
2020
Web Almanac

HTTP Archive’s annual
state of the web report

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Introduction

Foreword ..iii

Part I. Page Content

Chapter 1: CSS ..1

Chapter 2: JavaScript ...81

Chapter 3: Markup .. 111

Chapter 4: Fonts .. 139

Chapter 5: Media ... 161

Chapter 6: Third Parties ... 187

Part II. User Experience

Chapter 7: SEO ... 203

Chapter 8: Accessibility .. 247

Chapter 9: Performance ... 275

Chapter 10: Privacy .. 299

Chapter 11: Security .. 311

Chapter 12: Mobile Web .. 351

Chapter 13: Capabilities ... 375

Chapter 14: PWA .. 395

Part III. Content Publishing

Chapter 15: CMS ... 413

Chapter 16: Ecommerce ... 435

Chapter 17: Jamstack .. 463

Part IV. Content Distribution

Chapter 18: Page Weight ... 477

Chapter 19: Compression .. 487

Table of Contents

2020 Web Almanac by HTTP Archive i

Chapter 20: Caching .. 499

Chapter 21: Resource Hints .. 537

Chapter 22: HTTP/2 ... 553

Appendices

Methodology .. 577

Contributors ... 587

Table of Contents

ii 2020 Web Almanac by HTTP Archive

Foreword
2020 has been a year many of us would like to forget. It’s rare for a community as globalized as

ours to be affected by events as far-reaching as the COVID-19 pandemic and protests against

racial injustice. These events almost discouraged us from restarting the project this year—with

so many people physically and emotionally drained, how could we expect anyone to want to

contribute, let alone have the time and energy for it? We proceeded with caution, hoping there

was still community interest.

The purpose of this edition of the Web Almanac is not to forget about 2020, but to memorialize

it. For better or worse, this is a chapter in our history. Despite all of the external pressures of

this year, over a hundred contributors from the web community signed up and volunteered

countless hours of their time for a project dedicated to remembering 2020 and the state of the

web. Amazingly, we actually managed to expand the scope of this year’s edition by adding three

new chapters and only losing one.

When I ask contributors what they enjoy most about the project, the answer is almost always

about the people. We work together as teams, we support each other, and in only five months

time we were able to build the equivalent of a 600 page book! It was an enormous challenge,

and while we haven’t solved the world’s problems, we’ve shown what’s possible when people

choose to work together.

Please enjoy the 2020 Web Almanac, the culmination of our labor of love for the web. And be

sure to reach out if you’d like to join the team.

— Rick Viscomi, Web Almanac Editor-in-Chief

Foreword

2020 Web Almanac by HTTP Archive iii

http://127.0.0.1:8080/en/2020/contributors
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/CONTRIBUTING.md

iv 2020 Web Almanac by HTTP Archive

Part I Chapter 1

CSS

Written by Lea Verou, Chris Lilley, and Rachel Andrew
Reviewed by Estelle Weyl, Elika Etemad aka fantasai, Jens Oliver Meiert, Miriam Suzanne, Catalin
Rosu, and Andy Bell
Analyzed by Rick Viscomi, Lea Verou, and Pokidov N. Dmitry
Edited by Barry Pollard

Introduction

Cascading Stylesheets (CSS) is a language used to lay out, format, and paint web pages and

other media. It is one of the three main languages for building websites—the other two being

HTML, used for structure, and JavaScript, used to specify behavior.

In last year’s inaugural Web Almanac1, we looked at a variety of CSS metrics2 measured through

41 SQL queries over the HTTP Archive corpus, to assess the state of the technology in 2019.

This year, we went a lot deeper, to measure not only how many pages use a given CSS feature,

but also how they use it.

Overall, what we observed was a web in two different gears when it comes to CSS adoption. In

our blog posts and Twitter bubbles, we tend to mostly discuss the newest and shiniest, however,

1. https://almanac.httparchive.org/en/2019/
2. https://almanac.httparchive.org/en/2019/css

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 1

https://almanac.httparchive.org/en/2019/
https://almanac.httparchive.org/en/2019/css

there are still millions of sites using decade-old code. Things like vendor prefixes from a bygone

era, proprietary IE filters, and floats for layout, in all their clearfix glory. But we also observed

impressive adoption of many new features—even features that only got support across the

board this very year, like min() and max() . However, there is generally an inverse

correlation between how cool something is perceived to be and how much it is actually used;

for example, cutting-edge Houdini features were practically nonexistent.

Similarly, in our conference talks, we often tend to focus on complicated, elaborate use cases

that make heads explode and Twitter feeds fill with “CSS can do that?!”. However, it turns out

most CSS usage in the wild is fairly simple. CSS Variables are mostly used as constants and

rarely refer to other variables, calc() is mostly used with two terms, gradients mostly have

two stops and so on.

The web is not a teenager anymore—it is now 30 years old and acts like it. It tends to favor

stability over new bling and readability over complexity, occasional guilty pleasures aside.

Methodology

The HTTP Archive3 crawls millions of pages4 every month and runs them through a private

instance of WebPageTest5 to store key information of every page. (You can learn more about

this in our methodology).

For this year, we decided to involve the community in which metrics to study. We started with

an app to propose metrics and vote on them6. In the end, there were so many interesting

metrics that we ended up including nearly all of them! We only excluded Font metrics, since

there is a whole separate Fonts chapter and there was significant overlap.

The data in this chapter took 121 SQL queries to produce, totaling over 10K lines of SQL

including 3K lines of JavaScript functions within the SQL. This makes it the largest chapter in

the Web Almanac’s history.

