
 Mobile Architecture
 Task Force
 Why we think Flutter will help us scale mobile development at Nubank
 A detailed report of the criteria and study we conducted to decide to use
 Flutter as our main technology for cross-platform mobile development.

Authors

Thanks to advisors

Thanks to testers

Alexandre Freire, André Moreira, Rafael Ferreira, Rodrigo Lessinger,
Victor Maraccini and Vinícius Andrade.

October 2019

Thank you for reading

Bruno Tavares, Caio Gama (on usability testing methodology), Edward Wible,
Fellipe Chagas, Francesco Garcia, Guilherme Neumann (on design), Hugh Strange
(on product), Igor Borges, Luiz Dubas, Max Miorim, Rafael Ring, Rodolfo Fiuza,
Thiago Moura and Wilker Lúcio.

Alexandre Freire, Ana Luisa Bavati, Ana Valeije, Daniel de Jesus Oliveira,
Eden Ferreira, Edward Wible, Fuad Saud, Joel Junio, Lucas Ferreira,
Lucas Mafra, Luiz França, and Rafael Maruta.

Attribution-NonCommercial 4.0
International (CC BY-NC 4.0)

https://medium.com/building-nubank/https-medium-com-freire-why-nubank-chose-flutter-61b80b568772

04

05

07

09

20

22

24

23

24

25

26

28

35

36

37

38

47

41

29

30

31

32

34

33

35

 Mobile Architecture - User Testing

45

46

44

42

43

50

 Mobile Architecture - Taskforce-Survey

Abstract Nubank is a high growing fintech with a fast development pace. We’re cloud-first,
mobile-first and consider ourselves a technology company. Having to support two
platforms for our mobile applications brings challenges to the development or-
ganization; access to very specialized talent pools where market competition is
fierce; and a high entry barrier for mobile development.

Looking to address some of these problems we’ve decided to investigate if
a cross-platform solution could attend to Nubank business goals and deliver
high-quality apps.

This study presents the result of a Research & Development project conducted by
a small team at Nubank tasked with evaluating three cross-platform technologies:
Flutter, Kotlin Native, React Native; in eleven criteria evolved over time by the team
that represents what’s important for Nubank in its current context.

We will explain how each criterion was graded in a [0-5] scale, and show why we
decided to adopt Flutter as the main technology for cross-platform mobile devel-
opment at Nubank.

MOBILE ARCHITECTURE TASK FORCE | 04

History
Nubank’s mobile apps started in 2014 as two separate native projects, writ-
ten in Objective-C on iOS and Java on Android. Swift and Kotlin were released
and adopted as primary development languages for the mobile platforms at
Nubank around 2016. By mid-2017, the NuConta project started as a new Re-
act Native application, investing in a cross-platform technology to increase
development speed and allow for smaller autonomous teams. This resulted in
three fundamentally different ways of writing mobile apps: native iOS, native
Android and cross-platform.

We had separate teams using different sets of tools, languages and conven-
tions. We found it was hard to share knowledge and technologies with each
other. In addition, there was a high barrier of entry for new developers to join
mobile development, caused by either having to learn different languages or by
high setup and maintenance costs of the underlying platforms.

We encourage teams to move autonomously at Nubank, so we were happy
to see different teams trying different things, but at the same time the cost
described above was increasing. As we let teams diverge with many compet-
ing ideas, there comes a time where we decide to staff horizontal engineering
support teams to study all these localized efforts, pick the best and help all of
engineering standardized.

05 | MOBILE ARCHITECTURE TASK FORCE

The Mobile Architecture Taskforce was assembled in early 2019 to try and
find a single solution for developing cross-platform mobile applications at
Nubank, taking the company’s requirements and culture into account to make
an informed and balanced decision on the technology to be used for mobile
development in our future.

The task force’s vision was:

“Regardless of the specialization of its members, squads will be autonomous
and productive to develop the mobile application on a single architecture and
set of conventions, using the same programming language to deliver value
continuously to delight customers.”

And it’s Mission:

Working For: Product-facing squads who need to develop features on the mo-
bile app, by the end of February, this team will:

1. Gather data
2. Study alternatives
3. Document
4. Foster participation and feedback from the Engineering chapter
5. Decide

… between the considered cross-platform development alternatives (Kotlin Na-
tive, React Native and Flutter).

Unlike other local efforts in the past, this team will have 3 dedicated people to
help converge on a solution with buy-in from all of engineering.

MOBILE ARCHITECTURE TASK FORCE | 06

Metho-
dology We first iterated to align on which evaluation criteria were

important for Nubank. Initially we were worried about
technical issues and limitations of the frameworks, so
thought about some non-functional requirements like:

• Startup time: both cold and hot startup of the platform,
not considering userland code;

• FPS: does the default path outputs code that runs on
60 Frames per Second;

As we discussed these with our advisors we realized that
the people that were going to be impacted by the decision
were the most important criteria. Having different tech-
nologies and frameworks was generating a lot of anxiety,
especially among the native mobile specialists we had in
the team.

Uncertainty around what would happen if React Native
became a standard caused anxiety: would I have to go
back and learn mobile all over again? Would I be consid-
ered more “junior” in this new stack? What if I was really
proud of my native specialty and my ability to solve hard
problems in that space?

So we improved our list of criteria and focused on the ones
that reflected the impact we wanted to bring to our team.

We then set out to gather evidence and agree on a subjec-
tive score, from very low to very high, for each of them by
using different techniques like:

• testing a Flutter version of one
of our features in production

• analyzing communities, repositories, and resources
available for each platform

• engaging in conversations with specialists, teams, and
companies behind the development of the platforms

• implementing a clone of one of our features as a
stand-alone app in the 3 different platforms

• conducting an internal usability test, were a novice and
senior engineers made changes to the feature in apps
described above

• gathering internal data through surveys focused
on mobile developers and designers

• conducting presentations, debates and team visits to
discuss our findings, hear engineers and senior advi-
sors’ opinions, incorporate their feedback and answer
their questions.

