
Technical Whitepaper

Architecture and Considerations in
Machine Learning Pipeline

EFFICIENT DATA
ACCESS STRATEGIES
FOR LARGE-SCALE AI

The adoption of artificial intelligence (AI) is rapidly growing, with 49% of CIOs indicating that
they either already use or plan to use AI [1]. The recent boom of generative AI further accelerates
this adoption, making AI a business imperative for revenue generation, customer satisfaction,
and organizational productivity.

Successful AI projects require access to data. The ability to quickly serve data for applications is
essential. As AI use cases grow more complex, we need to understand data access patterns and
how to address them with the right solution.

This white paper comprehensively explains data access patterns in a modern AI/ML platform. It
discusses the characteristics of data access in each stage of the machine learning pipeline and
strategies to optimize your data access for large-scale AI.

Introduction

02

1. Data Access – The Barrier to AI Implementation...

2.1 Stages in the Machine Learning Pipeline
2.2 Data Access Patterns
 2.2.1 What is Data Access Pattern
 2.2.2 Data Access Pattern in the Machine Learning Pipeline
 2.2.3 Single Cloud Data Access Pattern
 2.2.4 Multi-cloud/Multi-region Data Access Pattern
2.3 Factors to Consider

6
7
7
8
9

10
10

3.1 Architecture Overview
3.2 Performance and GPU Utilization Benchmarks for Alluxio-powered Model Training
 3.2.1 Deep Learning Algorithm and Dataset
 3.2.2 Deployment and Test Setup
 3.2.3 Results

12
13
13
13
14

4.1 FinTech Giant, Alipay, Speeds up Large-Scale CV Training on Billions of Small Files
4.2 Top Online Content Community, Zhihu, Accelerated LLM Training and Deployment with
90% GPU Ultilization

15
17

4

Contents

2. Demystify Data Access Patterns in Machine Learning Pipeline..................6

3. Optimizing Data Access in AI/ML Platform - Reference Architecture
and Benchmark... 12

4. Real-world Scenarios..15

5. Summary..18

03

Data access is a critical challenge for AI implementations. Gartner's research found that data
accessibility is the top barrier to AI implementations [2].

1. Data Access – The Barrier to AI
Implementation

04

Figure 1: Gartner - Barriers to AI Implementation [2]

Access to data hinders the success of AI projects for several reasons.

High-Quality AI Models Requires Access to Massive Datasets

AI workloads are far more data-intensive than traditional enterprise applications. The quality and
accuracy of AI models depend heavily on having access to large volumes of training data. The
data requirements for effective AI are not just about absolute size, but also variety and
complexity. The ability to access data can significantly impact overall outcomes of AI projects.

0% 10% 20% 30% 40%

Data Accessibility Challenges

Data Volume and/or Complexity

Unable/Hard to Measure the Value

Lack of Skills of Staff

Lack of Technology Knowledge

Data Scope or Quality Problems

Lack of Capacibility to Leverage AI Techniques

Lack of Understanding AI Benefits and Uses

Potential Risks or Liabilities

Security Concerns or Privacy Concerns

Difficulty Finding Use Cases

Governance Issues or Concerns

Complexity of AI Solution(s) Integration With Existing Infrastructure

Little Improvement Over Existing Technologies

Technology Is Too Difficult to Use or Deploy

Other

Barriers to AI Implementation
Sum of Top Three

Source: 2021 Gartner AI in Organizations Survey

35%

30%

28%

27%

26%

26%

23%

23%

18%

17%

15%

12%

7%

6%

6%

0%

05

Data Access is Slow and Costly, Both in Hybrid/Multi-cloud and Single-cloud Environments

In enterprise contexts, relevant datasets are often spread across different cloud environments,
data centers, and geographic regions. AI applications need the ability to access data regardless
of where it resides. Accessing data across distributed clouds can introduce significant latency
and high cloud storage API and egress costs. Even in the case of single-cloud/region, as most
persistent storage is designed for massive data stores with low prices, access to data will also
encounter low performance challenges.