A lot of engineering work went into making this scale of analysis feasible. Like last year, we put

all CSS code through a CSS parser7, and stored the Abstract Syntax Trees8 (AST) for all

stylesheets in the corpus, resulting in a whopping 10 TB of data. This year, we also developed a

library of helpers9 that operate on this AST, and a selector parser10—both of which were also

released as separate open source projects. Most metrics involved JavaScript11 to collect data

3. https://httparchive.org/
4. https://httparchive.org/reports/state-of-the-web#numUrls
5. https://webpagetest.org/
6. https://projects.verou.me/mavoice/?repo=leaverou/css-almanac&labels=proposed%20stat
7. https://github.com/reworkcss/css
8. https://en.wikipedia.org/wiki/Abstract_syntax_tree
9. https://github.com/leaverou/rework-utils
10. https://projects.verou.me/parsel
11. https://github.com/LeaVerou/css-almanac/tree/master/js

Part I Chapter 1 : CSS

2 2020 Web Almanac by HTTP Archive

https://httparchive.org/
https://httparchive.org/reports/state-of-the-web#numUrls
https://webpagetest.org/
https://projects.verou.me/mavoice/?repo=leaverou/css-almanac&labels=proposed%20stat
https://github.com/reworkcss/css
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://github.com/leaverou/rework-utils
https://projects.verou.me/parsel
https://github.com/LeaVerou/css-almanac/tree/master/js

from a single AST, and SQL12 to aggregate this data over the entire corpus. Curious how your

own CSS does against our metrics? We made an online playground13 where you can try them out

on your own sites.

For certain metrics, looking at the CSS AST was not enough. We wanted to look at SCSS14

wherever it was provided via sourcemaps as it shows us what developers need from CSS that is

not yet possible, whereas studying CSS shows us what developers currently use that is. For

that, we had to use a custom metric—JavaScript code that runs in the crawler when it visits a

given page. We could not use a proper SCSS parser as that could slow down the crawl too much,

so we had to resort to regular expressions15 (oh, the horror!). Despite the crude approach, we got

a plethora of insights!

Custom metrics were also used for part of the custom properties analysis. While we can get a

lot of information about custom property usage from the stylesheets alone, we cannot build a

dependency graph without being able to look at the DOM tree for context, as custom

properties are inherited. Looking at the computed style of the DOM nodes also gives us

information like what kinds of elements each property is applied to, and which of them are

registered16—information that we also cannot get from the stylesheets.

We crawl our pages in both desktop and mobile mode but for a lot of the data they give similar results

so, unless otherwise noted, stats presented in this chapter refer to the set of mobile pages.

Usage

While JavaScript far surpasses CSS in its share of page weight, CSS has certainly grown in size

over the years, with the median desktop page loading 62 KB of CSS code, and one in ten pages

loading more than 240 KB of CSS code. Mobile pages do use slightly less CSS code across all

percentiles, but only by 4 to 7 KB. While this is definitely greater than previous years, it doesn’t

come close to JavaScript’s whopping median of 444 KB and top 10% of 1.2 MB

12. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020/css
13. https://projects.verou.me/css-almanac/playground
14. https://sass-lang.com/
15. https://github.com/LeaVerou/css-almanac/blob/master/runtime/sass.js
16. https://developer.mozilla.org/docs/Web/API/CSS/RegisterProperty

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 3

https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020/css
https://projects.verou.me/css-almanac/playground
https://sass-lang.com/
https://github.com/LeaVerou/css-almanac/blob/master/runtime/sass.js
https://developer.mozilla.org/docs/Web/API/CSS/RegisterProperty

It would be reasonable to assume that a lot of this CSS is generated via preprocessors or other

build tools, however only about 15% included sourcemaps. It is unclear whether this says more

about sourcemap adoption or build tool usage. Of those, the overwhelming majority (45%)

came from other CSS files, indicating usage of build processes that operate on CSS files, such as

minification, autoprefixer17, and/or PostCSS18. Sass19 was far more popular than Less20 (34% of

stylesheets with sourcemaps vs 21%), with SCSS being the more popular dialect (33% for .scss

vs 1% for .sass).

All these kilobytes of code are typically distributed across multiple files and <style>
elements; only about 7% of pages concentrate all their CSS code in one remote stylesheet, as

we are often taught to do. In fact, the median page contains 3 <style> elements and 6 remote

stylesheets, with 10% of them carrying over 14 <style> elements and over 20 remote CSS

files! While this is suboptimal on desktop, it really kills performance on mobile, where round-

trip latency is more important than raw download speed.

Figure 1.1. Distribution of the stylesheet transfer size per page.

Figure 1.2. The largest number of stylesheets loaded by a page.

1,379
17. https://autoprefixer.github.io/
18. https://postcss.org/
19. https://sass-lang.com/
20. https://lesscss.org/

Part I Chapter 1 : CSS

4 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/stylesheet-size.png
https://almanac.httparchive.org/static/images/2020/css/stylesheet-size.png
https://autoprefixer.github.io/
https://postcss.org/
https://sass-lang.com/
https://lesscss.org/

Shockingly, the maximum number of stylesheets per page is an incredible 26,777 <style>
elements and 1,379 remote ones! I’d definitely want to avoid loading that page!

Another metric of size is the number of rules. The median page carries a total of 448 rules and

5,454 declarations. Interestingly, 10% of pages contain a tiny amount of CSS: fewer than 13

rules! Despite mobile having slightly smaller stylesheets, it also has slightly more rules,

indicating smaller rules overall (as it tends to happen with media queries).

Figure 1.3. Distribution of the number of stylesheets per page.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 5

https://almanac.httparchive.org/static/images/2020/css/stylesheet-count.png
https://almanac.httparchive.org/static/images/2020/css/stylesheet-count.png

Selectors and the cascade

CSS offers a number of ways of apply styles to page, from classes, ids and using the all-

important cascade to avoid duplicating styles. So how are developers applying their styling to

their pages?

Class names

What do developers use class names for these days? To answer this question, we looked at the

most popular class names. The list was dominated by Font Awesome21 classes, with 192 out of

198 being fa or fa-* ! The only thing that initial exploration could tell us was that Font

Awesome is exceedingly popular and is used by almost one third of websites!

However, once we collapsed fa-* and then wp-* classes (which come from WordPress22,

another exceedingly popular piece of software), we got more meaningful results. Omitting

these, state-related classes seem to be most popular, with .active occurring in nearly half of

websites, and .selected and .disabled following soon after.

Only a few of the top classes were presentational, with most of those being either alignment

Figure 1.4. Distribution of the total number of style rules per page.

21. https://fontawesome.com/
22. https://wordpress.com/

Part I Chapter 1 : CSS

6 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/rules.png
https://almanac.httparchive.org/static/images/2020/css/rules.png
https://fontawesome.com/
https://wordpress.com/

related (pull-right and pull-left from older Bootstrap23, alignright , alignleft
etc.) or clearfix —which still occurs in 22% of websites, despite floats being superseded as a

layout method by the more modern Grid and Flexbox modules.