07 | MOBILE ARCHITECTURE TASK FORCE

As we got data and answers we gave ourselves a deadline to decide,
we found this to be crucial for us to not prolong the taskforce and
getting diminished returns in the quest for a perfect answer. We had
contention in the team up to the last minute and a technique that re-
ally helped was running a “catastrophic scenario” role play. Imagine
if everything that can go terribly wrong with this decision does. How
would it play out for each option? We discussed scenarios like “Goo-
gle decides to kill Flutter” and “Facebook abandons React Native”
and encouraged the team to bring out their worst fears and then play
out how Nubank would react in “what if… ?” scenarios.

Finally, we made sure to invest a lot of conscious effort into commu-
nication. We held regular status update meetings with the Engineer-
ing Management team, and kept tabs on engineers who were engag-
ing with us either on Slack, in our live presentations and debates, or
in our visits to teams.

When we announced the decision to the engineering chapter no-
body was surprised and everyone felt they had the space to partic-
ipate and share their opinions and concerns.

“Our team was invited to a presentation were we learned
about all options in the choice. What called my attention was
what came next: they present the criteria that was chosen
to make the decision and the rationale behind each of them.
After that, they also presented some of the experiments that
would be performed to make a decision relative to each cri-
teria. The care taken to present all these attributes, and the
total openness so that we could give them input into each
of them, was fundamental so that the whole team felt as an
indispensable part of the process, and for all of us to under-
stand the seriousness of the work that had been done: this
made us feel completely safe with whatever the decision
might come out of the taskforce’s work.”

Testimony of senior engineer Otto Nascarella on his team’s
engagement with the task force.

OTTO NASCARELLA
Software Engineer

MOBILE ARCHITECTURE TASK FORCE | 08

Methodology

https://www.linkedin.com/in/ottonascarella

PRIORITY

01 Development experience                  Evaluation
 Criteria

09 | MOBILE ARCHITECTURE TASK FORCE

The eleven criteria were listed and prioritize:

DEVELOPER EXPERIENCE

Factors that contribute to enable a developer to
deliver and to be productive on the mobile app.

Examples:

• Hot reload
• Component visibility
• Debugger tooling
• IDE integration
• Test Tooling

PRIORITY

02 Long-term viability            

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

MOBILE ARCHITECTURE TASK FORCE | 10

LONG-TERM VIABILITY

Confidence that the platform maintainer will keep
supporting it in the long-term (five years) and the like-
lihood that the community will be able to support the
project if the maintainer decides not to continue.

Examples:

• Adoption by big companies
• Size of the community (number of core

contributors, outside contributors, etc...)

PRIORITY

03 No platform specialization         

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

11 | MOBILE ARCHITECTURE TASK FORCE

NO PLATFORM SPECIALIZATION

An engineer should be able to write mobile code for
the product without differentiating between Android
and iOS. The code should look and behave the same
on Android and iOS, with low occurrence of OS-spe-
cific crashes/problems.

PRIORITY

04 Incremental abstraction cost        

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

INCREMENTAL ABSTRACTION COST

The cost of extending the NuDS platform for each
product task and the friction of centralizing the work
on extensions, if required.

Examples:

• Does adding a new component require a depen-
dency on a horizontal squad to move forward?

• How hard is it to add a new component? How
about making it accessible/performant…?

MOBILE ARCHITECTURE TASK FORCE | 12

PRIORITY

05 Non-linear abstraction risk          

Evaluation
 Criteria

13 | MOBILE ARCHITECTURE TASK FORCE

The eleven criteria were listed and prioritize:

NON-LINEAR ABSTRACTION RISK

Risk of sudden requirement of large, dispropor-
tionate rewrites of our internal abstraction.

Examples:

• Adding an extra lifecycle method requires
refactoring most of the components

• A single new NuDS component that
requires non-trivial changes across
the entire codebase

PRIORITY

06 Learning resources          

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

LEARNING RESOURCES

Amount and quality of available external learn-
ing resources, such as the official documen-
tation, StackOverflow answers, books, confer-
ences and courses.

MOBILE ARCHITECTURE TASK FORCE | 14

PRIORITYEvaluation
 Criteria
The eleven criteria were listed and prioritize:

15 | MOBILE ARCHITECTURE TASK FORCE

API/TOOLING STABILITY

Platform API or tooling changes that
require changing our internal code.

Examples:

• Base API changes or dependency changes
that make it backwards-incompatible

• Changes to native (OS) components that
break internal cross-platform behavior

PRIORITY

08 App Store Restrictions           

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

APP STORE RESTRICTIONS

Risk of Apple or Google restricting our app in
any way because of our underlying platform.

Examples:

• Flutter UX not matching Apple’s HIG
(Human Interface Guidelines)

• The possibility of Over The Air updates
on React Native/Flutter becoming
a blocker for Apple

MOBILE ARCHITECTURE TASK FORCE | 16

PRIORITY

09 Capabilities limitations         

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

17 | MOBILE ARCHITECTURE TASK FORCE

CAPABILITY LIMITATIONS

Having all the latest OS/device features
accessible to us in the chosen platform.

Examples:

• Android Minimized apps
• Apple Watch support

PRIORITY

10 Roadmap                

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

ROADMAP

Visibility and long-term roadmap diverging
from Nubank’s interests.

MOBILE ARCHITECTURE TASK FORCE | 18

PRIORITY

11 Initial abstraction cost           

Evaluation
 Criteria
The eleven criteria were listed and prioritize:

19 | MOBILE ARCHITECTURE TASK FORCE

INITIAL ABSTRACTION COST

One-time cost of providing a minimal
abstraction for product teams to work.

