

Grade 09 Science Chapter Notes

Force and Laws of Motion
Class IX

B

Topics to Be Covered

1. All about Force

1

- 1.1 Definition of Force
- 1.2 Effects of force
- 1.3 Types of forces
- 1.4 Balanced and unbalanced force

2. Newton's Laws of Motion

- 2.1 First Law of Motion
- 2.2 Inertia and Mass
- 2.3 Types of Inertia
- 2.4 Momentum
- 2.5 Second Law of Motion
- 2.6 Impulse

2

- 2.7 Third law of Motion
- 2.8 Internal and External Forces
- 2.9 Conservation of Momentum

MIND MAP

1. Force

1.1 Definition of Force

- A Push or a Pull acting on an object is called a Force.
- SI unit of force is newton(N).

1.2 Effects of Force

1.3 Types of Force

Contact Force

Frictional force

• Resists motion when the two or more surfaces come in contact.

Normal force

• The force that a surface employs on any other body.

Muscular force

 When any force applied by using of muscles like arms or legs.

The force of attraction between all masses in the universe.

 An attractive or repulsive force that is exerted between the poles of a magnet.

Non-Contact Force

Gravitational force

Electrostatic force

Magnetic force

B

1.4 Balanced and Unbalanced Force

Net force is the **equivalent** force acting on the object.

Balanced force

 $F_{net} = 0$

- All forces cancel out each other.
- Net force is zero.

Unbalanced force

 $F_{net} \neq 0$

- Forces do not cancel out.
- Net force is not equal to zero.

2. Newton's Laws of Motion

2.1 First Law of Motion

 An object remains in a state of rest or in a state of uniform motion, until and unless an external force acts on it

Rest: No change in **position**.

Uniform motion: No change in velocity.

2.2 Inertia

- Resistance to the change in state of rest or uniform motion.
- The mass of an object is a measure of its inertia.

2.3 Types of Inertia

Inertia of rest

• Resistance offered by the body to continue in the state of rest.

Inertia of motion

• **Resistance** offered by the body to continue in the state of **motion**.

Inertia of direction

 Resistance offered by the body to continue moving in same direction.

2.4 Momentum

- Product of Mass and Velocity
- Momentum (p) = Mass (m) x Velocity (v)
- S.I. unit = kg m/s or N s
- Vector quantity

2.5 Second Law of Motion

 Net force acting on a body equals the rate of change of momentum.

$$F_{net} = \frac{\Delta p}{\Delta t}$$

$$F_{\text{net}} = \frac{m \Delta v}{\Delta t}$$

$$F_{net} = ma$$

Impulse = Change in momentum

$$J = mv - mu = m \Delta v$$

 $J = F \times t$

2.7 Third Law of Motion

- For every action there is an equal and opposite reaction.
- The action and reaction force always act on different bodies.

$$F_{12} = -F_{21}$$

Applications of 3rd Law

Recoil of a gun

Propulsion of a rocket

2.8 Internal and External Forces

Internal forces: F₁, F₂ External forces: F₃, F₄, F₅, F₆

Only external forces are capable of producing motion in a body.

Formula Sheet

1 MOMENTUM

p = mv

2

SECOND LAW
OF MOTION

$$F_{net} = \frac{\Delta p}{\Delta t}$$

$$F_{\text{net}} = ma$$

3 IMPULSE

$$J = mv - mu = m \Delta v$$

$$J = Fxt$$

4

THIRD LAW
OF MOTION

$$F_1 = -F_2$$

5

CONSERVATION OF MOMENTUM

 $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$