IDs

Despite IDs being discouraged these days in some circles due to their much higher specificity,

most websites still use them, albeit sparingly. Fewer than half of pages used more than one ID in

any of their selectors (had a max specificity of (1,x,y) or less) and nearly all had a median

specificity that did not include IDs (0,x,y). See the selectors specification24 for more details

calculating specificity and this (a,b,c) notation.

But what are these IDs used for? It turns out that the most popular IDs are structural:

#content , #footer , #header , #main , despite corresponding HTML elements25 existing

that could be used as selectors while also improving the semantic markup.

Figure 1.5. The most popular class names by the percent of pages.

23. https://getbootstrap.com/
24. https://www.w3.org/TR/selectors/#specificity-rules
25. https://developer.mozilla.org/docs/Learn/HTML/Introduction_to_HTML/Document_and_website_structure#HTML_layout_elements_in_more_detail

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 7

https://getbootstrap.com/
https://almanac.httparchive.org/static/images/2020/css/popular-class-names.png
https://almanac.httparchive.org/static/images/2020/css/popular-class-names.png
https://www.w3.org/TR/selectors/#specificity-rules
https://developer.mozilla.org/docs/Learn/HTML/Introduction_to_HTML/Document_and_website_structure#HTML_layout_elements_in_more_detail

IDs can also be used to intentionally reduce or increase specificity. The specificity hack of

writing an ID selector as an attribute selector26 ([id="foo"] instead of #foo to reduce

specificity) was surprisingly rare, with only 0.3% of pages using it at least once. Another ID-

related specificity hack, using a negation + descendant selector like :not(#nonexistent)
.foo instead of .foo to increase specificity, was also very rare, appearing in only 0.1% of

pages.

!important

Instead, the old, crude !important is still used a fair bit despite its well-known drawbacks27.

The median page uses !important in nearly 2% of its declarations, or 1 in 50.

Some developers literally cannot get enough of it: we found 2304 desktop pages and 2138

mobile ones that use !important in every single declaration!

Figure 1.6. The most popular IDs by the percent of pages.

Figure 1.7. Mobile pages using !important in every single declaration!

2,138

26. https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/
27. https://www.impressivewebs.com/everything-you-need-to-know-about-the-important-css-declaration/#post-475:~:text=Drawbacks,-to

Part I Chapter 1 : CSS

8 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/popular-ids.png
https://almanac.httparchive.org/static/images/2020/css/popular-ids.png
https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/
https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/
https://www.impressivewebs.com/everything-you-need-to-know-about-the-important-css-declaration/#post-475:~:text=Drawbacks,-to

What is it that developers are so keen to override? We looked at breakdown by property and

found that nearly 80% of pages use !important with the display property. It is a common

strategy to apply display: none !important to hide content in helper classes to override

existing CSS that uses display to define a layout mode. This is a side effect of what, in

hindsight, was a flaw in CSS. It combined three orthogonal characteristics into one: internal

layout mode, flow behavior, and visibility status are all controlled by the display property.

There are efforts to separate out these values into separate display keywords so that they

can be tweaked independently via custom properties, but browser support is virtually

nonexistent28 for the time being.

Figure 1.8. Distribution of the percent of !important properties per page.

28. https://caniuse.com/mdn-css_properties_display_multi-keyword_values

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 9

https://almanac.httparchive.org/static/images/2020/css/important-properties.png
https://almanac.httparchive.org/static/images/2020/css/important-properties.png
https://caniuse.com/mdn-css_properties_display_multi-keyword_values
https://caniuse.com/mdn-css_properties_display_multi-keyword_values

Specificity and classes

Besides keeping id s and !important s few and far between, there is a trend to circumvent

specificity altogether by cramming all the selection criteria of a selector in a single class name,

thus forcing all rules to have the same specificity and turning the cascade into a simpler last-

one-wins system. BEM is a popular methodology of that type, albeit not the only one. While it is

difficult to assess how many websites use BEM-style methodologies exclusively, since following

it in every rule is rare (even the BEM website29 uses multiple classes in many selectors), about

10% of pages had a median specificity of (0,1,0), which may indicate mostly following a BEM-

style methodology. On the opposite end of BEM, often developers use duplicated classes30 to

increase specificity and nudge a selector ahead of another one (e.g. .foo.foo instead of

.foo). This kind of specificity hack is actually more popular than BEM, being present in 14% of

mobile websites (9% of desktop)! This may indicate that most developers do not actually want

to get rid of the cascade altogether, they just need more control over it.

Figure 1.9. The top !important properties by the percent of pages.

29. https://en.bem.info/
30. https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/#safely-increasing-specificity

Part I Chapter 1 : CSS

10 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/important-top-properties.png
https://almanac.httparchive.org/static/images/2020/css/important-top-properties.png
https://en.bem.info/
https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/#safely-increasing-specificity

Attribute selectors

The most popular attribute selector, by far, is on the type attribute, used in 45% of pages,

likely to style inputs of different types, e.g. to style textual inputs differently from radios,

checkboxes, sliders, file upload controls etc.

Pseudo-classes and pseudo-elements

There is always a lot of inertia when we change something in the web platform after it is long

Figure 1.10. Distribution of the median specificity per page.

Percentile Desktop Mobile

10 0,1,0 0,1,0

25 0,2,0 0,1,2

50 0,2,0 0,2,0

75 0,2,0 0,2,0

90 0,3,0 0,3,0

Figure 1.11. The most popular attribute selectors by the percent of pages.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 11

https://almanac.httparchive.org/static/images/2020/css/attribute-selectors.png
https://almanac.httparchive.org/static/images/2020/css/attribute-selectors.png

established. As an example, the web has still largely not caught up with pseudo-elements having

separate syntax compared to pseudo-classes, even though this was a change that happened

over a decade ago. All pseudo-elements that are also available with a pseudo-class syntax for

legacy reasons are vastly more widespread (2.5x to 5x!) with the pseudo-class syntax.

By far the most popular pseudo-classes are user action ones, with :hover , :focus , and

:active at the top of the list, all used in over two thirds of pages, indicating that developers

like the convenience of specifying declarative UI interactions.