Increasing Size of Models Slows Down Application Performance

As AI techniques advance, models are becoming larger and more complex. The size of state-of-
the-art AI models has been doubling every 3.4 months, according to research from OpenAI [3].
Also, for maximum accuracy, models need to be updated and served frequently. For downstream
applications, highly concurrent access to large model files is challenging.

Limited Availability of GPU Instances Necessitates Remote Data Transfer

GPUs are scarce resources these days. For example, Amazon EC2 P4 instances with A100 GPUs
may only be available in certain AWS regions [4], while your training data resides remotely. When
transferring data to GPU instances for model training, this results in slow model training and
high egress costs.

GPUs Waiting for Data Retrieval Results in Underutilized GPUs

GPUs are a critical accelerator technology for AI workloads. However, GPU time is expensive. It
is essential to maximize GPU utilization and reduce any wait time stemming from data access.
The challenge is keeping GPUs continuously fed with data to avoid computation sitting idle. The
speed of data access is now the bottleneck.

To overcome data accessibility challenges, you need to thoroughly understand data access
characteristics at every step of your ML pipeline.

2.1 Stages in the Machine Learning Pipeline

AI workloads are far more data-intensive than traditional enterprise applications. The quality and
accuracy of AI models depend heavily on having access to large volumes of training data. The
data requirements for effective AI are not just about absolute size, but also variety and
complexity. The ability to access data can significantly impact overall outcomes of AI projects.

2. Demystify Data Access Patterns in
Machine Learning Pipeline

06

Figure 2: Stages in the Machine Learning Pipeline

Data ingestion is the step of bringing data from various sources into a primary data pipeline.
This can be done using data integration tools, which can extract, transform, and load data
from a variety of sources.
Data preprocessing is the process of preparing data for model training. This includes
cleaning the data, removing outliers, and transforming the data into a format that can be
used by the model. Feature engineering is also a part of data preprocessing, and it involves
creating new features from the existing data.
Model training is building a model that can make predictions based on the data. This is done
by using machine learning algorithms to identify patterns in the data. The processed training
and retraining data is forwarded for use in the execution of ML routines (such as A/B testing,
model tuning, and hyperparameter tuning).
Model deployment is to make a model available for production use. This involves packaging
the model and making it accessible to applications that need to use it.
Model inference is the process of using a model to make predictions. This involves feeding
new data into the model and obtaining a prediction from the model. The inferences from the
model — model score, output data stream, and insights — now affect the outcome of
downstream applications.

The machine learning pipeline includes the following stages of the model development life cycle.

The ML pipeline is an iterative process, and there is a feedback loop. Once the model is deployed,
you need to measure its effectiveness and performance by capturing its performance and new
training data so that the model can be improved and updated to generate better results.

Write Only

Write/Read

Sequential

Random

Read Only

Type of access: The operations done after opening the file, such as read and write operations,
and the characteristics of access, like read-only, write-only, etc.
Access mode: It can be random read/write or sequential read/write. In random access, data
blocks are accessed in arbitrary order based on application logic. In sequential access, data
blocks are read/written linearly from start to end.
File size: The amount of data read or written in a single access. This is categorized as:

Small: <100KB
Medium: 100KB~100MB
Large: 100MB~100GB

Number of files: The total files in the dataset being accessed. This is classified as:
Small: < 1K
Medium: 1K~ 1 million
Many: 1 million ~ 100 million
Massive: 100 million ~ 10 billion or more

File format: The format of data, including structured, like Parquet, ORC, and unstructured,
like jpeg images.

2.2 Data Access Patterns

2.2.1 What is Data Access Pattern?

Data access pattern refers to the characteristics of how data is accessed from storage systems.
It provides important information that can be leveraged to optimize the data processing
workflows of your AI platform. The main aspects of data access patterns include:

07

Type of Access Access Mode File Size Requirements

Write Read

Number of FIle

KB/MB/GB/TB/PB...

File Format
jpeg, mp4, Parquet,

HDF5, pb, pkl, ...

Figure 2: What is Data Access Pattern?

Latency

GPU utilization

Throughput

1,000
1,000,0000

1,000,000,000
1,000,000,000,000

...

