Accessing and Manipulating Ontologies Using
Web Services

Olivier Dameron, Natalya F. Noy, Holger Knublauch, Mark A. Musen

Stanford Medical Informatics, Stanford University,
251 Campus Drive, x-215, Stanford, CA 94305, USA

{dameron, noy, holger, musen}@smi.stanford.edu

Abstract. Ontologies and Semantic Web Services are the two core tech-
nologies of the Semantic Web. The Semantic Web hinges on the ability
of computer programs to perform some task involving the autonomous
resolution of semantic issues. This ability requires providing standard ac-
cess for software to ontologies. Moreover, for the Semantic Web to gain
widespread acceptance, it needs to reach a critical mass of applications
that can interact. This last point requires providing standard access to
functionalities for manipulating ontologies. Therefore, it is relevant to
bring ontologies and Web Services together by providing access to on-
tologies through Semantic Web Services. We analyse different kinds of
ontology-manipulation functionalities that could be implemented as on-
tology Web Services (OWS). We then propose an architecture allowing
programs to insert calls to ontology Web Services into the more general
framework of Web Services. We show that this architecture is a neces-
sary complement to OWL-S for Semantic Web applications to perform
dynamic discovery and invocation of Web Services, thus addressing a key
requirement of the Semantic Web. We then demonstrate the scalability of
our architecture as it allows the composition of (ontology) Web Services
for performing complex tasks.

1 Web Service Access to Ontologies

Ontologies and Semantic Web Services are arguably the two core technologies of
the Semantic Web. Ontologies provide the backbone of the Semantic Web, defin-
ing the semantics of the data and Web resources. Web Services enable programs
to call functions provided by a remote server. The structure of the parameters
and of the result of the function are represented in an explicit way so that the
service can be invoked by any client. Web Services, albeit not yet Semantic Web
Services, have become important components of business applications.
Currently however, most examples of Web Services (and in fact Semantic
Web Services) operate on data that conforms to some schema or ontology. At
the same time, ontologies themselves are first-class objects on the Semantic Web.
Therefore, we believe that any infrastructure for Semantic Web Services will be
incomplete without components to access and manipulate ontologies themselves
through Web Services. Such access and manipulation include query of ontology

information, generation of ontology views, translation of ontologies between for-
malisms, mapping and alignment of ontologies, ontology versioning, reasoning
services, and so on. Applications in general, and business applications on the
Semantic Web in particular, not only need to access these services in isolation,
but also, and more important, need to have these services composed automati-
cally. Such a feature requires a machine-processable description of the semantics
of the services (i.e., what they do, how they do it, what kind of parameters
and results are necessary to communicate with them beyond simple syntactic
considerations). In turn, this description requires some tools to be processed.

To consider a simple example, suppose we are running an e-Commerce site
powered by Semantic Web technologies performing price-comparison for books,
CDs, and DVDs, compare.com. The site has its own ontology of products, their
properties and relations, represented in OWL. In order to perform the price
comparison, we use Web Services to request price and availability information
from various sites selling similar products. To use this mechanism, though, we
must perform several ontology-level operations. First, we need to map relevant
parts of our own ontology of products in which visitors to our site are interested
to ontologies of different sites from which we request information. If some of
those ontologies are represented in languages other than OWL, we must translate
these ontologies into OWL. After we have obtained a mapping between our site’s
ontology and one of our usual providers, books.com, the ontology of the provider
may have evolved. Thus, we need to find out how it has changed and whether or
not this set of changes affects the mapping that we have stored, and if it does,
then to what extent.

An infrastructure that would make this scenario feasible is an infrastruc-
ture of Semantic Web Services that can perform these ontology-level operations,
taking one or several ontologies as inputs and producing mappings, diffs, transla-
tions of ontologies as outputs. We call this infrastructure for ontology access and
manipulation through Semantic Web Services Ontology Web Services (OWS).