MOBILE ARCHITECTURE TASK FORCE | 20

 Measurement
 results

1
Novice
Experience 1

Expert
Experience

2
Maintainer
Commitment

2
Continuity
by Community

3
No Platform
Specialization

4
Ease of
Incremental
Extension5

Non-Linear
Abstraction Risk

6
Official Docs

6
Public Help

7
API/Tooling

Stability

8
App Store

Restrictions

9
Capabilities
Limitations

10
Roadmap

11
Initial
Abstraction
Cost

Flutter

React Native

Kotlin Native

1
Novice
Experience

1
Expert
Experience

2
Maintainer
Commitment

2
Continuity
by Community

3
No Platform
Specialization4

Ease of Incremental
Extension

5
Non-Linear

Abstraction Risk

6
Official Docs

6
Community

Help

7
API/Tooling

Stability

 The
 Decision

To make the decision we
realized we had too many
criteria and decided to
only consider the 7 most
important ones.

Flutter

React Native

Kotlin Native

21 | MOBILE ARCHITECTURE TASK FORCE

 Developer
 Experience

MOBILE ARCHITECTURE TASK FORCE | 22

Novice developer
 experience

We performed user tests with engineers with low mobile
expertise. They were given a standalone application with
a well-defined architecture and problem description. They
were instructed to implement a series of 4 tasks, each
progressively more difficult, as we tried to pinpoint limita-
tions and pitfalls of the platform.

We combined both their individual impressions of each
platform with our own assessment of their performance
to rank this criteria.

23 | MOBILE ARCHITECTURE TASK FORCE

Conclusions

All platforms accommodate beginners, with obser-
vations of slightly better error messages and re-
ports in Kotlin Native. Our assessment of overall de-
veloper productivity when looking at test subjects
favors Flutter, as it seems that people are more
comfortable and capable of working on a similar
programming task on their own after our test.

MOBILE ARCHITECTURE TASK FORCE | 24

Skilled developer
 experience

User tests alone are not enough to have a good measure
of developer productivity as it only takes into account the
very first contact with the platform. We surveyed a board
of advisors to get a sense of what other tools and qual-
ities in the platform will experienced engineers look for.
We gathered data for developer tooling and Build/CI in-
frastructure.

Tooling

Platform Reload
at scale

Debugger
quality

Dev env
stability Crash reporting Score

Flutter High Logic - High
UI - High High*

Works (native + Dart
exceptions). Dart
exceptions are non-fatal

Medium
-high

React Native Medium Logic: Low
UI: Medium Medium Works (native separate

from JS exceptions) Medium

Kotlin Native Low

Logic Android: High
(Native dev workflow)
UI - Android: High
(Native workflow)

Logic iOS: Low
UI - iOS: High
(Native workflow)

Medium*

Android: Identical
iOS: not fully production
ready, could be
implemented by us,
included in the roadmap

Low

*Gut feel Projection; No actual data was collected/available.

https://github.com/JetBrains/kotlin-native/issues/2600

1
Novice
Experience

1
Expert
ExperienceBuild/CI Conclusions

Platform Reload
at scale

Test
stability Testability Score

Flutter Medium Medium-High High Medium-high

React Native Low Medium High Medium

Kotlin Native Medium Low Low Medium-low

25 | MOBILE ARCHITECTURE TASK FORCE

Flutter

React Native

Kotlin Native

Flutter seems to have better scalability as it has built-in hot reload that scales
well with the codebase and is more robust than the alternatives. It also features
code and UI debugging tools that work out-of-the-box and on both platforms,
integrated with the IDE. In contrast, React Native requires additional tools and
setup (such as using a browser) to get debugging to work, and Kotlin Native
requires the underlying platform’s tools.

Furthermore, Flutter has built-in testing infrastructure for Unit, Integration and
End-to-End tests. This includes the ability to exercise screens and flows without
the need for rendering to the screen, and also a test automator that simulates the
input of a user. In contrast, React Native requires third-party dependencies for
integration and E2E tests to work, and Kotlin Native has very limited unit testing
support, which would require us to write custom code for these functionalities.

Finally, all three platforms need some amount of work when it comes to crash
reporting and integration with existing tools like Fabric/Crashlytics.

Long-term viability Platform

Community size

Stars/Forks Stackoverflow
questions Google trends

Flutter 56,960/6,167 12,630 Upwards trend

React Native 75,131/16,705 48,301 Stable since Jan 2017,
still in 1st place

Kotlin Native 5,628/399 200 Undetectable on the Platform
search popularity graph

Platform Number of Contributors
Risk of being
abandoned by
maintainer

Continuity by
community

Flutter 61% of last 1.000 PRs from
Google [Excluding bots] Medium-Low Medium

React Native
9,5% of last 1.000 PRs from
Facebook 9,4% of last 1.000
PRs from Core Contributors

Medium-Low High

Kotlin Native 87% of last 1.000 PRs from JetBrains Medium-High Low

100

75

50

25

2015 2016 2017 2018 2019
0

Flutter React Native Kotlin Native

Platform search popularity

The second most important criteria is the life expectancy of the framework,
and whether it fits into our long-term vision. For our approach, we are con-
sidering 5 years as long-term, as this reflects the speed characteristics of
our company and the how young mobile technologies are in general. We are
also considering the likelihood of the community absorbing the maintenance
costs in case the original maintainer drops support for it.

MOBILE ARCHITECTURE TASK FORCE | 26

The community around React Native is larger, more ma-
ture and has been around for longer than all other alter-
natives. While Flutter is a more recent technology, it has
better official documentation and support from the main-
tainer than React Native and is growing at an accelerated
rate. Furthermore, the community in React Native is more
engaged and more likely to continue development if Face-
book decides to drop official support.