Data ingestion workloads typically have sequential access patterns and use files of any kind
and size. They are not very sensitive to latency, except in the case of streaming data. Writes
account for 90% of the workload's input/output activity.
Data preprocessing workloads use both random and sequential access. They have balanced
read-and-write patterns, use multiple data types and sources, and manage files of all sizes,
from small to large. Real-time data processing requires high latency, and batch-style data
processing requires high throughput.
Model training, deployment, and inference workloads typically have sequential access
patterns and process a single type of data in small files. They require low latency and high
throughput and can benefit significantly from GPU acceleration. Data analytics algorithms,
on the other hand, run faster on traditional CPUs.

2.2.2 Data Access Pattern in the Machine Learning Pipeline

Each stage of the ML pipeline has distinct data access patterns and corresponding requirements.
Data ingestion and model training require high throughput while preprocessing requires mixed
read/write handling. Inference, on the other hand, requires low latency and high throughput.

Table 1 shows different stages of the machine learning workflow and the corresponding data
access patterns.

Different access patterns require infrastructure to be optimized differently - ingestion requires
high write throughput, training needs high read throughput and high GPU utilization, deployment
requires low latency and high concurrency, and inference requires low latency and high
availability. See table 1 for details.

08

Type of Access

Data Preprocessing

Unstructured or
Semi Structured Structured

Model Training

CV NLP Checkpoint
Write

Model
Deployment

Data
Ingestion

Model
Inference

Access Mode -
Read

Access Mode -
Write

File Size

Number of
Files

File Format

Requirements
for Data & AI

Platform

Mostly write

N/A

Sequential Write
or Append

Small to Large

Small to Medium

Parquet, ORC,
Avro, Arrow

High
throughput
Combine all
data sources

Both read
and write

Sequential Read

Sequential Write
or Append

Small to Large

Many

jpeg, gif, json or
text, mp4

High throughput (batch
processing)
Low latency (real-time
processing)
High CPU utilization

Both read
and write

Random Read(4k)

Medium to Large

Small

Sequential Write
or Append

Parquet or ORC

Mostly Read

Sequential Read

N/A

Small

Massive

Unstructured
data, like jpeg

Both read
and write

Random Read(4k)

N/A

Large

Small

Structured or
semi-structured

data

Write Only

N/A

Sequential Write
or Append

Large

Small

NPZ, HDF5,
tf-native

High throughput
High read performance
High GPU utilization

High
throughput
High write
performance

Mostly Read

Sequential Read

Sequential Write

Small to Large

Small

pb, pkl, h5, onnx,
mlmodel

Low latency
High
concurrency

Read Only

Sequential Read

N/A

Small to Large

Small

pb, pkl, h5, onnx,
mlmodel

Low latency
High
throughput
High
availability

Table 1: Data Access Patterns in Each Stage of The ML Pipeline

2.2.3 Single Cloud Data Access Pattern

When training in a single cloud or a single data center, unstructured and structured training
datasets produce different data access patterns, which would impact the performance of data
access.

Training on Unstructured Dataset

When accessing unstructured data (such as JPEG or GIF), the data access pattern is mostly
sequential to read the entire file. This type of read pattern results in streaming rather than
random reads for cold and warm reads (where a warm read hits the local cache on local NVMe
storage) when reading a production ML dataset with more than 10k files.

09

Training on Structured Dataset

When accessing structured data (such as Parquet or ORC), we found the data access pattern to
be primarily small, random reads. This type of read pattern resulted in position reads
outperforming streaming reads when we ran read operations with 4 threads on a production ML
dataset, for both warm and cold reads when reading large ML structured datasets.

Figure 4: Single Cloud Data Access Pattern of Training on Unstructured Dataset

Figure 5: Single Cloud Data Access Pattern of Training on Structured Dataset

2.2.4 Multi-cloud/Multi-region Data Access Pattern

In some cases, the machine learning pipeline stages may be distributed across regions or clouds.
For example, data ingestion may be preprocessed in one region, models retrained in another, and
inferencing performed in one or more other regions.

The motivation behind choosing a multi-region, multi-cloud approach is cost, performance, and
service capabilities. An organization may want to leverage the most cost-efficient cloud
resources available. Also, inference stages often need to be placed geographically close to end
users to reduce latency. Finally, some cloud providers offer specialized resources or services
that others do not. For example, Google Cloud offers TPUs, and AWS provides SageMaker.