:root seems far more popular than is justified by its function, used in one third of pages. In

HTML content, it just selects the <html> element, so why didn’t developers just use html ? A

possible answer may lie in a common practice related to defining custom properties, which are

also highly used, on the :root pseudo-class. Another answer may lie in specificity: :root ,

being a pseudo-class, has a higher specificity than html : (0, 1, 0) vs (0, 0, 1). It is a common

hack to increase specificity of a selector by prepending it with :root , e.g. :root .foo has a

specificity of (0, 2, 0) compared to just (0, 1, 0) for .foo . This is often all that is needed to

nudge a selector slightly over another one in the cascade race and avoid the sledgehammer that

is !important . To test this hypothesis, we also measured exactly that: how many pages use

:root at the start of a descendant selector? The results verified our hypothesis: a remarkable

29% of pages use :root that way! Furthermore, 14% of desktop pages and 19% of mobile

pages use html at the start of a descendant selector, possibly to give the selector an even

smaller specificity boost. The popularity of these specificity hacks strongly indicates that

Figure 1.12. Usage of legacy :pseudo-class syntax for ::pseudo-elements as a percent of

mobile pages.

Part I Chapter 1 : CSS

12 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/selector-pseudo-classes.png
https://almanac.httparchive.org/static/images/2020/css/selector-pseudo-classes.png

developers need more fine grained control to tweak specificity than what is afforded to them

via !important . Thankfully, this is coming soon with :where() , which is already

implemented across the board31 (albeit behind a flag in Chrome for now).

When it comes to pseudo-elements, after the usual suspects ::before and ::after , nearly

all popular pseudo-elements were browser extensions for styling form controls and other built-

in UI, strongly echoing the developer need for more fine-grained control over styling of built in

UI. Styling of focus rings, placeholders, search inputs, spinners, selection, scrollbars, media

controls was especially popular.

Figure 1.13. The most popular pseudo-classes as a percent of pages.

31. https://caniuse.com/mdn-css_selectors_where

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 13

https://developer.mozilla.org/docs/Web/CSS/:where
https://developer.mozilla.org/docs/Web/CSS/:where
https://caniuse.com/mdn-css_selectors_where
https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-classes.png
https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-classes.png

Values and units

CSS provides a number of ways of specifying values and units, either in set lengths or

calculations or based on global keywords.

Lengths

The humble px unit has gotten a lot of negative press over the years. At first, because it didn’t

play nicely with old Internet Explorer’s zoom functionality, and, more recently, because there

are better units for most tasks that scale based on another design factor, such as viewport size,

element font size, or root font size, reducing maintenance effort by making implicit design

relationships explicit. The main selling point of px —its correspondence to one device pixel

giving designers full control—is also gone now, as a pixel is not a device pixel anymore with the

modern high pixel density screens. Despite all this, CSS pixels still nearly ubiquitously drive the

web’s designs.

Figure 1.14. The most popular pseudo-elements as a percent of pages.

Part I Chapter 1 : CSS

14 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-elements.png
https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-elements.png

The px unit is still going strong as the most popular length unit overall, with a whopping

72.58% of all length values across all style sheets using px ! And if we exclude percentages

(since they are not really a unit) the share of px increases even more, to 84.14%.

How are these px distributed across properties? Is there any difference depending on the

property? Most definitely. For example, as one might expect, px is far more popular in borders

(80-90%) compared to font-related metrics such as font-size , line-height or text-
indent . However, even for those, px usage vastly outnumbers any other unit. In fact, the only

properties for which another unit (any other unit) is more used than px are vertical-
align (55% em), mask-position (50% em), padding-inline-start (62% em),

margin-block-start and margin-block-end (65% em), and the brand new gap with

62% rem .

One could easily argue that a lot of this content is just old, written before authors were more

enlightened about using relative units to make their designs more adaptable and save

themselves time down the line. However, this is easily debunked by looking at more recent

properties such as grid-gap (62% px).

Figure 1.15. Percentage of <length> values that use the px unit.

72.58%

Figure 1.16. The most popular <length> units as a percent of occurrences.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 15

https://almanac.httparchive.org/static/images/2020/css/length-units.png
https://almanac.httparchive.org/static/images/2020/css/length-units.png

Similarly, despite the much touted advantages of rem vs em for many use cases, and its

universal browser support for years32, the web has still largely not caught up with it: the trusty

em accounts for 87% of all font-relative units usage and rem trails far behind with 12%. We

did see some usage of ch (width of the ’0’ glyph) and ex (x-height of the font in use) in the

wild, but very small (only 0.37% and 0.19% of all font-relative units).

Figure 1.17. Unit usage by property.

Property px <number> em % rem pt

font-size 70% 2% 17% 6% 4% 2%

line-height 54% 31% 13% 3%

border 71% 27% 2%

border-radius 65% 21% 3% 10%

text-indent 32% 51% 8% 9%

vertical-align 29% 12% 55% 4%

grid-gap 63% 11% 9% 1% 16%

mask-position 50% 50%

padding-inline-start 33% 5% 62%

gap 21% 16% 1% 62%

margin-block-end 4% 31% 65%

margin-inline-start 38% 46% 14% 1%

32. https://caniuse.com/rem

Part I Chapter 1 : CSS

16 2020 Web Almanac by HTTP Archive

https://caniuse.com/rem

Lengths are the only types of CSS values for which we can omit the unit when the value is zero,

i.e. we can write 0 instead of 0px or 0em etc. Developers (or CSS minifiers?) are taking

advantage of this extensively: Out of all 0 values, 89% were unitless.

Figure 1.18. Relative share of font-relative units

Figure 1.19. Relative popularity of 0 lengths by unit as a percent of occurrences on mobile pages.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 17

https://almanac.httparchive.org/static/images/2020/css/font-units.png
https://almanac.httparchive.org/static/images/2020/css/font-units.png
https://almanac.httparchive.org/static/images/2020/css/zero-lengths.png
https://almanac.httparchive.org/static/images/2020/css/zero-lengths.png

Calculations

When the calc() function was introduced for performing calculations between different

units in CSS, it was a revolution. Previously, only preprocessors were able to accommodate such

calculations, but the results were limited to static values and unreliable, since they were

missing the dynamic context that is often necessary.

Today, calc() has been supported by every browser33 for nine years already, so it comes as no

surprise that it has been widely adopted with 60% of pages using it at least once. If anything, we

expected even higher adoption than this.

calc() is primarily used for lengths, with 96% of its usage being concentrated in properties

that accept <length> values, and 60% of that (58% of total usage) on the width property!