This “marriage” of ontologies and Semantic Web Services has benefits for
both sides. On the one hand, by providing Web Services access to various
ontology-manipulation operations and supporting composition of these Web Ser-
vices, we enable business applications to use ontologies just as they use data,
through the same communication protocols and technologies that they use to
access other services. On the other hand, by specifying protocols and infras-
tructure for ontology manipulation and access, we can streamline the variety of
ontology-management tasks for which many different tools and algorithms have
sprung up in recent years by providing a unified infrastructure, specifying inputs,
outputs and effects of each operation and facilitating automated composition of
ontology Web Services based on their semantic descriptions.

In this paper, we identify some of the major classes of ontology Web Services,
their inputs, outputs, capabilities, and effects. We propose an architecture that
allows us to treat OWS as a special class of Semantic Web Services. We then
show the scalability of this architecture by discussing how OWS can be composed
to implement complex ontology services. We began implementing prototypes of

some of these services, but the goal of this paper is to outline the framework
that other providers of OWS can contribute to.

2 Ontology Web Services capabilities

We envision several broad categories of ontology access and manipulation through
Web Services:

— Query access to ontologies;

Generation of ontology views;

Translation of ontologies from one language to another;
Management of multiple ontologies;

Reasoning on ontologies.

The list is not exhaustive and it will grow larger as use of SWS with on-
tologies becomes more popular. Moreover, realistic usage of OWS will involve a
combination of the categories above. For each category of services, we specified
which ontologies such web service takes as input; what type of access it provides;
what types of outputs it has. Table [I] summarizes the results and we discuss the
details in the rest of this section.

Unless stated explicitly, ontology refers to a single file as well as to the result
of composing or merging several files [I4]. Moreover, we do not make any as-
sumption about the representation language for ontologies, or about the specific
protocols used for Web Services. We do not specify whether requesters of OWS
pass ontologies as files (by value) or as URLs to their location on the Web (by
reference). Therefore, we assume that ontologies can be passed as parameters
either by value or by reference.

2.1 Query access

Query access to an ontology is probably the most traditional access to structured
information. In general, for this type of services we enable the requester to specify
the ontology to be queried, the query itself, the query language used by the query,
and, possibly, a specific query engine to use. A query engine typically returns a
set of variable bindings associating the variables of the query with the possible
classes or relationships.

For example, if a user of our compare.com site introduced in Section [I] wanted
to find all books and their titles that had movies on DVDs with the same title,
a query in a typical Semantic Web query language would request “all books 7x
with title 7¢ such that there is a DVD ?y with title 7¢.” The result of the query
would be a set of possible bindings for the variable 7x and ?7¢. Note that the
result specifies only the matching concepts and values, but does not contain any
information on the semantics of these concepts. In a Description Logics context,
such queries can also return the individuals that instantiate the class refined by
the query [1].

| Service type |Input

[Output

Queries

query language (possibly specified by
the service)

query engine

query string

ontology

variable bindings

Views

ontology or ontology reference
view definition (possibly the service
name)

subontology representing the view

Translations

ontology (possibly fixed by the service)
target language

ontology in the target language

Mapping

source ontology
target ontology
initial mapping

mapping definition

Versioning

ontology version 1
ontology version 2

diff between versions

Merging

ontology 1
ontology 2

mapping

the merged ontology

Reasoning

ontology or ontology reference to be
classified
type of classification

ontology or ontology reference (classi-
fication result) possibly bearing a clas-
sification flag

Table 1. Type of the input and output parameters for the various types of Web

Services

There are a number of query languages for Semantic Web languages, such as
XQuery, RDQL, RQL [8/9], TRIPLE [20], and DQL, among others. These lan-
guages are based on database query languages such as SQL and provide bindings
for values in the query as their result. Note that the semantic processing of the
query may vary depending on the language: RDQL does not take into account
RDFS semantics, whereas RQL does [2I]; and TRIPLE can handle multiple
semantics, whereas RQL is limited to RDFS [20].

The goal of OWS is not to replace these languages, but to encapsulate them.
Thus, OWS provide a standard communication layer that allows any application
(1) to send its query and the ontology to be queried to a remote application
dedicated to computing the result, and (2) to retrieve this result in a potentially
structured way, even though the two applications do not share the same address
space.