10

The above figure illustrates the scenario of data access architecture of multi-cloud/region [5].

From cloud A to cloud B, the data access patterns of transfer training data are periodic, read-
only access to training data. The model training speed is usually bottlenecked by fetching
remote training data.

From cloud B to cloud C, the data access patterns are periodic, read-only access to models. Note
that one trained model is usually shared by several model inference processes, informed by
downstream applications. When the model size is large, like large language models, data access
throughput is important.

2.3 Factors to Consider

Given the understanding of data access patterns and requirements, when building an
architecture to optimize data access, you need to consider the performance, scalability, and
reliability of the solution. This will ensure that you are able to deliver the full value of your AI
infrastructure investments.

Figure 6: Multi-cloud/Multi-region Data Access [5]

High performance and throughput for ML workloads
Dataset management, including load/unload/update of data from the data lake
Cloud-native capabilities, such as multi-tenancy, scalability, and elasticity
Eliminate data redundancy to avoid managing multiple copies of data
Reduced dependency on specialized networking hardware
Flexibility to place compute anywhere, regardless of the location of the data
Agnostic to cloud service providers to avoid vendor lock-in
Future-proofing to adapt to advancements in storage and computation technologies
Security, including consistent authentication and authorization

Automatically load / unload / update data from your existing data lake.
Faster access to training data informed by data access patterns.
Maintain optimal data access with high data throughput to keep the GPU fully utilized.
Deploy models faster and provides high concurrency model serving to inference nodes.
Increase the productivity of the data engineering team by eliminating the need to manage
data copies.
Reduce cloud storage API and egress costs, such as the cost of S3 GET requests, data
transfer costs, etc.

The solution to data access should support the following:

Alluxio provides a solution that meets all of these requirements. It can connect machine learning
engines with different storage systems and virtualize the data across regions and clouds. This
allows your organization to access and manage data from different sources in a unified way.
Alluxio is an architecture optimized for on-demand access to data, so you can get out of its way
and access it to the right place at the right time.

Alluxio offers the following values:

11

Figure 7: Alluxio-powered Data Access Across the ML Pipeline

Data Preprocessing Feature Engineering Model Training Model Serving

Informed by Data Access Patterns for Model Training & Inference

Raw Data

Feature Data & Feature
Model Model

New Result

Processed Data

3.1 Architecture Overview

In this section, we will focus primarily on the model training and model serving (deployment)
phases of the ML pipeline because they are the most resource intensive stages. The following is
a reference architecture for model training and serving with Alluxio.

3. Optimizing Data Access in AI/ML
Platform – Architecture and Benchmark

12

Figure 8: Architecture for Model Training and Serving with Alluxio

In this reference architecture, the training data is stored within a centralized data storage
platform, such as AWS S3 or GCS (Google Cloud Storage). To facilitate seamless provisioning of
the training data to the model training cluster, Alluxio is employed. ML training frameworks,
including PyTorch, TensorFlow, scikit-learn, and XGBoost, are executed on CPU/GPU/TPU
clusters. These frameworks utilize the training data to generate ML models, which are
subsequently stored in a centralized model storage repository.

For the model serving stage, dedicated serving/inference clusters are utilized, employing
frameworks such as TorchServe, TensorFlow Serving, Triton, and KFServing. These serving
clusters leverage Alluxio to retrieve the models from the model storage repository. Once loaded,
the serving clusters handle incoming queries, execute the necessary inference jobs, and return
the computed results.

Both the training and serving environments are based on Kubernetes, which facilitates easier
scalability and reproducibility of the infrastructure.

Training Cluster

Alluxio

Training Data

Model Training

Training Data

Model
TorchServe

Alluxio

Model Serving

Model

3.2 Performance and GPU Utilization Benchmarks for Alluxio-powered Model
Training

3.2.1 Deep Learning Algorithm and Dataset

ResNet (Residual Neural Network) is a widely used deep learning model that has gained
popularity in the field of computer vision. It builds upon the fundamental architecture of
convolutional neural networks (CNNs) but effectively addresses the issue of vanishing gradients,
enabling better training performance and improved accuracy. In the context of the reference
architecture, we plan to employ ResNet in conjunction with the ImageNet dataset for image
classification tasks, serving as an example use case in the computer vision domain.