Regarding maintainer commitment, we see Flutter and
React Native as being equally likely to have continued
support. We’ve had direct contact with a Sr. Product Man-
ager at the Flutter team who assured us that Flutter has
been a multi-year project before initial public release, and
that it is currently being used in more than 10 projects
at Google, many of which will be public and span across
millions to tens of millions of users.

2
Maintainer
Commitment

2
Continuity
by Community

Conclusions

Flutter

React Native

Kotlin Native

27 | MOBILE ARCHITECTURE TASK FORCE

3
No Platform
Specialization

No platform specialization

The risk of requiring platform-specific code is proportional to how close the
platform is to the underlying operating system. The further away, the bigger
the abstraction, and the less likely it is for the cross-platform code to break in
only one of the platforms.

Since Flutter renders directly to the screen, it is less likely
than React Native to have OS-specific behavior in its UI el-
ements and abstractions. Flutter also offers more built-in
abstractions (such as navigation) which would otherwise
require external dependencies to fulfill. In Kotlin Native,
there is no provided UI abstraction and as such we would
have to write our own. This increases the likelihood of leak-
ing the internal workings of the native platforms.

Platform Risk of requiring platform-specific code

Flutter Low

React Native Medium

Kotlin Native High

Conclusions

Flutter

React Native

Kotlin Native

MOBILE ARCHITECTURE TASK FORCE | 28

Ease of incremental extension
The cost estimation is based on the effort required to add a brand new com-
ponent to the Nubank Design System (i.e.: one that cannot be represented as
a composition of existing components).

Incremental friction estimations are based on whether the same teams that
are working on features are able to create new design system components,
or whether they must necessarily rely on an external team of native special-
ists to develop them.

The cost estimation is lower on Flutter because it absorbs
more platform specificities than the others. React Native
sits closer to Flutter because it does provide an intermedi-
ate layer where you can work on top of. Kotlin Native would
be more costly as we would need to jump to platform spe-
cific code more often without and intermediate layer.

The frequency and friction are equivalent in Flutter and in
React Native because both allow teams to work on a sim-
ilar level of abstraction when developing their product and
when extending NuDS.

Conclusions

Platform Cost
estimation

Estimated
Frequency

Incremental
Friction estimation Score

Flutter 1x Low Low High

React Native 2x Low Low Medium-High

Kotlin Native 10x High High Low

4
Ease of Incremental Extension

5
Non-Linear

Abstraction Risk

Note: The final score was translated to a scale where higher is better.
For the intermediate columns, lower is better.

Flutter

React Native

Kotlin Native

29 | MOBILE ARCHITECTURE TASK FORCE

4
Ease of Incremental Extension

5
Non-Linear

Abstraction Risk

Risk of non-linear cost

Flutter and React Native have lower risk because the
whole generic UI abstraction is encompassed by the
framework. React Native has to do extra work to make the
abstraction fit both underlying OS, while Flutter dictates
the abstraction.

Kotlin Native has a high risk because we would have to
implement all the required code for feature teams to work
on top of. Implementing a generic layout layer would en-
tail a lot of work, but a small abstraction may fail to be
easily extensible to new use cases.

Since Flutter has many built-in abstractions and components are composable by de-
sign, there is little risk that our NuDS abstractions won’t fit into the provided model.
React Native has a similar capability, but is somewhat lacking in built-in primitives, thus
requiring either custom components or third-party dependencies. An example of this
would be the collapsing header component, which is today a third-party dependency in
React Native but is provided built-in in Flutter.

Kotlin Native has the biggest risk of all because all abstractions must be built by
Nubank, and it is much more likely that a key abstraction component is left out for not
being needed at first glance.

Conclusions

Platform Risk of breaking
UI abstractions Score

Flutter Very low Very high

React Native Low High

Kotlin Native High Low

Note: The final score was translated to a scale
where higher is better. For the intermediate
columns, lower is better.

Flutter

React Native

Kotlin Native

MOBILE ARCHITECTURE TASK FORCE | 30

6
Official Docs

6
Community

Help

Available learning resources

React Native’s community is much larger and well established, and there are many
more available blog posts, articles, courses, videos, etc. On the other hand, Flutter’s
official documentation is richer and broader, and there’s also more text and video con-
tent produced by the Flutter team. We estimate these points to somewhat balance
each other and thus consider both Flutter and React Native as having a similar score.

Kotlin Native’s documentation is very limited, and most of the engineer’s day to day
resources would need to be created by Nubank. Further documentation would be re-
quired to represent the UI abstractions and available components.

Conclusions

Platform Official Online
Documentation

Examples and
Answers on
StackOverflow

Books,
conferences
and courses

Score

Flutter Very Good Medium Low availability Medium-High

React Native Good High Medium availability Medium-High

Kotlin Native Poor Very low Very Low availability Low

Flutter

React Native

Kotlin Native

31 | MOBILE ARCHITECTURE TASK FORCE

Breaking changes For this criterion we surveyed for the history of breaking changes in the platform, taking the API, available tools and
development environment into account. We also considered the breaking changes in the main required dependencies.

Note: The final score was translated to a scale where higher is better.
For the intermediate columns, lower is better.

Platform History of breaking changes
on each platform Breaking changes on dependencies Score

Flutter

See changelog.
No breaking changes since 1.0.0
(Currently 1.3.12, 26 releases since 1.0.0)
See also Dart changelog for
language breaking changes.

Very young, very few dependencies
since it's more complete at its core High

React Native

Pull requests are automatically marked with
breaking change tag
Looking at the changelog, we find ~2
breaking changes per monthly release.

Frequent, if we use the
dependency it hurts Low

Kotlin Native
Could not find API history
See also Kotlin changelog for
language breaking changes.