It appears that most of this usage is to subtract pixels from percentages, as evidenced by the

fact that the most common units in calc() are px (51% of calc() usage) and % (42% of

calc() usage), and that 64% of calc() usage involves subtraction. Interestingly, the most

popular length units with calc() are different than the most popular length units overall (e.g.

rem is more popular than em , followed by viewport units), most likely due to the fact that

code using calc() is newer.

Figure 1.20. Relative popularity of properties that use calc() as a percent of occurrences.

33. https://caniuse.com/calc

Part I Chapter 1 : CSS

18 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/calc()
https://developer.mozilla.org/docs/Web/CSS/calc()
https://caniuse.com/calc
https://almanac.httparchive.org/static/images/2020/css/calc-properties.png
https://almanac.httparchive.org/static/images/2020/css/calc-properties.png

Most calculations are very simple, with 99.5% of calculations involving up to 2 different units,

88.5% of calculations involving up to 2 operators and 99.4% of calculations involving one set of

parentheses or fewer (3 out of 4 calculations include no parentheses at all).

Figure 1.21. Relative popularity of units that use calc() as a percent of occurrences.

Figure 1.22. Relative popularity of operators that use calc() as a percent of occurrences.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 19

https://almanac.httparchive.org/static/images/2020/css/calc-units.png
https://almanac.httparchive.org/static/images/2020/css/calc-units.png
https://almanac.httparchive.org/static/images/2020/css/calc-operators.png
https://almanac.httparchive.org/static/images/2020/css/calc-operators.png

Global keywords and all

For a long time, CSS only supported one global keyword: inherit , which enables the

resetting of an inheritable property to its inherited value or reusing the parent’s value for a

given non-inheritable property. It turns out the former is far more common than the latter, with

81.37% of inherit usage being found on inheritable properties. The rest is mostly to inherit

backgrounds, borders, or dimensions. The latter likely indicates layout struggles, as with the

proper layout mode one rarely needs to force width and height to inherit.

The inherit keyword has been particularly useful for resetting the gory default link colors to

the parent’s text color, when we intend to use something other than color as an affordance for

links. It is therefore no surprise that color is the most common property that inherit is

used on. Nearly one third of all inherit usage is found on the color property. 75% of pages

use color: inherit at least once.

While a property’s initial value is a concept that has existed since CSS 134, it only got its own

dedicated keyword, initial , to explicitly refer to it 17 years later35, and it took another two

years for that keyword to gain universal browser support36 in 2015. It is therefore no surprise

that it is used far less than inherit . While the old inherit is found on 85% of pages, initial

Figure 1.23. Distribution of the number of units per calc() occurrence.

34. https://www.w3.org/TR/CSS1/#cascading-order
35. https://www.w3.org/TR/2013/WD-css3-cascade-20130103/#initial-keyword
36. https://caniuse.com/css-initial-value

Part I Chapter 1 : CSS

20 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/calc-complexity-units.png
https://almanac.httparchive.org/static/images/2020/css/calc-complexity-units.png
https://developer.mozilla.org/docs/Web/CSS/inherit
https://developer.mozilla.org/docs/Web/CSS/inherit
https://www.w3.org/TR/CSS1/#cascading-order
https://www.w3.org/TR/2013/WD-css3-cascade-20130103/#initial-keyword
https://caniuse.com/css-initial-value

appears in 51% of them. Furthermore, there is a lot of confusion about what initial actually

does, since display tops the list of properties most commonly used with initial , with

display: initial appearing in 10% of pages. Presumably, the developers thought that this

resets display to its value from the user agent stylesheet37 value and were using it to toggle

display: none on and off. However, the initial value of display is inline , so display:
initial is just another way to write display: inline and has no context-dependent

magical properties.

Instead, display: revert would have actually done what these developers likely expected

and would have reset display to the UA value for the given element. However, revert is

much newer: it was defined in 201538 and only gained universal browser support this year39,

which explains its underuse: it only appears in 0.14% of pages and half of its usage is line-
height: revert; , found in recent versions of WordPress’ TwentyTwenty theme40.

The last global keyword, unset , is essentially a hybrid of initial and inherit . On

inherited properties it becomes inherit and on the rest it becomes initial , essentially

resetting the property across all cascade origins. Similarly, to initial , it was defined in 201341

and gained full browser support in 201542. Despite unset ’s higher utility, it is used in only 43%

of pages, whereas initial is used in 51% of pages. Furthermore, besides max-width and

min-width , in every other property initial usage outweighs unset usage.

37. https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
38. https://www.w3.org/TR/2015/WD-css-cascade-4-20150908/#valdef-all-revert
39. https://caniuse.com/css-revert-value
40. https://github.com/WordPress/WordPress/commit/303180b392c530b8e2c8b3c27532d591b915caeb
41. https://www.w3.org/TR/2013/WD-css-cascade-3-20130730/#inherit-initial
42. https://caniuse.com/css-unset-value

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 21

https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://drafts.csswg.org/css-display/#the-display-properties
https://drafts.csswg.org/css-display/#the-display-properties
https://drafts.csswg.org/css-display/#the-display-properties
https://www.w3.org/TR/2015/WD-css-cascade-4-20150908/#valdef-all-revert
https://caniuse.com/css-revert-value
https://github.com/WordPress/WordPress/commit/303180b392c530b8e2c8b3c27532d591b915caeb
https://www.w3.org/TR/2013/WD-css-cascade-3-20130730/#inherit-initial
https://caniuse.com/css-unset-value

The all property was introduced in 201343 and gained near-universal support in 2016 (except

Edge) and universal support earlier this year44. It is a shorthand of nearly every property in CSS

(except custom properties, direction , and unicode-bidi), and only accepts the four

global keywords45 (initial , inherit , unset , and revert) as values. It was envisioned as

a one liner CSS reset, either as all: unset or all: revert , depending on what kind of

reset we wanted. However, adoption is still very low: we only found all on 477 pages (0.01%

of all pages), and only used with the revert keyword.