2.2 Ontology Views

One of the original motivations behind ontology research was the ontologies’ abil-
ity to help with reuse in knowledge representation [5]. By virtue of being formal
and explicit representations of a domain, ontologies could be shared domain de-
scriptions that different applications and agents use. However, while many large
standard ontologies provide a shared, tested, and well-accepted vocabulary, many
of them pose a formidable challenge to Semantic Web users: these resources are
huge, often containing tens of thousands of concepts. However, many Semantic
Web users need only a small fraction of the resource for their application. Cur-
rently such a user still needs to make sense of the complete resource, importing it
as a whole, and dragging along this extra “baggage” of concepts, most of which
he is never going to use. In addition to the cognitive challenge of understanding
the large resource (or at least figuring out which swaths of it are not relevant and
can be safely ignored), there can be a computational penalty as well if the user
needs to perform reasoning with the whole ontology, and the cost of downloading
and storing a large resource.

An ontology view provides a self-contained subset of an ontology based on the
user’s specification [I7]. View specification depends on the view-definition lan-
guage but it generally defines a subontology of the source ontology that contains
the concepts that the user is interested in.

This notion of a view is different from views in databases where views are
defined as SQL queries. The binding for variables essentially provides a definition
of a new virtual table or set of virtual tables in a database [6]. However, such
an approach can’t be transposed to ontologies: the binding for variables is a
set of the identifiers of the concepts that match the query, and not a set of
concepts. This point has been made particularly clear by Volz and colleagues:
“From the perspective of relational and object-oriented databases, it is natural
to consider views as arbitrary stored queries. This is not apt for RDF” [21].
Similarly, retrieving the individuals who instantiate a query on an ontology [7]
is not computing a view on this ontology.

If the variable binding resulting from a query can be seen as new tables for
a database, they are by no mean a portion of an ontology or a restriction of
its domain. Variable bindings are not class or property definitions; they bear no
semantics.

Researchers have recently proposed several approaches for specifying ontology
views. For example, Volz and colleagues [2I] define a view language based on
the RQL query language [8]. In this framework, a view represents a new class
or property in the ontology. The authors restrict the RQL queries that can be
used in the view to ensure that the view returns only unary or binary relations
(classes or properties respectively).

Magkanaraki and colleagues [I1] take the approach of defining query-based
views further. In their RVL language, which also uses RQL for querying ontolo-
gies, the authors propose mechanisms for restructuring the original class and
property hierarchies, allowing the creation of new resources, property values,
classes, or properties. Therefore, a view definition includes not only the query
itself, but also a set of statements that define these new structures, linking them
to the query results.

Noy and Musen propose a concept of a Traversal View [I7], where a subon-
tology is specified by defining concepts of interest, the relationships to traverse
to find other concepts to include in the view, and the depth of the traversal. For
example, suppose a web site (another one that compare.com may want to use)
provides an extensive ontology of book topics, with relationships between topics
such as broader, narrower, related-to, subtopic-of and so on. And suppose
we are only interested in the topic of Semantic Web, its subtopics, and its closely
related topics. A Traversal View corresponding to such specification will specify
Semantic Web as the topic of interest, request all the concepts related to this
topic by subtopic-of link and all the topics that are reachable from the Se-
mantic Web topic by traversing the related-to link no more than 3 times. The
resulting subontology will include definitions of all classes encountered in such
traversal.

In the context of OWS, a request for a web service providing an ontology
view contains the source ontology and the view definition. The result is also an
ontology—in this case a subontology of the source ontology corresponding to the
view (or a reference to it).

2.3 Translation

Ontologies can be represented in different ontology languages such as RDF(S),
OWL, or formats specific to ontology-development tools, such as ProtégéEI Some
ontologies and terminologies are expressed in XML Schema or UML. While re-
cent initiatives in W3C have proposed standards for ontology languages, on-
tologies represented in different languages will probably continue to exist on
the web for a while. Furthermore, different languages espouse different modeling

! nttp://protege.stanford.edu

http://protege.stanford.edu

paradigms, such as Description Logics, or Frames, and choosing the more ap-
propriate one for the task at hand is often a compromise between architectural
choices, computational constraints and expressiveness requirements. Therefore,
different application may need to access different representations of the same
ontology or to translate an ontology available in one language into another lan-
guage.