Very young, few dependencies High

MOBILE ARCHITECTURE TASK FORCE | 32

Dependency analysis

React Native has an order of magnitude more dependencies than the other
alternatives, and as such is much more vulnerable to breaking changes in
those areas. Both Kotlin Native and Flutter have stable APIs, where Kotlin
Native has a much smaller surface area

Conclusions

Platform Production dependencies Test dependencies

Flutter 3 2

React Native 32 22

Kotlin Native 7 5

7
API/Tooling

Stability

Flutter

React Native

Kotlin Native

33 | MOBILE ARCHITECTURE TASK FORCE

App stores
restrictions

With respect to the possibility of being restricted by the store guidelines, Kotlin Native is the safest option since it
does not have the built-in possibility to run code that wasn’t already bundled with the application and it requires the
creation of our own UI abstractions using system components.

React Native also has low risk, mainly because it provides infrastructure to receive Over the Air updates and that
could be seen as a problem for the store maintainers.

Flutter is the only framework that does not rely on native components, and as such has new dimension of concerns
associated with it, both regarding user experience and human interface guidelines compliance. Even though it is
possible that App Store restrictions might come up that affect Flutter apps, we find this possibility is very unlikely
today and assigning a Medium-High score to Flutter.

This criterion attempts to measure the stability of the
platform regarding store distribution and potential restric-
tions that could apply to our app if a given platform is cho-
sen. We considered the presence of Over the Air updates
a potential risk, since Apple has restricted this behavior
in the past. Another factor we took into account was the
possibility of rejection due to the cross-platform UI frame-
work not complying with the platform’s built-in guidelines.
This is more likely to happen in Flutter since it does not
use the system’s built-in components.

Note: The final score was translated to a scale
where higher is better. For the intermediate
columns, lower is better.

Conclusions

Platform Technological Risk Market Weight Score

Flutter Low (Apple might judge
Flutter apps UX lacking) Low (Google Ads, Alibaba) Medium-High

React Native Very Low (OTA possibility) High (Facebook, Instagram,
Uber Eats, Pinterest) High

Kotlin Native Minimum Minimum Very high

MOBILE ARCHITECTURE TASK FORCE | 34

Platform/OS parity

Regarding platform limitations, Kotlin Native is the most flexible approach. It allows
code sharing in all contexts and poses no limits on platform/device features.

Flutter and React Native have similar limitations mostly due to their memory footprint
and not being usable outside the main application process. This limitation may change
over time, but we consider that it is not a blocker for use in our app since we do not rely
heavily on auxiliary process usage and it is still possible to write native code to fulfill
these requirements.

Both Kotlin Native and React Native do use the underlying OS provided components. Only
Flutter has to either reimplement the same native behavior or embed a PlatformView.

Conclusions

Capability limitations

Considering capabilities beyond the mobile app, both Flutter and React Native go over
the memory threshold established by the OS to create app extensions (Today exten-
sion, Siri extension, etc.). Kotlin Native has a much smaller memory footprint and thus
can be used in these contexts.

Note: The final score was translated to a scale where higher is better.
For the intermediate columns, lower is better.

Platform
Look for customer-facing things
that cannot be done with the cross-
platform technology (only native)

Score

Flutter

State restoration on Android
cannot in a synchronous way
App extensions on iOS are
not fully supported
Note: Flutter is actively working
on fidelity for iOS

Medium - Somewhat limited,
need to wait for Flutter to
implement new features;
cannot be used in auxiliary
processes

React Native

Can't build iOS native extensions
(Today extension, Siri, …)
For the same reason as Flutter,
RN's state restoration on Android
should not work (unverified).

Medium-High - Able to use
native components, but cannot
be used in auxiliary processes

Kotlin Native Does not apply since all UI is
necessarily native Very high - No limits

Platform If OS changes at UI level, will the platform be behind?

Flutter

Yes. Addition of new UI components/functionality that
cannot be accessed outside UIKit. (Autofill support)
We/Google would either have to embed a PlatformView
or replicate the behavior from the private API.

React Native No. (Use the underlying system components)

Kotlin Native No. (Use the underlying system components)

MOBILE ARCHITECTURE TASK FORCE | 35

Roadmap
In this criterion we attempted to investigate any potential problems for the future of
each technology and whether it would diverge from our long-term interests. We found
no contention points, and so the analysis was limited to the visibility we can have of
the product’s roadmap.

36 | MOBILE ARCHITECTURE TASK FORCE

Platform Roadmap information from each platform
and verify with Nubank's expectations Score

Flutter

Open roadmap with milestones and project tracking
Adding to an existing application as a self-contained
framework is a first-party flow is in the
official roadmap (and almost done)

High

React Native Broad roadmap goals which involve big refactors/
improvements and ownership transfers. High

Kotlin Native No public roadmap; Issue tracker with an internal tool High

Although there are some small unresolved issues
(and open PRs) with Flutter and React Native,
those aren’t blockers for us. Most have existing
workarounds or would disappear when we adopt
Flutter or React Native as the toplevel project.

Conclusions

Initial Abstraction cost

React Native has the lowest initial cost because it is already integrated in the app. The initial cost would be only adding top
level support to React Native in the app.

Flutter’s proof of concept allowed us to estimate an initial cost as lower than React Native’s original initial cost, but still harder
to integrate than the existing React Native. The proof of concept was later used for User Testing and can be seen in Appendix A.

Kotlin Native has a high cost estimation because we would have to bootstrap the initial components on both platforms and
also extend the toy test infrastructure created by us for the user tests.

Note: The final score was translated to a scale where higher is better.
For the intermediate columns, lower is better.

