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Abstract: Knowledge of the internal behavior of applications often gets lost over
the years. This circumstance can arise, for example, from missing documentation.
Application-level monitoring, e.g., provided by Kieker, can help with the comprehen-
sion of such internal behavior. However, it can have large impact on the performance
of the monitored system. High-throughput processing of traces is required by projects
where millions of events per second must be processed live. In the cloud, such pro-
cessing requires scaling by the number of instances.

In this paper, we present our performance tunings conducted on the basis of the
Kieker monitoring framework to support high-throughput and live analysis of appli-
cation-level traces. Furthermore, we illustrate how our tuned version of Kieker can be
used to provide scalable trace processing in the cloud.

1 Introduction

In long running software systems, knowledge of the internal structure and behavior of
developed applications often gets lost. Missing documentation is a typical cause of this
problem [Moo03]. Application-level monitoring frameworks, such as Kieker [vHRH+09,
vHWH12], can provide insights into the communication and behavior of those applications
by collecting traces. However, it can cause a large impact on the performance of the
system. Therefore high-throughput trace processing, reducing the overhead, is required
when millions of events per second must be processed.

In this paper, we present our performance tunings conducted on the basis of the Kieker
monitoring framework to support high-throughput and live analysis of application-level
traces. Furthermore, we present a scalable trace processing architecture for cloud environ-
ments and provide a preliminary evaluation, demonstrating the live analysis capabilities of
our high-throughput tuned version.

In summary, our main contributions are (i) a high-throughput tuning of Kieker, enabling
live trace analysis and (ii) a scalable trace processing architecture for cloud environments.

The rest of the paper is organized as follows. Our trace processing architecture for enabling
a scalable processing of traces in the cloud is presented. Afterwards, in Section 3 our high-
throughput tuned Kieker version is described. In Section 4, we illustrate our preliminary
performance evaluation. Then, related work is sketched. Finally, the conclusions are
drawn and future work is described.
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Figure 1: Overview on our general trace processing architecture

2 Scalable Trace Processing Architecture

In this section, we present our trace processing architecture to enable scalable and live
trace processing. The basic deployment architecture of our scalable trace processing is
described in Section 2.1. In Section 2.2, the concept behind our approach of providing
scalability by utilizing analysis worker chaining is illustrated.

2.1 Basic Approach

Figure 1 depicts our trace processing architecture. The processing starts at the monitored
Applications on the ApplicationNodes. Kieker monitors the method and remote procedure
calls of the applications and sends the collected monitoring data directly to the Analy-
sisWorker via a TCP connection. The AnalysisWorker processes the data and sends the
reduced traces to the AnalysisMaster on the ExplorVizServerNode. After receiving the
data, it updates a model representation of the software landscape and sends the data to a
ExplorViz visualization instance running on the client workstation. In addition, the Ex-
plorVizServer saves the processed traces in a ModelDatabase.

To create a scalable and elastic monitoring architecture, we utilize the cloud for trace
processing. The destination, where Kieker sends the monitoring data to, is fetched from the
AnalysisWorkerLoadBalancer servlet running on the SLAsticNode. SLAstic [vMvHH11]
updates the AnalysisWorkerLoadBalancer servlet when a new analysis worker node is
started or terminated due to the over- or underutilization of the analysis worker nodes. For
monitoring this utilization, Kieker measures the CPU utilization on each analysis worker
node and sends it to the MQProvider on the SLAsticNode. Then, SLAstic fetches the CPU
utilization data from this message queue provider.
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Figure 2: Example for chaining of analysis workers

2.2 Chaining of Analysis Workers

In our basic approach, all analysis workers write to one analysis master. This can lead to
an overutilization of this master and it might become a bottleneck. Therefore, we provide
a concept for chaining of analysis workers, such that the analysis master gets unburdened.
Instead of writing the data directly to the analysis master, we employ an additional level
of analysis workers.

Figure 2 illustrates an example for this approach. As described in the last subsection, the
Kieker components in the monitored applications write their monitoring data directly to
the analysis workers. For simplicity, we call these workers: analysis workers on level
one. These, in turn, send their reduced traces and possible parts of traces to the analysis
workers on level two. Then, the analysis workers on level two finally send their results to
the analysis master.

Notably, the levels of chaining are not restricted to one or two. To provide additional
scalability, the number of levels is adjustable. Also note, that the number of monitored
applications in relation to the number of analysis workers can be an 𝑛 to 𝑚 relationship
where 𝑚 is lesser or equal to 𝑛. On each level, the number of analysis workers should
be lower than on the level before, such that a reasonable chaining architecture can be
constructed.