Translation services in OWS convert an ontology from one representation
language to another. Note that in general such services provide a syntactic trans-
formation [4], and not a mapping between two different ontologies.

Such services can be completely generic, performing the conversion based
on general semantic mapping between primitives of the two languages. There
are many initiatives currently underway to create such mappings for popular
languages on the web. For instance, a simple search on google returns a large
number of efforts to create a mapping between OWL and UML. However, be-
cause any two languages usually have different expressiveness, some information
may be lost in the translation process. For example, when converting an on-
tology represented in language with meta-modeling capabilities, such as many
frame-based languages (Protégé is an example of an ontology tool using such a
language), to a Description Logics language, such as OWL DL, we may not be
able to faithfully represent the metaclasses. In the previous example, note that
this limitation is due to Description Logics expressivity, ant not to the tool, as
there is an OWL plugin for Protégé.

While translation services that perform generic syntactic transformation based
on the source and target languages are necessary, we also envision translation
services can be dedicated to a particular ontology. This approach would enable
more accurate translation that takes into account semantics of the source on-
tology. Consider for example the Foundational Model of Anatomy (FMA)—a
declarative representation of anatomy developed at the University of Washing-
ton [19]. The ontology represents the result of manual and disciplined modeling
of the structural organization of the human body. While the FMA ontology is
a relatively recent development, many users in medical informatics already con-
sider it to be a tremendous resource that will facilitate sharing of information
among applications that use anatomy knowledge.

The FMA was developed in a frame-based formalism and uses metaclasses
extensively [I8]. Translating parts of it into OWL DL, for example, is not trivial
and would require translations that are specific to FMA. Given the popularity
of the FMA and the desire of many groups to use it in the DL context, it would
make sense to have a special translation service that knows the semantics of the
structures in the FMA and performs the translation that takes advantage of the
modeling principles structuring the FMA but that couldn’t be represented in
the original frame-based format.

Note that as simple as they seem to be, translation services blur the line
between “simple” services and composed ones. Particularly, a server providing
a dedicated translation service could call a remote generic translation service,
and focus on the domain-specific tuning. Moreover, translation services can be

associated to view services, for example, for providing an OWL representation
of a specific view on the FMA, such as heart and its surrounding organs.

2.4 Management of multiple ontologies

The Semantic Web relies on the explicit annotation of resources’ semantics based
on ontologies, in order to enable the manipulation of these resources by soft-
ware. At the same time, the Semantic Web approach is based on federating and
combining these ontologies, rather than creating a centralized standard set of
ontologies. Therefore, many, often overlapping ontologies or different versions of
the same ontology exist on the Semantic Web and applications need to establish
correspondences between multiple ontologies, recognize where they are different,
compose them, or handle versioning issues.

Providing ontology mapping, merging, and versioning of ontologies through
Web Services enables applications to handle semantic heterogeneity dynami-
cally. A number of tools for ontology mapping, merging, and versioning exist
(the Prompt plugin for Protégé is one such example [I6]). These tools partially
automates ontology mapping, merging, and versioning. Wrapping these compo-
nents into Semantic Web Services will make them a part of the general OWS
infrastructure, not only enabling web-service access to them, but also allowing
them to be composed with one another and with other services within OWS.

Mapping Mapping two ontologies is establishing explicitly the semantic cor-
respondence between them. It includes finding the semantic equivalence, or at
least subsumption between the concepts of the source and those of the target
ontologies [4], and representing these correspondences declaratively. Researchers
have developed a number of ways to represent mappings declaratively. Some
examples include representing mappings as instances in an ontology of map-
pings; defining bridging axioms in first-order logic to represent transformations;
and using views to describe mappings from a global ontology to local ontologies.
When restricting the scope from the Semantic Web in general to reasoning about
OWL-S descriptions of Web Services, Burstein emphasizes the need for mapping
capabilities in several stages of the process [2/3].