Platform # of Components to build Effort to create
CI pipeline

Effort to create
test infrastructure Score

Flutter Thin wrappers only Medium Medium Medium

React Native Thin wrappers only Low Very low
(already exists) High

Kotlin Native Thick wrappers (actual components)
and layout abstractions Medium Very High Very Low

MOBILE ARCHITECTURE TASK FORCE | 37

The initial abstraction cost was intentionally
deprioritized when compared to the other cri-
teria in this document, mainly because it would
introduce high biases to continue using exist-
ing technologies. Since these costs are pres-
ent only once (and do not affect us on every
feature or extension), we believe this is import-
ant to keep track of, but not a main driver for
the decision.

Conclusions

1
Novice
Experience

1
Expert
Experience

2
Maintainer
Commitment

2
Continuity
by Community

3
No Platform
Specialization4

Ease of Incremental
Extension

5
Non-Linear

Abstraction Risk

6
Official Docs

6
Community

Help

7
API/Tooling

Stability

 The
 Decision

38 | MOBILE ARCHITECTURE TASK FORCE

To make the decision we
realized we had too many
criteria and decided to
only consider the 7 most
important ones.

Flutter

React Native

Kotlin Native

We’ve decided to adopt Flutter as the future platform
for mobile development at Nubank. We believe this to
be aligned with the company’s best interests and that it
fits the development model and engineering culture our
company follows.

Drawing from our own experiences (80% of our Android
codebase is Kotlin, NuConta is developed in React Native)
and evaluating our alternatives against Nubank priorities
we feel like Kotlin is a great language to work with. But
Kotlin Native is the only platform that doesn’t provide a
UI abstraction, making it dependent on native platform
tooling for developing and testing. While it scored higher
in our lowest priority criteria, not showing limitations of
capabilities or risks for app store restrictions, we felt that
especially when it came to testing support for expert en-
gineers, Kotlin Native is not ready for us.

We feared a bias towards React Native, so we consciously
lowered the priority of another criteria: the cost of building
the initial abstraction on the platform, where React Native
was a clear winner.

 The
 Decision

MOBILE ARCHITECTURE TASK FORCE | 39

When looking at more important criteria, React Native
also wins in community support. We felt no fear of the
continuity and evolution of the project and were really
happy with the amount of documentation and learning
resources available. When it came to breaking changes
however, we found that React Native has an order of mag-
nitude more dependencies than the other alternatives,
and as such is much more vulnerable to maintenance and
upgrading pains.

Our engineering culture strongly encourages test automa-
tion, so Flutter shined with its great testing capabilities, that
fit nicely with our mindset (built-in testing infrastructure for
Unit, Integration and End-to-End tests without the need for
rendering to the screen). Whereas React Native requires
third-party dependencies, which makes it more prone to
breaking changes. We found the Flutter development ex-
perience to be superior, with better hot reload capabilities,
very strong official documentation, and a more stable API.

After a lot of discussion and contention up to the last min-
ute we decided to use Flutter as Nubank’s main technolo-
gy for mobile development. This means the new features
will be written in Flutter and as the product evolves we ex-
pect it to become the greater percentage of our codebase.

So far it’s been great to use Flutter, we expect to have
more features built or migrated to Flutter out to our users
very soon.

Having to include Flutter in a running app with millions of
clients comes with its own set of challenges that we’re
gradually overcoming, the first of them being:

• changes in build pipelines,
• creating the main platform channels,
• integrating routing amongst React Native, Flutter,

Kotlin and Swift so we can maintain interoperability.

While Flutter is going to be our main technology, native
developers are still needed and valued as each platform
has its own set of features that require native code (e.g.:
native plugins like GPS and camera, Apple Watch, An-
droid minimized apps, etc…) and as the software engi-
neering team at Nubank grows individual specialization
is welcomed.

Conclusions

40 | MOBILE ARCHITECTURE TASK FORCE

 Mobile
 Architecture
 User Testing

APPENDIX A

MOBILE ARCHITECTURE TASK FORCE | 41

 Installation instructions
42 | MOBILE ARCHITECTURE TASK FORCE

Follow the installation guides from the platform you want to test:

The sample apps are hosted in the mobile-architecture-taskforce Github project.
(Link removed. This is a private repository, with the code needed to perform the tasks)

Instructions for running the applications are on the repository readme:

Flutter

Flutter

$ cd Flutter/flutter_mob_arch_tf/
Run F5 in VSCode and pick the
iPhone or Android emulator.

React Native

$ cd React-Native/RNMobArchTF/
$ react-native run-ios

Or

$ react-native run-android
Then open VSCode for editing the
TypeScript code of the app.

Kotlin Native

Run the app module on Android
Studio 3.5 Preview

React Native Kotlin Native

Sync the Gradle project after opening
the Kotlin Native sample app

> CLI Quickstart

https://facebook.github.io/react-native/docs/getting-started.html
https://flutter.dev/docs/get-started/install/macos

MOBILE ARCHITECTURE TASK FORCE | 43

 Environment
Flutter React Native Kotlin Native

IDE Visual Studio Code/IntelliJ Visual Studio Code/IntelliJ Android Studio Preview

Command
line executable Flutter react-native ./gradlew

Running
the project

Visual Studio Code:
Debug > Start Debugging (F5)

IntelliJ:
Run > Run ‘main.dart’

react-native run-android

Android Studio:
Select the app module
and press run

You may experiment
with hot reload by using
the Apply Changes button

Running the tests

Visual Studio Code:
flutter test [filename]

IntelliJ:
Play button on the side of the test name

npm test [filename] [--watch]

Select a test class

Run a test

44 | MOBILE ARCHITECTURE TASK FORCE

 Sample
App
The sample application will
implement the flow to deposit
money into their NuConta
using “boleto”, with the
following screens:

Screen 2 (Result Screen)

Barcode

Screen 1 (User Input)

Amount Input

MOBILE ARCHITECTURE TASK FORCE | 45

Responsibilities are divided among several classes to ensure
each class is specialized and does only one job.