Color

They say the old jokes are the best, and that goes for colors too. The original, cryptic, #rrggbb
hex syntax remains the most popular way to specify a color in CSS in 2020: Half of all colors are

written that way. The next most popular format is the somewhat shorter #rgb three-digit hex

format at 26%. While it is shorter, it is also able to express way fewer colors; only 4096, out of

the 16.7 million sRGB values.

Figure 1.24. Adoption of global keywords as a percent of pages.

43. https://www.w3.org/TR/2013/WD-css3-cascade-20130103/#all-shorthand
44. https://caniuse.com/css-all
45. https://drafts.csswg.org/css-cascade-4/#defaulting-keywords

Part I Chapter 1 : CSS

22 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/keyword-totals.png
https://almanac.httparchive.org/static/images/2020/css/keyword-totals.png
https://www.w3.org/TR/2013/WD-css3-cascade-20130103/#all-shorthand
https://caniuse.com/css-all
https://caniuse.com/css-all
https://drafts.csswg.org/css-cascade-4/#defaulting-keywords
https://drafts.csswg.org/css-cascade-4/#defaulting-keywords

Similarly, 99.89% of functionally specified sRGB colors are using the since-forever legacy

format with commas rgb(127, 255, 84) rather than the new comma-less form rgb(127
255 84) . Because, despite all modern browsers accepting the new syntax, changing offers

zero advantage to developers.

So why do people stray from these tried and true formats? To express alpha transparency. This

is clear when you look at rgba() , which is used 40 times more than rgb() (13.82% vs 0.34%

of all colors) and hsla() , which is used 30 times more than hsl() (0.25% vs 0.01% of all

colors).

HSL is supposed to be easy to understand and easy to modify46. But these numbers show that in

practice, HSL is used in stylesheets far less than RGB, likely because those advantages are

greatly over-stated47.

Figure 1.25. Relative popularity of color formats as a percent of occurrences.

46. https://drafts.csswg.org/css-color-4/#the-hsl-notation
47. https://drafts.csswg.org/css-color-4/#ex-hsl-sucks

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 23

https://almanac.httparchive.org/static/images/2020/css/popular-color-formats.png
https://almanac.httparchive.org/static/images/2020/css/popular-color-formats.png
https://drafts.csswg.org/css-color-4/#the-hsl-notation
https://drafts.csswg.org/css-color-4/#ex-hsl-sucks

What about named colors? The keyword transparent , which is just another way to say

rgb(0 0 0 / 0) , is most popular, at 8.25% of all sRGB values (66% of all named-color

usage); followed by all the named (X11) colors—I’m looking at you, papayawhip —at 1.48%.

The most popular of these were the easily understood names like white , black , red ,

gray , blue . whitesmoke was the most common of the non-ordinary names (sure, we can

visualize whitesmoke, right) while the likes of gainsboro , lightCoral and burlywood
were used way less. We can understand why—you need to look them up to see what they

actually mean!

And if you are going for fanciful color names, why not define your own with CSS Custom

properties? --intensePurple and --corporateBlue mean whatever you need them to

mean. This probably explains why 50% of Custom Properties are used for colors.

Figure 1.26. Relative popularity of color formats grouped by alpha support as a percent of
occurrences on mobile pages (excluding #rrggbb and #rgb).

Part I Chapter 1 : CSS

24 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/color-formats-alpha.png
https://almanac.httparchive.org/static/images/2020/css/color-formats-alpha.png

Figure 1.27. Interactively explore the color keyword usage data with this interactive app48!

48. https://codepen.io/leaverou/pen/GRjjJwJ

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 25

https://codepen.io/leaverou/pen/GRjjJwJ
https://codepen.io/leaverou/pen/GRjjJwJ
https://codepen.io/leaverou/pen/GRjjJwJ

Figure 1.28. Relative popularity of color keywords as a percent of occurrences.

Keyword Desktop Mobile

transparent 84.04% 83.51%

white 6.82% 7.34%

black 2.32% 2.42%

red 2.03% 2.01%

currentColor 1.43% 1.43%

gray 0.75% 0.79%

silver 0.66% 0.58%

grey 0.35% 0.31%

green 0.36% 0.30%

magenta 0.00% 0.13%

blue 0.16% 0.13%

whitesmoke 0.17% 0.12%

lightgray 0.06% 0.11%

orange 0.12% 0.10%

lightgrey 0.04% 0.10%

yellow 0.08% 0.06%

Highlight 0.01% 0.04%

gold 0.04% 0.04%

pink 0.03% 0.03%

teal 0.03% 0.02%

Part I Chapter 1 : CSS

26 2020 Web Almanac by HTTP Archive

And, lastly, the once-deprecated—now partially un-deprecated—system colors like Canvas
and ThreeDDarkShadow : these were a terrible idea, introduced to emulate the typical user

interface of things like Java or Windows 95, and already unable to keep up with Windows 98,

they soon fell by the wayside. Some sites use these system colors to try and fingerprint you, a

loophole that we are trying to close as we speak49. There are few good reasons to use them, and

most websites (99.99%) don’t, so we are all good.

The rather useful value currentColor , surprisingly, trailed at 0.14% of all sRGB colors

(1.62% of all named colors).

All the colors we discussed so far have one thing in common: sRGB, the standard color space for

the web (and for High Definition TV, which is where it came from). Why is that so bad? Because

it can only display a limited range of colors: your phone, your TV, and probably your laptop are

able to display much more vivid colors due to advances in display technology. Displays with

wide color gamut, which used to be reserved for well-paid professional photographers and

graphic designers, are now available to everyone. Native apps use this capability, as do digital

movies and streaming TV services, but until recently the web was missing out.

And we are still missing out. Despite being implemented in Safari in 201650, the use of display-p3

color in web pages is vanishingly small. Our crawl of the web found only 29 mobile and 36

desktop pages using it! (And more than half of those were syntax errors, mistakes, or attempts

to use the never-implemented color-mod() function). We were curious why.

Compatibility, right? You don’t want things to break? No. In the stylesheets we examined, we

found solid use of fallback: with document order, the cascade, @supports , the color-gamut
media query, all that good stuff. So in a stylesheet we would see the color the designer wanted,

expressed in display-p3, and also a fallback sRGB color. We computed the visible difference (a

calculation called ΔE200051) between the desired and fallback color and this was typically quite

modest. A small tweak. A careful exploration. In fact, 37.6% of the time, the color specified in

display-p3 actually fell inside the range of colors (the gamut) that sRGB can manage. It seems

people are just cautiously experimenting with this at the moment rather than to get real gains,

but more is surely to come in this space, so one to watch.