For each level of analysis worker, an own scaling group should be provided, i.e., an own
load balancer. Following this approach, SLAstic can be used to scale each group of analysis
workers when they get over- or underutilized. Furthermore, SLAstic can be extended to
decide whether a new analysis worker level should be opened based on the utilization of
the analysis master.

In our described chaining architecture, only one analysis master is provided. Extensions
with multiple running analysis masters are thinkable but describe another usage scenario
and thus are outside of the scope of this paper.
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Figure 3: Our high-throughput tuned version of the Kieker.Monitoring component

3 High-Throughput Tunings for Kieker

In this section, we describe our tunings conducted on the basis of Kieker 1.8 to achieve
high-throughput monitoring for live monitoring data analysis. First, we present our en-
hancements to the Kieker.Monitoring component. Afterwards, we describe our tunings of
the Kieker.Analysis component.

3.1 Kieker.Monitoring Tunings

In Figure 3, our high-throughput tuned version of the Monitoring component is presented.
As in the original Kieker.Monitoring component, the Monitoring Probes are integrated
into the monitored code by aspect weaving and collect the method’s information. In our
tuned version, we write the information sequentially into an array of bytes realized by
the Java native input/output class ByteBuffer. The first byte represents an identifier for
the class that is later constructed with these information and the following bytes contain
information like, for instance, the logging timestamp. The ByteBuffers are sent to the
Monitoring Controller which in turn puts the ByteBuffers into a Ring Buffer. For realizing
the Ring Buffer, we utilize the disruptor framework.1 The Monitoring Writer, running
in a separate thread, receives the ByteBuffers and writes them to the analysis component
utilizing the Java class java.nio.channels.SocketChannel and the transfer protocol TCP.

Contrary to the original Kieker.Monitoring component, we do not create MonitoringRecord
objects in the probes, but write the data directly into a ByteBuffer. This normally results in
less garbage collection and the time for the object creation process is saved. In addition,
Kieker 1.8 uses an ArrayBlockingQueue to pass messages from its Monitoring Controller
to the Monitoring Writer which causes, according to our tests, more overhead than the
Ring Buffer.

1http://lmax-exchange.github.io/disruptor/

92



Figure 4: Our high-throughput tuned version of the Kieker.Analysis component

3.2 Kieker.Analysis Tunings

In Figure 4, our high-throughput tuned version of the Analysis component is presented.
Similar to the original Kieker.Analysis component, we follow the pipes and filters pattern.
The sent bytes are received from the monitoring component via TCP.

From these bytes, Monitoring Records are constructed, batched, and passed into the first
Ring Buffer. By batching the Monitoring Records before putting them in the Ring Buffer,
we achieve a higher throughput since less communication overhead is produced. This
overhead is caused by, for instance, synchronization.

The Trace Reconstruction filter receives the batches of Monitoring Records and recon-
structs the traces contained within. These traces are batched again and are then forwarded
into the second Ring Buffer.

The Trace Reduction filter receives these traces and reduces their amount by utilizing the
technique of equivalence class generation. It is configured to output a trace each second.
Each trace is enriched with runtime statistics, e.g., the count of summarized traces or the
minimum and maximum execution times. The resulting reduced traces are put into third
Ring Buffer. In contrast to the former ones, those traces are not batched before putting into
the Ring Buffer, since the amount of reduced traces is typically much smaller and thus the
batching overhead would be larger than the communication overhead.

If the worker is configured to be an analysis worker, the reduced traces are sent to the
Connector This connector then writes them to another chained analysis component, either
further workers on the master. If the worker is configured to be an analysis master, the
reduced traces are sent to the Repository.

Unlike the original Kieker.Analysis component, each filter runs in a separate thread and is
therefore connect by Ring Buffers. This design decision is made because every filter has
enough work to conduct when millions of records per second must be processed. Further-
more, in our high-throughput tuned version the sequence and kind of filters is limited to
the shown architecture configuration instead of being freely configurable as in Kieker.
In addition, the connection of additional analysis workers is currently cumbersome in
Kieker. Contrary, our high-throughput tuned version enables this behavior out-of-the-box
and therefore provides scalability of the trace processing.
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Table 1: Throughput for Kieker 1.8 (traces per second)

No instr. Deactiv. Collecting Writing Reconst. Reduction

Mean 2 500.0k 1 176.5k 141.8k 39.6k 0.5k 0.5k
95% CI ± 371.4k ± 34.3k ± 2.0k ± 0.4k ± 0.001k ± 0.001k

Q1 2 655.4k 1 178.0k 140.3k 36.7k 0.4k 0.4k
Median 2 682.5k 1 190.2k 143.9k 39.6k 0.5k 0.5k
Q3 2 700.4k 1 208.0k 145.8k 42.1k 0.5k 0.5k

4 Preliminary Performance Evaluation

In this section, we present a preliminary performance evaluation of our high-throughput
tuned version of Kieker in combination with our trace processing architecture. We perform
this evaluation by measuring the amount of traces one analysis worker can process online.
Evaluating the scalability and performance of the chained trace processing architecture
remains as future work. For replicability and verifiability of our results, the gathered
data are available online.2 The source code of our tunings and of our trace processing
architecture is available upon request.