You will encounter the following classes for handling UI:

– Navigator

Architecture

Navigators are responsible for presenting/dismissing containers:
 – It knows the order between containers
 – It issues commands to navigate imperatively
 – It adapts/transfers data between containers

Containers represent screens. They wrap layout-only views:
 – Manage the view state
 – Executes side–effects based on interactions
 – Perform requests
 – Copy to clipboard
 – Exposes output from screens (i.e.: data to be used elsewhere in the flow)

View is pure layout and relaying of interactions.
 – It positions components on the screen
 – Exposes interactions using callbacks

– Container – View

Present/Dismiss

Side-effects
State management

Layout

Navigator

Container Container

ViewView

Example

46 | MOBILE ARCHITECTURE TASK FORCE

Navigator

Container

View

Presents containers
Pass data from containers

Enabled state
Validation logic
Request to generate barcode

Color/font component positions
Button press detection
Enabled

Tasks

MOBILE ARCHITECTURE TASK FORCE | 47

1. LAYOUT:
 UI tweaks

 a. Move the “VENCIMENTO ...” text in the Barcode
 screen from below the amount to above it.
 b. Change the text to be “DATA DE VENCIMENTO ...”

2. NAVIGATION:
 UI tweaks

 a. Navigate back to the Amount Input screen when
 the amount is tapped in the Barcode screen.
 b. Create a test that verifies this behavior

Expected result: Expected result:

3. FUNCTIONALITY:
 Add shortcut buttons with common values
 on Amount Input (i.e.: R$20, 50, 100)

 a. Add 3 instances of ShortcutButton
 (this class is provided) to the Amount
 Input screen one beside the other

 b. Make each button lead to the next
 screen with the selected amount

 c. Add tests to assert that each button
 navigates to the following screen with
 the proper boleto amount

Note: Don’t worry too much about spacing and
positioning since they may vary depending on the
platform. The important aspects are the horizontal
arrangement of the buttons, the consistent spacing
between them and being centered horizontally.

48 | MOBILE ARCHITECTURE TASK FORCE

Tasks

Expected result:

MOBILE ARCHITECTURE TASK FORCE | 49

4. NAVIGATION:
 Add a new screen in between the existing
 two that asks for the bank you are depositing
 from using a text input field.

 a. Create the new screen with a text input

 b. Navigate to the new screen after Amount Input

 c. Get the value from the text input and display
 it on the last screen, below the readable barcode.

Note: Don’t worry about the bold text parts; NuML
would be the preferred way to do this but it is not
implemented in all platforms.

Expected result:

 Mobile
 Architecture
 Taskforce
 Survey

APPENDIX B - SURVEY

51 | MOBILE ARCHITECTURE TASK FORCE

 Mobile
 Architecture
 Taskforce
 Survey

 This survey is to be filled after
 completing the Mobile Architecture
 platform evaluation test

 What’s your name?

Comfort

What platform were you using?

How was your experience during the test?

Flutter React-Native Kotlin-Native

How comfortable did you feel using this platform?*

1 2 3 4 5

Couldn’t figure out
how to do anything

Instantly knew how
to do everything

How comfortable were you with your IDE?

1 2 3 4 5

Didn’t know how
to do anything

Very, knew all the
shortcuts and tools

How readable were the error messages you encountered?*

1 2 3 4 5

Didn’t know how
to do anything

Very, knew all the
shortcuts and tools

MOBILE ARCHITECTURE TASK FORCE | 52

Productivity

Subjectively, how productive did you feel throughout the exercise?

How easy was it to understand the
architecture/organization of the codebase

1 2 3 4 5

I was constantly stuck and
didn’t know what to do

It was a lot easier than
I expected to complete
the tasks

1 2 3 4 5

Couldn’t find anything Found everything with ease

Learnability

Where reading means understanding the details of the language,
what are loops, variables and the logical structure.

Did you face any problem you couldn’t
solve even after searching online?

If so, what was the problem?
[Leave blank if none]

Did you have any difficulty reading the language?

Yes

Yes

Somewhat, but I managed to understand after some time

No

No

What did you think about the quality of the answers available online?

How would you qualify the learning curve of this platform?

How prepared do you feel to perform a similar task?

1 2 3 4 5

Worthless Solved all my problems

1 2 3 4 5

Very steep, hard
to get started

Very incremental, easy
to learn more each step

1 2 3 4 5

As if starting
from scratch

Very comfortable

53 | MOBILE ARCHITECTURE TASK FORCE

October 2019

	Capa
	Intro
	Menu
	Abstract
	History 1
	History 2
	Methodology 1
	Methodology 2
	Evaluation 01
	Evaluation 02
	Evaluation 03
	Evaluation 04
	Evaluation 05
	Evaluation 06
	Evaluation 07
	Evaluation 08
	Evaluation 09
	Evaluation 10
	Evaluation 11
	Measurement results 1
	Measurement results 2
	Developer Experience
	Novice developer | Conclusions
	Skilled Developer | Tooling
	Build/CI | Conclusions
	Long-term viability
	Conclusions 2
	No platform specialization | Conclusions
	Ease of incremental extension | Conclusions
	Risk of non-linear cost | Conclusions
	Available learning resources | Conclusions
	Breaking changes
	Dependency analysis | Conclusions
	App stores restrictions | Conclusions
	Capability limitations | Platform | Conclusions
	Roadmap | Conclusions
	Initial Abstraction cost | Conclusions
	 The Decision 1
	 The Decision 2
	Conclusion 3
	APPENDIX A
	 Installation instructions
	Environment
	Sample App
	Architecture
	Example
	Tasks 1
	Tasks 2
	Tasks 3
	APPENDIX B
	FIM