Generally, this mapping process can be only partially automated. Concep-
tual ambiguity and lack of explicit axiomatisation have to be addressed manu-
ally by domain experts and knowledge engineers [13]. However, there are many
cases where the application requires only the part of the mapping that can be
generated automatically or where an application can tolerate a certain level of
imprecision in the mappings. In general, users are already accustomed to some
levels of uncertainty on the web: if we are searching for prices for airline tickets
we know that we may not get the lowest possible price, but will be satisfied once
we find a price that falls within our budget.

Merging Because developing a single global ontology is neither scalable nor
maintainable, the Semantic Web relies on developing independent semantically
heterogeneous ontologies, and on composing them dynamically.

Therefore, Semantic Web applications may need to access services for com-
bining ontologies. The most simple operation is to perform a simple union of
the two ontologies, using namespaces for disambiguation, which is similar to the
“import” operator in OWL.

However, Mitra and colleagues advocate the need for a sound and more elab-
orate set of operations. They propose an ontology algebra performing union,
intersection and differences of ontologies [14].

Furthermore, if we have a declarative mapping between two ontologies, we
can use this mapping to perform a more informed merge rather than a simple
union [I]. We can merge concepts that are declared as equivalent in the mapping,
and so on.

Therefore, in OWS, a merging service takes not only two ontologies to be
merged as input, but also a mapping between ontologies if it exists.

Versioning Ontology versioning consists of providing mechanisms for storage
and comparison of different versions of the same ontology [I5]. Whereas mapping
applies to two different ontologies and focus on the similarities, versioning deals
with only one ontology and emphasizes differences between two versions.

In OWS, a service that supports ontology versioning would take two versions
of an ontology and return a structural diff of the versions, identifying concepts
that were added, deleted, or changed and specifying how they were changed.
Klein and Noy, for example, proposed an ontology of changes based on the OWL
language [10]. A diff returned by an OWS service can be a set of instances in
this ontology.

2.5 Reasoning

Reasoning encompasses all kinds of semantically-based manipulations of one or
more ontologies. Reasoning can be used for computing the subsumption hierar-
chy of an ontology, determining the classes of which an individual is an instance
of [7], or checking the ontology’s consistency, making sure that all the classes
are satisfiable. Eventually, reasoning can be used more dynamically in order to
answer queries such as query access (Section or views (Section .

Features of reasoner depends more heavily on the language in which the on-
tology is represented than on the reasoning task itself [20]. Classifiers such as
Raceif’] or FaCT++P| can take advantage of the set-based semantics of Descrip-
tion Logics for inferring subsumption between classes or for classifying individu-
als. Processing rules such as RuleMI[T] [12] or SWRI[| requires first-order-logics
provers such as Hooletﬂ For frame-based ontologies, reasoning capabilities rely-
ing on first order logics are also availableﬂ

2 http://www.cs.concordia.ca/~haarslev/racer/

3 http://owl.man.ac.uk/factplusplus/

4 http://www.ruleml.org

5 http://www.daml.org/2003/11/surl

S http://owl.man.ac.uk/hoolet/

" http://protege.stanford.edu/plugins/domain_reasoning.html

http://www.cs.concordia.ca/$sim $haarslev/racer/
http://owl.man.ac.uk/factplusplus/
http://www.ruleml.org
http://www.daml.org/2003/11/swrl
http://owl.man.ac.uk/hoolet/
http://protege.stanford.edu/plugins/domainprotect global let unhbox voidb@x kern .06emvbox {hrule width.3em}reasoning.html

10

In the OWS framework, reasoning services are also “wrapped” as Seman-
tic Web Services and become part of the general architecture. The requester
of a reasoning service specifies the ontology to perform reasoning on and also
a specific type of reasoning required. The result of the service depends on the
reasoner but could be for example a classified version of the ontology with ad-
ditional metadata indicating that the ontology does not require any additional
processing (i.e., it is post-coordinated).

2.6 Composition of Services in the OWS Framework

In the previous section, we have described an array of possible ontology services
and their capabilities. This list is only a first pass at a comprehensive specifica-
tion of ontology Web Services. However, even this initial specification highlights
the main advantage of bringing together ontologies and Semantic Web Services:
we can now use the web-services composition capabilities to compose automati-
cally various services to perform complex tasks.

Consider for example the group of services in OWS that support management
of multiple ontologies (Section . Most mapping and merging services require
that source ontologies are represented in the same ontology language. Therefore,
if the service receives two ontologies represented in different languages, it can
call another service within the OWS framework to translate one of the ontologies
into the language that the other one uses.

We will need to compose versioning services (Section with most other
services to determine for example if an ontology view or a query result that we
have generated based on an earlier version of an ontology is still valid for the
new version of the ontology or if it needs to be regenerated.

We may want to perform multiple-ontology services such as mapping and,
in particular, merging not on a whole source ontology but on some subontology.
Therefore we will need to compose a service that provides an ontology view with
an ontology-merging service.

As any Web Services, OWS can be used directly by Web Services middleware.
In the more general Semantic Web context, it is also important to enable the
automatic discovery, invocation and composition of Web Services, and particu-
larly of OWS. In the next section, we propose an architecture based on semantic
descriptions of OWS. Such descriptions are necessary for leveraging the use of
OWS by Semantic Web Services, and for providing some of the tools necessary
for processing the semantic descriptions of Semantic Web Services in Semantic
Web context.

3 Architecture

OWL-S aims at providing a computer-interpretable description of a web service,
and ways to access it. Typically, this description should be used for: (1) automatic
Web Service discovery, (2) automatic Web Service invocation, (3) automatic Web

11

Service composition and interoperation, and (4) automatic monitoring of Web
Wervice execution.

The OWL-S description encompasses three types of knowledge about a ser-
vice. A service presents a profile that describes what the service does, based on
a domain ontology. It is useful for determining if the service sells books, comics
or plane tickets. The model describes how the service works by decomposing it
into processes. It represents the organization of the processes and their tasks.
Eventually, a service presents one or several groundings that describe how the
service should be used for automatic invocation.

Based on the description of ontology Web Services in Section [2| we notice
that:

— in order to be usable autonomously by applications, OWS need to be asso-
ciated with a description, and OWL-S is a good candidate;

— conversely, the exploitation by a web service client of the semantic informa-
tion represented in OWL-S descriptions requires some ontology manipula-
tions, and ontology Web Services can provide these manipulations.

OWL-S provides a semantic description of the functions offered by Web
Services. OWS provides some functions for processing these descriptions. By
proposing to implement these functions as Web Services, we have created an
inter-connection between OWL-S and OWS. Far from being a disadvantage, this
situation allows us to lay out an architecture that itself enables many features
in the use of OWL-S descriptions, making OWL-S itself more scalable.

First, we show how the various types of services identified at Section [2] can
be integrated into the original OWL-S architecture. Second, we show how this
architecture can be enabled by using OWS to process OWL-S descriptions.

3.1 Architecture principles for OWS services

Figure [T represents the chronological decomposition of the interaction between
a web service client and an OWL-S enabled server. The client first requests a
service profile (transactions 1 and 2) in order to determine if the service meets its
expectations. Note that this determination itself, which often includes ontology
comparison or other ontology-manipulation steps, is out of scope of OWL-S, but
could use OWS. Section [3.2] presents a simple scenario. If the service is relevant,
the model provides the technical information—such as communication protocol
or endpoint—for actually calling the service (transactions 3 and 4). Note that
these feature can also be part of the client’s constraints for deciding if the service
is relevant. Eventually, the client actually accesses the service (transactions 5 and
6). The client’s query is processed locally on the server and may involve local
resources. At this point, unless the model explicitly specifies it, the server can
call functions provided by other remote Web Services without the client being
aware of it.

The mechanism described above is also valid for specifying ontology Web
Services in the OWS framework. It allows a client to look for an OWS server

12

providing a specific ontology manipulation function, such as the computing of
views of a specific ontology, or translation of an RDF ontology into OWL. For
computing the answer, the server operates on a local representation of one or
several ontologies that he may retrieve dynamically from other sources.

| OWL-S Profile |

| OWL-S Model |

Web Service Server

OWS Server
Resource

(2 _ 3

>| Ontology |

Requester 5 Queries

Y

A

Views

A
Y

Translation

Management

I
Reasoning |

Fig. 1. Interactions between a web service client and and an OWL-S compliant
server. Being Web Services themselves, OWS comply with these principles for
providing the ontology manipulation functionalities described in Section

3.2 Processing the semantic description of Web Services using OWS

In the previous section, we pointed out that the way the client was supposed to
determine whether a service is relevant or not with regards to its expectations
was left unspecified. Moreover, the client may need to establish a correspondance
between its own semantic workspace (i.e., its ontology and internal data format)
and the one of the server for putting the parameters in the correct format and
for interpreting the service result. This section shows how OWS can be used
to address these issues. The following sequence of interactions between a web
service client and several servers is illustrated in Figure[2] Note that this scenario
is a generic example: the 14 steps could apply to a lot of real situations, but they
are by no mean limitative: some of them may be optional , or additional calls to
OWS may be necessary. We tried to illustrate most of them by a client to our
e-Commerce service example.

The client first requests a service profile and model (transactions 1 and 2).
For the sake of clarity, it combines transactions 1 to 4 of Figure[I} At this point,
the client still has to process the semantic description provided by OWL-S.

13

Using OWS for assessing the relevance of the Web Services In order
to decide if the Web Services is relevant, the client relies on a description of
what the server does (represented in OWL-S by the profile), and possibly on a
description of how the server computes its result (represented in OWL-S by the
model).

For example, let us imagine that the client wants to know if the e-Commerce
service sells manga DVD for children, without looking for a particular title. This
would require a view about DVD from an ontology of culture media, and that
this view has to be translated into a suitable representation formalism. The client
would then call a translation service provided by a remote server (transactions
3 and 6), and pass as argument the result of the view retrieval (transactions 4
and 5), obtained from an OWS server. Although this step is not represented in
the Figure [2] note that looking for an OWS server providing the view or the
translation may in turn require the client to process the OWL-S description of
these servers.

Using OWS for semantic interoperability Let us assume that the previous
process was successful and that the client has determined that the server was
adequate. From the semantic description of the server (the grounding in OWL-
S), the client is able to infer the expected types of parameters that it has to
provide. For example, the client may need to comply with the server-specific
way of representing the shipping and the billing address. Transforming these
parameters from its internal representation to the one expected by the server
requires some ontology mapping, that the client delegates to a third OWS server
(transactions 7 and 10). Without the client being aware of it, the mapping server
calls a remote reasoner before returning its result (transactions 8 and 9). Again,
these steps may involve the processing of the servers’ OWL-S descriptions.

Now, the client is able to actually call the expected Web Service (transactions
11 and 12).

Eventually, the client still has to interpret the result, which involve a supple-
mentary call to a remote OWS server (transactions 13 and 14).

4 Conclusions and perspectives

In this paper, we have identified a set of ontology-manipulation functions that
enable and facilitate the use of semantic information by applications on the
Semantic Web. We proposed the ontology Web Services (OWS) architecture
that implements these functions as Semantic Web Services. This integration
not only allows the ontology services to be first-class members among Semantic
Web Services but also facilitates the process of web-service composition and
invocation by providing some of the functionalities that automate this process.

Our work relies on existing standard technologies for ontologies (e.g., RDF(S)
and OWL), as well as for Web Services (e.g., SOAP, WSDL, OWL-S). This is
an indication that we are switching from an era of design to an era of imple-
mentation and that Web Services and ontology Web Services are ready for a

14

OWL-S
1
2

12

Requester — 3 OWS Translation | —3%—> | ows View
< 5

6

7
%’ OWS Mapping —a 5 OWS Reasoning
10 49—

13

14 OWS Reasoning

Fig. 2. Using OWS services for processing the semantic description of a Web
Services. OWS can be used for assessing the Web Services relevance (transac-
tions 3 to 6) or for achieving the semantic interoperability between the client
and the server (transactions 7 to 10 and 13-14)

widespread adoption. We believe that OWS will contribute to this phenomenon
by providing access to some of the functionalities that will enable applications to
decide dynamically which Web Services to contact and to address the semantic
heterogeneity of the web.

We have begun implementing prototypes of some of these services, but most
of the implementation is future work. However, our main goal is to identify the
types of ontology Web Services and their interfaces, enabling others to implement
such services on the Semantic Web.

References

1. P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. Model management: Managing
complex information structures. SIGMOD Record, 29(4):55-63, 2000.

2. M. H. Burstein. The many faces of mapping and translation for semantic web
services. In International Conference on Web Information Systems Engineering
(WISE 03), pages 261-268, 2003.

3. M. H. Burstein. Ontology mapping for dynamic service invocation on the semantic
web. In AAAI Spring Symposium, 2004.

4. D. Dou, D. McDermott, and P. Qi. Ontology translation on the semantic web. In
Proceedings of the International Conference on Ontologies, Databases and Appli-
cations of Semantics, 2003.

5. T. R. Gruber. Formal Ontology in Conceptual Analysis and Knowledge Represen-
tation, chapter Toward Principles for the Design of Ontologies used for Knowledge
Sharing. Kluwer Academic Publishers, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

15

A. Y. Halevy. Answering queries using views: a survey. VLDB Journal, pages
270-294, 2001.

I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. In
1. Horrocks and J. Hendler, editors, Proc. of the International Semantic Web Con-
ference (ISWC 2002), pages 177-191. Springer-Verlag, 2002.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and Scholl. RQL:
A declarative query language for RDF. In Proceedings of the Eleventh International
World Wide Web Conference, pages 592-603, 2002.

G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis,
M. Scholl, and K. Tolle. Querying the semantic web with RQL. Computer Networks
and ISDN Systems Journal, 42(5):617-640, 2003.

M. Klein and N. F. Noy. A component-based framework for ontology evolution.
In Workshop on Ontologies and Distributed Systems at IJCAI-03, 2003.

A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
semantic web through RVL lenses. In D. e. a. Fensel, editor, Proceedings of the
Second International Semantic Web Conference (ISWC 2003), pages 96-112, 2003.
C. J. Matheus, M. M. Kokar, K. Baclawski, and J. Letkowski. Constructing
RuleML-based domain theories on top of OWL ontologies. In Rules and rule
markup languages for the semantic web Workshop, ISWC, LNCS, pages 81-94,
2003.

P. Mika, M. Sabou, A. Gangemi, and D. Oberle. Foundations for OWL-S: Aligning
OWL-S to DOLCE. In AAAI Spring Symposium, 2004.

P. Mitra, G. Wiederhold, and M. Kersten. Graph-oriented model for articulation
of ontology interdependencies. In Conference on FExtending Database Technology,
2000.

N. F. Noy and M. A. Musen. Ontology versioning as an element of an ontology-
management framework. IEFE Intelligent Systems, 2003.

N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies,
59(6):983-1024, 2003.

N. F. Noy and M. A. Musen. Specifying ontology views by traversal. In Proceedings
of the Third International Semantic Web Conference (ISWC2004), 2004. In Press.
N. F. Noy, M. A. Musen, J. J. L.V. Mejino, and C. Rosse. Pushing the enve-
lope: Challenges in a frame-based representation of human anatomy. Data and
Knowledge Engineering, 48(3):335-359, 2004.

C. Rosse and J. L. V. Mejino. A reference ontology for bioinformatics: The foun-
dational model of anatomy. Journal of Biomedical Informatics., 2004.

M. Sintek and S. Decker. Triple — a query, inference , and transformation language
for the semantic web. In Proceedings of the International Semantic Web Conference
(ISWC 02), LNCS 2342, 2002.

R. Volz, D. Oberle, and R. Studer. Views for light-weight web ontologies. In ACM
Symposium on Applied Computing, pages 1168-1173, 2003.

	Accessing and Manipulating Ontologies Using Web Services
	Olivier Dameron, Natalya F. Noy, Holger Knublauch, Mark A. Musen