4.1 Experimental Setup

For our performance evaluation, we employ an extended version of the monitoring over-
head benchmark MooBench [WH12, WH13]. It is capable of quantifying three different
portions of monitoring overhead: (i) instrumenting the system, (ii) collecting data within
the system, and (iii) writing the data. In the case of live analysis, we can extend the bench-
mark’s measurement approach for the additional performance overhead of the analysis of
each set monitoring data. Specifically, we can quantify the additional overhead of (iv) trace
reconstruction and (v) trace reduction within our trace processing architecture.

We use two virtual machines (VMs) in our OpenStack private cloud for our experiments.
Each physical machine in our private cloud contains two 8-core Intel Xeon E5-2650
(2 GHz) processors, 128 GiB RAM, and a 500 Mbit network connection. When perform-
ing our experiments, we reserve the whole cloud and prevent further access in order to
reduce perturbation. The two used VMs are each assigned 32 virtual CPU cores and
120 GiB RAM. Thus, both VMs are each fully utilizing a single physical machine. For
our software stack, we employ Ubuntu 13.04 as the VMs’ operating system and an Oracle
Java 64-bit Server VM in version 1.7.0_45 with up to 12 GiB of assigned RAM.

The benchmark is configured as single-threaded with a methodtime of 0 µs, and 4 000 000
measured executions with Kieker 1.8. For our high-throughput tuned version, we increased
the number of measured executions to 100 000 000. In each case, we discard the first half
of the executions as a warm-up period.

2http://kieker-monitoring.net/overhead-evaluation
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Table 2: Throughput for our high-throughput tuned Kieker version (traces per second)

No instr. Deactiv. Collecting Writing Reconst. Reduction

Mean 2 688.2k 770.4k 136.5k 115.8k 116.9k 112.6k
95% CI ± 14.5k ± 8.4k ± 0.9k ± 0.7k ± 0.7k ± 0.8k

Q1 2 713.6k 682.8k 118.5k 102.5k 103.3k 98.4k
Median 2 720.8k 718.1k 125.0k 116.4k 116.6k 114.4k
Q3 2 726.8k 841.0k 137.4k 131.9k 131.3k 132.4k

4.2 Results and Discussion

In this section, we describe and discuss our results. First, the throughput is discussed and
afterwards, the response times are discussed.

Throughput The throughput for each phase is visualized in Table 1 for Kieker 1.8 and
in Table 2 for our high-throughput tuned version. In both versions, the no instrumentation
phase is roughly equal which is expected since no monitoring is conducted.

Our high-throughput tuned version manages to do 770 k traces per second with deacti-
vated monitoring, i. e., the monitoring probe is entered but left immediately. Kieker 1.8
performs significantly better with 1 176 k traces per second. Both versions run the same
code for the deactivated phase. We attribute this difference to the change in the number
of measured executions with each version. Our tuned version runs 20 times longer than
Kieker 1.8 which might have resulted in different memory utilization. As future work, this
circumstance should be researched by running 100 million method calls with Kieker 1.8.

In the collecting phase, Kieker 1.8 performs 141.8 k traces per second whereby our high-
throughput tuned version achieves 136.5 k traces per second which is roughly the same
with regards to the different number of measured executions of both experiments.

Our high-throughput tuned version reaches 115.8 k traces per second while Kieker 1.8
achieves 39.6 k traces per second in the writing phase. In this phase, our high-throughput
tunings take effect. We attribute this improvement of roughly 3 times to the utilization of
the disruptor framework and only creating ByteBuffers such that the Monitoring Writing
does not need to serialize the Monitoring Records. Notably, the trace amount is limited by
the network bandwidth in the case of our high-throughput tuned version.

In the trace reconstruction phase, Kieker 1.8 performs 466 traces per second and our tuned
version reaches 116.9 k traces per second. We attribute the increase of 1.1 k traces per sec-
ond in our tuned version to measuring inaccuracy which is confirmed by the overlapping
confidence intervals. Our high-throughput tuned version performs about 250 times faster
than Kieker 1.8. This has historical reasons since performing live trace processing is a
rather new requirement. Furthermore, the results suggest that the pipes and filters archi-
tecture of Kieker 1.8 has a bottleneck in handling the pipes resulting in poor throughput.