3.2.2 Deployment and Test Setup

13

Figure 9: Benchmark Deployment and Test Setup

GPU Training

Alluxio
Visualization Dashboard

Interactive
Notebook

Alluxio
Operator

Kubernetes

Local Folder / Dataset

Alluxio - Kubernetes
GPU server - AWS EC2/Kubernetes
Deep learning algorithm (CV) - ResNet (one of the most popular CV algorithms)
Deep learning framework - PyTorch
Dataset - ImageNet (subset - ~35k images, each is ~100kB - 200kB)
Dataset storage - S3 (single region)
Mounting - FUSE
Visualization - TensorBoard
Code execution - Jupyter notebook

S3-FUSE

Test Setup Summary

Baseline

https://github.com/s3fs-fuse/s3fs-fuse

Alluxio S3 - FUSE

Total Training Time
(3 epochs) 17 minutes 85 minutes

3.2.3 Benchmark Results

Training Performance Benchmark Results

Based on the results of Resnet-50, 3 epochs performance benchmark, Alluxio is 5 times faster
than S3-FUSE. In general, increased data access performance reduces the overall time for model
training.

DATA ACCESS PATTERNS IN AI/ML PIPELINE 14

Table 2: Computer Vision Training Performance Benchmark Results: Alluxio vs. S3-FUSE

GPU Utilization Benchmark Results

With Alluxio, GPU utilization improved significantly. Alluxio has reduced data loading time from
82% to 1%, resulting in GPU utilization increasing from 17% to 93%.

Figure 10: Computer Vision Training GPU Utilization Benchmark Results: Alluxio vs. S3-FUSE

4.1 FinTech Giant, AliPay, Speeds up Large-Scale CV Training on Billions of
Small Files

AliPay is the world's largest mobile payment platform, serving over 1.3 billion users and 80
million merchants. In order to provide its users with the best possible experience, Alipay relies on
machine learning models to power a variety of features, such as fraud detection, risk
assessment, and personalized recommendations.

However, as AliPay's user base and transaction volume grew, the company began to experience
challenges with model training. The disparity between computation and storage performance
was causing model training to be slow and inefficient. Additionally, the high cost of specialized
hardware was putting a strain on Alipay's budget.

To address these challenges, AliPay began using Alluxio, a unified data access layer that can
accelerate machine learning workloads. Alluxio provides a high-performance cache that sits
between the compute and storage layers, reducing latency and improving throughput. This
allows AliPay to train models on commodity hardware, which is much more cost-effective than
specialized hardware.

4. Real-world Scenarios

15

In addition to improving performance, Alluxio also simplifies data management for AliPay.
Alluxio eliminates the need to maintain data copies by providing on-demand data access. This
frees data engineers to focus on other tasks, such as optimizing model performance.

PyTorch | Tensorflow

Cloud Object Store

Figure 11: AliPay Model Training Architecture with Alluxio

As a result of using Alluxio, AliPay has seen significant improvements in the speed and
efficiency of its model training. The company has also reduced its infrastructure costs and freed
up data engineers to focus on more strategic tasks. Learn more here >>.

DATA ACCESS PATTERNS IN AI/ML PIPELINE 16

After attempting various methods to address our challenges, only Alluxio is
able to meet our requirements for large-scale AI training. Alluxio has
significantly enhanced our AI training jobs for our businesses in various
domains.

— Chuanying Chen, Senior Software Engineer at AliPay

https://www.alluxio.io/blog/optimizing-alluxio-for-efficient-large-scale-training-on-billions-of-files/

4.2 Top Online Content Community, Zhihu, Accelerated LLM Training and
Deployment with 90% GPU Utilization

Zhihu (NYSE: ZH) is China's leading online content community with 400 million users, 100 million
MAU, and 54 billion monthly views. Zhihu trains custom large language models (LLMs) to power
its search and recommendation features. To develop LLMs, Zhihu needed a high-performance
data access layer to access data from multiple clouds efficiently.