49. https://github.com/w3c/csswg-drafts/issues/5710
50. https://webkit.org/blog/6682/improving-color-on-the-web/
51. https://zschuessler.github.io/DeltaE/learn/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 27

https://github.com/w3c/csswg-drafts/issues/5710
https://css-tricks.com/currentcolor/
https://css-tricks.com/currentcolor/
https://webkit.org/blog/6682/improving-color-on-the-web/
https://zschuessler.github.io/DeltaE/learn/

Figure 1.29. This table shows the fallback sRGB colors, then the display-p3 colors. A color difference
(ΔE2000) of 1 is barely visible, while 5 is clearly distinct. This is a summary table (see full table52).

sRGB display-p3 ΔE2000 In gamut

rgba(255,205,63,1) color(display 1 0.80 0.25 / 1) 3.880 false

rgba(120,0,255,1) color(display 0.47 0 1 / 1) 1.933 false

rgba(121,127,132,1) color(display 0.48 0.50 0.52 / 1) 0.391 true

rgba(200,200,200,1) color(display 0.78 0.78 0.78 / 1) 0.274 true

rgba(97,97,99,1) color(display 0.39 0.39 0.39 / 1) 1.474 true

rgba(0,0,0,1) color(display 0 0 0 / 1) 0.000 true

rgba(255,255,255,1) color(display 1 1 1 / 1) 0.015 false

rgba(84,64,135,1) color(display 0.33 0.25 0.53 / 1) 1.326 true

rgba(131,103,201,1) color(display 0.51 0.40 0.78 / 1) 1.348 true

rgba(68,185,208,1) color(display 0.27 0.75 0.82 / 1) 5.591 false

rgb(255,0,72) color(display 1 0 0.2823 / 1) 3.529 false

rgba(255,205,63,1) color(display 1 0.80 0.25 / 1) 3.880 false

rgba(241,174,50,1) color(display 0.95 0.68 0.17 / 1) 4.701 false

rgba(245,181,40,1) color(display 0.96 0.71 0.16 / 1) 4.218 false

rgb(147, 83, 255) color(display 0.58 0.33 1 / 1) 2.143 false

rgba(75,3,161,1) color(display 0.29 0.01 0.63 / 1) 1.321 false

rgba(255,0,0,0.85) color(display 1 0 0 / 0.85) 7.115 false

rgba(84,64,135,1) color(display 0.33 0.25 0.53 / 1) 1.326 true

rgba(131,103,201,1) color(display 0.51 0.40 0.78 / 1) 1.348 true

rgba(68,185,208,1) color(display 0.27 0.75 0.82 / 1) 5.591 false

#6d3bff color(display .427 .231 1) 1.584 false

#03d658 color(display .012 .839 .345) 4.958 false

#ff3900 color(display 1 .224 0) 7.140 false

#7cf8b3 color(display .486 .973 .702) 4.284 true

#f8f8f8 color(display .973 .973 .973) 0.028 true

#e3f5fd color(display .875 .945 .976) 1.918 true

#e74832
color(display .905882353
.282352941 .196078431 / 1)

3.681 true

Part I Chapter 1 : CSS

28 2020 Web Almanac by HTTP Archive

https://docs.google.com/spreadsheets/d/1sMWXWjMujqfAREYxNbG_t1fOJKYCA6ASLwtz4pBQVTw/#gid=264429000

The purplish colors are similar in sRGB and display-p3, perhaps because both those color

spaces have the same blue primary. Various reds, orange-yellows, and greens are near the sRGB

gamut boundary (nearly as saturated as possible) and map to analogous points near the display-

p3 gamut boundary.

There seem to be two reasons why the web is still trapped in sRGB land. The first is lack of tools,

lack of good color pickers, lack of understanding of what more vivid colors are available. But the

major reason, we think, is that to date Safari is the only browser to implement it. This is

changing, rapidly—Chrome and Firefox are both implementing right now—but until that

support ships, probably using display-p3 is too much effort for too little gain because only 17%

of viewers53 will see those colors. Most people will see the fallback. So current usage is a subtle

Figure 1.30. uv chromaticity of specified display-p3 colors and their fallbacks.

52. https://docs.google.com/spreadsheets/d/1sMWXWjMujqfAREYxNbG_t1fOJKYCA6ASLwtz4pBQVTw/#gid=264429000
53. https://gs.statcounter.com/browser-market-share

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 29

https://almanac.httparchive.org/static/images/2020/css/p3-chromaticity-big.svg
https://almanac.httparchive.org/static/images/2020/css/p3-chromaticity-big.svg
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share

shift in color vibrancy, rather than a big difference.

It will be interesting to see how the use of display-p3 color (other options exist, but this is the

only one we found in the wild) changes over the next year or two.

Because wide color gamut (WCG) is only the beginning. The TV and movie industry has already

moved past P3 to an even wider gamut, Rec. 2020; and also a wider range of lightness, from

blinding reflections to deepest shadows. High Dynamic Range (HDR) has already arrived in the

home, especially on games, streaming TV and movies. The web has a bunch of catching up to do.

Gradients

Despite minimalism and flat design being all the rage, CSS gradients are used in 75% of pages.

As expected, nearly all gradients are used in backgrounds. 74.45% of pages specify gradients in

backgrounds, but only 7% in any other property.

Linear gradients are 5 times more popular than radial ones, appearing in almost 73% of pages,

compared to 15% for radial gradients. The difference in popularity is so staggering, that even

-ms-linear-gradient() , which was never needed (Internet Explorer 10 supported

gradients both with and without the -ms- prefix), is more popular than radial-
gradient() ! The newly supported54 conic-gradient() is even more underutilized,

appearing in only 652 desktop pages (0.01%) and 848 mobile pages (0.01%), which is expected,

since Firefox has only just shipped its implementation to the stable channel.

Repeating gradients of all types are fairly underused too, with repeating-linear-
gradient() appearing in only 3% of pages and the others trailing behind even more

(repeating-conic-gradient() is only used in 21 pages!).