Kieker 1.8 reaches 461 traces per second and our tuned version reaches 112.6 k traces per
second in the reduction phase. Compared to the previous phase, the throughput slightly
decreased for both versions which is reasonable considering the additional work.
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Figure 5: Comparison of the resulting response times

Response Times In Figure 5, the resulting response times are displayed for Kieker 1.8
and our high-throughput tuned version in each phase. The response times for the instru-
mentation is again slightly higher for our tuned version. In the collecting phase, the re-
sponse times of both versions are equal (6 µs).

Kieker 1.8 has 18.2 µs and our tuned version achieves 1.2 µs in the writing phase. The
comparatively high response times in Kieker 1.8 suggests that the Monitoring Writer fails
to keep up with the generation of Monitoring Records and therefore the buffer to the writer
fills up resulting in higher response times. In contrast, in our high-throughput tuned ver-
sion, the writer only needs to send out the ByteBuffers, instead of object serialization.

In the reconstruction and reduction phases, Kieker 1.8 has over 1 000 µs (in total: 1 714 µs
and 1 509 µs), and our high-throughput tuned version achieves 0.0 µs and 0.3 µs. The re-
sponse times of our tuned version suggest that the filter are efficiently implemented such
that the buffers are not filling up. This circumstance is made possible due the utilization
of threads for each filter. We attribute the high response times of Kieker 1.8 to garbage
collections and the aforementioned bottlenecks in the pipes and filters architecture.

4.3 Threats to Validity

We conducted the evaluation only on one type of virtual machine and also only on one
specific hardware configuration. To provide more external validity, other virtual machine
types and other hardware configuration should be benchmarked which is future work.

Furthermore, we ran our benchmark on a virtualized cloud environment which might re-
sulted in unfortunate scheduling effects of the virtual machines. We tried to minimize
this threat by prohibiting over-provisioning in our OpenStack configuration and assigned
32 virtual CPUs to the instances such that the OpenStack scheduler has to run the virtual
machines exclusively on one physical machine.
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5 Related Work
Dapper [SBB+10] is used for Google’s production distributed systems tracing infrastruc-
ture and provides scalability and application-level tracing in addition to remote procedure
call tracing. Instead of using sampling techniques, Kieker and thus our high-throughput
tuned version, uses entire invocation monitoring. Furthermore, we provide a detailed de-
scription of our scalable trace processing architecture.

A further distributed tracing tool is Magpie [BIMN03]. It collects traces from multiple
distributed machines and extracts user specific traces. Then, a probabilistic model of the
behavior of the user is constructed. Again, we did not find a detailed description of their
architecture how they process their traces.

X-Trace [FPK+07] provides capabilities to monitor different networks, including, for in-
stance, VPNs, tunnels, or NATs. It can correlate the information gathered from one layer
to the other layer. In contrast to network monitoring, Kieker currently focuses on detailed
application-level monitoring.

6 Conclusions and Outlook
Application-level monitoring can provide insights into the internal behavior and structure
of a software system. However, it can have a large impact on the performance of the
monitored system.

In this paper, we present our high-throughput tunings on the basis of Kieker in version 1.8.
Furthermore, we illustrate our trace processing approach. It enables scalable and live trace
processing in cloud environments. This trace processing architecture will be used in our
projects ExplorViz3 [FWWH13] and PubFlow [BH12] to process the huge amounts of
monitoring records. ExplorViz will provide an interactive visualization of the resulting
traces and is aimed at large software landscapes. PubFlow provides a pilot application to
work with scientific data in scientific workflows to increase the productivity in scientific
work. Our preliminary performance evaluation demonstrates that our high-throughput
tunings are reasonable compared to the results of Kieker 1.8 and provide a good basis for
live trace processing. In particular, we are able to improve upon the analysis performance
of Kieker by a factor of 250. The performance of our high-throughput tuned version is
limited by the network bandwidth. Local tests reveal a trace processing throughput of
about 750 k traces per second which corresponds to an improvement factor of 1500 with
respect to Kieker 1.8.

As future work, we will evaluate the scalability and performance of our trace processing
architecture in our private cloud environment. We will search for guidelines which number
of levels of analysis workers is suitable in which situation. In addition, we will evaluate
whether further trace reduction techniques [CMZ08] can enhance the throughput of our
live trace processing. Furthermore, we intend to feedback our high-throughput tunings,
concerning the monitoring and analysis component, into the Kieker framework. Further
future works, lies in performance testing and implementation of tracing methods for re-
mote procedure calls of components.

3http://www.explorviz.net
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