The Zhihu team faced several challenges building a high-performance data access layer for
LLMs. First, they needed to find a way to access data from multiple clouds efficiently. Second,
they needed to ensure that the data access layer was scalable to meet the growing demands of
LLM training and deployment. Third, they needed to ensure the data access layer was reliable
and could withstand unexpected failures.

The Zhihu team chose to use Alluxio as the high-performance data access layer for LLMs. Alluxio
provides an acceleration service for large-scale data access. Alluxio acts as a unified
acceleration solution for large-scale data access to model training and deployment.

17

Figure 12: Zhihu Multi-cloud LLM Pipeline with Alluxio

After adopting Alluxio, Zhihu saw significant performance, scalability, and reliability
improvements. They could train LLMs 2-3 times faster and deploy updated models every minute
instead of hours or days. They also saw a 50% reduction in infrastructure costs. Read the full
story here >>.

We choose Alluxio as the high-performance data access layer to tackle our
technical challenges. As a result, we’ve achieved a 90% GPU utilization, 50%
reduced infrastructure and operations costs, and accelerated model
deployment and update times from several hours to minutes.

— Mengyu Hu, Software Engineer in the data platform team at Zhihu

https://ir.zhihu.com/Company-Profile
https://www.alluxio.io/blog/building-high-performance-data-access-layer-for-model-training-and-model-serving-for-llm/

Advancements in AI/ML are simultaneously unlocking opportunities for innovation and
presenting challenges for data access. The increasing number of cloud and multicloud
environments exacerbates the complexities that must be considered when designing for AI/ML
architecture.

Data access plays a vital role in delivering the performance, scale, and mobility of your AI
workload needs. Data is everywhere, and there is growing complexity associated with AI
platforms. Challenges are related to GPU scarcity, cost, and the multitude of large datasets in
silos, which require a solid data and AI platform architecture. As you have seen, Alluxio
addresses data access challenges for AI to bridge any model training or deployment demands to
any storage in any cloud.

Our experts understand how to architect the end-to-end machine learning pipeline. Book a
meeting to learn more about solutions tailored to your organization’s AI/ML needs.

5. Summary

18

https://calendly.com/alluxio-team

[1] Gartner, “2023 Gartner CIO survey”
[2] Gartner, “2021 Gartner AI in Organizations Survey”
[3] AI and compute, https://openai.com/research/ai-and-compute
[4] Amazon EC2 P4 Instances, https://aws.amazon.com/ec2/instance-types/p4/
[5] Hojin Park, Andy Lu, Greg Ganger, George Amvrosiadis: Multi-region/cloud data sharing
scenarios, https://docs.google.com/document/d/1g6tjaFCEjAjGf5-lyRCK-juMHYiXw91le-
N8Uu1MCTQ/edit?usp=sharing

References

https://openai.com/research/ai-and-compute
https://aws.amazon.com/ec2/instance-types/p4/
https://docs.google.com/document/d/1g6tjaFCEjAjGf5-lyRCK-juMHYiXw91le-N8Uu1MCTQ/edit?usp=sharing

About Alluxio

Authors of This White Paper

Hope Wang, Developer Advocate at Alluxio
Beinan Wang, Senior Staff Software Engineer at Alluxio
Chunxu Tang, Research Scientist at Alluxio
Lu Qiu, Machine Learning Engineer at Alluxio
Shawn Sun, Software Engineer at Alluxio
Shouwei Chen, Open-source Product Manager at Alluxio
Chenjia Guo, Marketing Coordinator & Analyst at Alluxio

Alluxio, the developer of the open source data platform, makes it easy to manage your data and serve it
from any storage to any compute engine in any environment — on premise, in the cloud, or across clouds.
By removing complexities and toil from managing and accessing data infrastructure, Alluxio accelerates
and future-proofs your data strategy, delivering performant, accessible, cost-effective, resilient, and secure
data applications that power improved outcomes, at any scale. To learn more, contact info@alluxio.com
or follow us on Linkedin, or Twitter.

Technical Whitepaper