	Button 200:
	Button 203:
	Button 201:
	Button 202:
	Button 118:
	Button 117:
	Button 116:
	Button 115:
	Button 114:
	Button 113:
	Button 130:
	Button 112:
	Button 110:
	Button 109:
	Button 92:
	Button 94:
	Button 102:
	Button 105:
	Button 96:
	Button 103:
	Button 107:
	Button 98:
	Button 100:
	Button 80:
	Button 84:
	Button 89:
	Button 90:
	Button 88:
	Button 82:
	Button 87:
	Button 86:
	Button 215:
	Button 91:
	Button 212:
	Button 214:
	Button 204:
	Button 205:
	Button 206:
	Button 207:
	Button 209:
	Button 208:
	Button 2010:
	Button 2011:
	Button 2012:
	Button 2013:
	Button 2014:
	Button 2015:
	Button 2016:
	Button 2017:
	Button 131:
	Button 2018:
	Button 2019:
	Button 2020:
	Button 239:
	Button 240:
	Button 241:
	Button 242:
	Button 243:
	Button 244:
	Button 245:
	Button 246:
	Button 247:
	Button 248:
	Button 2023:
	Button 2021:
	Button 2022:
	Button 227:
	Button 357:
	Button 358:
	Button 359:
	Button 360:
	Button 361:
	Button 362:
	Button 363:
	Button 364:
	Button 365:
	Button 2059:
	Button 2057:
	Button 2058:
	Button 249:
	Button 250:
	Button 252:
	Button 253:
	Button 254:
	Button 255:
	Button 256:
	Button 257:
	Button 258:
	Button 259:
	Button 2026:
	Button 2024:
	Button 2025:
	Button 260:
	Button 262:
	Button 264:
	Button 265:
	Button 266:
	Button 267:
	Button 268:
	Button 269:
	Button 270:
	Button 348:
	Button 20141:
	Button 20154:
	Button 20155:
	Button 271:
	Button 273:
	Button 274:
	Button 276:
	Button 277:
	Button 278:
	Button 279:
	Button 280:
	Button 281:
	Button 349:
	Button 2029:
	Button 2027:
	Button 2028:
	Button 282:
	Button 284:
	Button 285:
	Button 286:
	Button 288:
	Button 289:
	Button 290:
	Button 291:
	Button 292:
	Button 350:
	Button 20142:
	Button 20152:
	Button 20153:
	Button 293:
	Button 295:
	Button 296:
	Button 297:
	Button 298:
	Button 366:
	Button 300:
	Button 301:
	Button 302:
	Button 303:
	Button 351:
	Button 2032:
	Button 2030:
	Button 2031:
	Button 304:
	Button 306:
	Button 307:
	Button 308:
	Button 309:
	Button 310:
	Button 312:
	Button 313:
	Button 314:
	Button 352:
	Button 20143:
	Button 20150:
	Button 20151:
	Button 315:
	Button 317:
	Button 318:
	Button 319:
	Button 320:
	Button 321:
	Button 322:
	Button 324:
	Button 325:
	Button 353:
	Button 2035:
	Button 2033:
	Button 2034:
	Button 326:
	Button 328:
	Button 329:
	Button 330:
	Button 331:
	Button 332:
	Button 333:
	Button 334:
	Button 336:
	Button 354:
	Button 20145:
	Button 20146:
	Button 20147:
	Button 337:
	Button 339:
	Button 340:
	Button 341:
	Button 342:
	Button 343:
	Button 344:
	Button 345:
	Button 346:
	Button 355:
	Button 20144:
	Button 20148:
	Button 20149:
	Button 2036:
	Button 2037:
	Button 2038:
	Button 2039:
	Button 2040:
	Button 2041:
	Button 2042:
	Button 2043:
	Button 2044:
	Button 2045:
	Button 2046:
	Button 2047:
	Button 2048:
	Button 2049:
	Button 2050:
	Button 2051:
	Button 2052:
	Button 2053:
	Button 2054:
	Button 2055:
	Button 2056:
	Button 2060:
	Button 2061:
	Button 2062:
	Button 2063:
	Button 2064:
	Button 2065:
	Button 2066:
	Button 2067:
	Button 2068:
	Button 2069:
	Button 2070:
	Button 2071:
	Button 2074:
	Button 2072:
	Button 2073:
	Button 2075:
	Button 2076:
	Button 2077:
	Button 2078:
	Button 2079:
	Button 2080:
	Button 2081:
	Button 2082:
	Button 2083:
	Button 2084:
	Button 2085:
	Button 2086:
	Button 2087:
	Button 2088:
	Button 2089:
	Button 2090:
	Button 2091:
	Button 2092:
	Button 2093:
	Button 2094:
	Button 2095:
	Button 2096:
	Button 2097:
	Button 2098:
	Button 2099:
	Button 20100:
	Button 20101:
	Button 20102:
	Button 20103:
	Button 20104:
	Button 196:
	Button 197:
	Button 20108:
	Button 20109:
	Button 20110:
	Button 20111:
	Button 20112:
	Button 20113:
	Button 20126:
	Button 20127:
	Button 20128:
	Button 20117:
	Button 20118:
	Button 20125:
	Button 20120:
	Button 20121:
	Button 20122:
	Button 20123:
	Button 20124:
	Button 20135:
	Button 20129:
	Button 20130:
	Button 20131:
	Button 20132:
	Button 20133:
	Button 20134:
	Button 20105:
	Button 20106:
	Button 20107:
	Button 20114:
	Button 20115:
	Button 20116:
	Button 20119:
	Button 20136:
	Button 20137:
	Button 20138:
	Button 20139:
	Button 20140:
	T:

