45(1), 5�32 (2001)
10. Wolpert, D.H.: Stacked Generalization. Neural Networks, 5, 241�259 (1992)
11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997).
12. Kuznetsov, S.O.: On Computing the Size of a Lattice and Related Decision Prob-

lems. Order. 18(4), 313�321 (2001).
13. Kuznetsov, S.O.: On stability of a formal concept. Annals of Mathematics and

Arti�cial Intelligence. 49(1-4), 101�115 (2007)
14. Kuznetsov, S.O., Obiedkov, S.: Comparing Performance of Algorithms for Gener-

ating Concept Lattices. Journal of Experimental and Theoretical Arti�cial Intelli-
gence. 14, 189�216 (2002).

15. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent Structur-
ing and Reducing of Association Rules with Formal Concept Analysis. In: Baader,
F., Brewka, G., and Eiter, T. (eds.) KI 2001: Advances in Arti�cial Intelligence. pp.
335�350. Springer Berlin Heidelberg (2001)