Prefixed gradients are also still very common, even though prefixes haven’t been needed in

gradients since 2013. It is notable that -webkit-gradient() is still used in half of all websites,

even though it hasn’t been needed since 201155. And -webkit-linear-gradient() is still

the second most used gradient function of all, appearing in 57% of websites, with the other

prefixed forms also being used in a third to half of pages.

54. https://caniuse.com/css-conic-gradients
55. https://caniuse.com/css-gradients

Part I Chapter 1 : CSS

30 2020 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Rec._2020
https://caniuse.com/css-conic-gradients
https://caniuse.com/css-gradients

Using color stops with different colors in the same position (hard stops) to create stripes and

other patterns is a technique first popularized by Lea Verou in 201056, which by now has many

interesting variations, including some really cool ones with blend modes57. While it may seem

Figure 1.31. The most popular gradient functions as a percent of pages.

Figure 1.32. The most popular gradient functions as a percent of pages, omitting vendor prefixes.

56. https://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
57. https://bennettfeely.com/gradients/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 31

https://almanac.httparchive.org/static/images/2020/css/gradient-functions.png
https://almanac.httparchive.org/static/images/2020/css/gradient-functions.png
https://almanac.httparchive.org/static/images/2020/css/gradient-functions-unprefixed.png
https://almanac.httparchive.org/static/images/2020/css/gradient-functions-unprefixed.png
https://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
https://bennettfeely.com/gradients/

like a hack, hard stops are found in 50% of pages, indicating a strong developer need for

lightweight graphics from within CSS without resorting to image editors or external SVG.

Interpolation hints (or as Adobe, who popularized the technique, calls them: “midpoints”) are

found on only 22% of pages, despite near universal browser support since 201558. Which is a

shame, because without them, the color stops are connected by straight-lines in the color

space, rather than smooth curves. This low usage probably reflects a misunderstanding of what

they do, or how to use them; contrast this with CSS transitions and animations, where easing

functions (which do much the same thing, i.e. connect the keyframes with curves rather than

jerky straight lines) are much more commonly used (80% of transitions). “Midpoints” is not a

very understandable description, and “interpolation hint” sounds like you are helping the

browser to do simple arithmetic.

Most gradient usage is rather simple, with over 75% of gradients found across the entire

dataset only using 2 color stops. In fact, fewer than half of pages contain even a single gradient

with more than 3 color stops!

The gradient with the most color stops is this one59 with 646 stops! So pretty! This is almost

certainly generated, and the resulting CSS code is 8KB, so a 1px tall PNG would likely have done

the job as well, with a smaller footprint (our image below is 1.1 KB).

Layout

CSS now has a number of layout options—a far cry from the days when tables had to be used for

layouts. Flexbox, Grid and Multiple-column layouts are now well supported in most browsers so

let’s look at how these are being used.

Flexbox and Grid adoption

In the 2019 edition60, 41% of pages across mobile and desktop were reported as containing

Figure 1.33. The gradient with the most color stops, 646.

58. https://caniuse.com/mdn-css_types_image_gradient_linear-gradient_interpolation_hints
59. https://dabblet.com/gist/4d1637d78c71ef2d8d37952fc6e90ff5
60. https://almanac.httparchive.org/en/2019/css#flexbox

Part I Chapter 1 : CSS

32 2020 Web Almanac by HTTP Archive

https://caniuse.com/mdn-css_types_image_gradient_linear-gradient_interpolation_hints
https://dabblet.com/gist/4d1637d78c71ef2d8d37952fc6e90ff5
https://almanac.httparchive.org/static/images/2020/css/gradient-most-stops.png
https://almanac.httparchive.org/static/images/2020/css/gradient-most-stops.png
https://almanac.httparchive.org/en/2019/css#flexbox

Flexbox61 properties. In 2020, this number has grown to 63% for mobile and 65% for desktop.

With the number of legacy sites developed before Flexbox was a viable tool still in existence,

we can safely say there is wide adoption of this layout method.

If we look at Grid layout62, the percentage of sites using Grid layout has grown to 4% for mobile

and 5% for desktop. Usage has doubled since last year, but still lags far behind flex layout.

Figure 1.34. Adoption of Flexbox and grid by year as a percent of mobile pages.

61. https://developer.mozilla.org/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
62. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 33

https://developer.mozilla.org/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout
https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-mobile.png
https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-mobile.png

Note that unlike most other metrics in this chapter this is actual measured Grid usage, and not

just grid-related properties and values that are specified in a stylesheet and potentially not

used. While at first glance this may seem more accurate, one thing to keep in mind is that HTTP

Archive crawls homepages, so this data may be skewed lower due to grids often appearing

more in internal pages.

So, let’s look at another metric as well: how many pages specify display: grid and

display: flex in their stylesheets? That metric puts Grid layout at significantly higher

adoption, with 30% of pages using display: grid at least once. It does not however affect

the number for Flexbox as significantly, with 68% of pages specifying display: flex . While

this sounds like impressively high adoption for Flexbox, it is worth noting that CSS tables are

still far more popular with 80% of pages using table display modes! Some of this usage may be

due to certain types of clearfix63 which use display: table , and not for actual layout.

Figure 1.35. Adoption of flexbox and grid by year as a percent of desktop pages.

63. https://css-tricks.com/snippets/css/clear-fix/

Part I Chapter 1 : CSS

34 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-desktop.png
https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-desktop.png
https://css-tricks.com/snippets/css/clear-fix/

Given that Flexbox was usable in browsers earlier than Grid layout, it is likely that some of the

Flexbox usage is for setting up a grid system. In order to use Flexbox as a grid, authors need to

disable some of the inherent flexibility of Flexbox. To do this you set the flex-grow property

to 0 , then size flex items using percentages. Using this information we were able to report that

19% of sites both on desktop and mobile were using Flexbox in this grid-like way.

The reasons for choosing Flexbox over Grid are frequently cited as browser support, given that

Grid layout was not supported in Internet Explorer64. In addition, some authors may well not

have learned Grid layout yet or are using a framework with a Flexbox-based grid system. The

Bootstrap65 framework currently uses a Flexbox-based grid, in common with several other

popular framework choices.

Figure 1.36. Layout modes and percentage of pages they appear on. This data is a combination of
certain values from the display , position , and float properties.

64. https://caniuse.com/css-grid
65. https://getbootstrap.com/docs/4.5/layout/grid/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 35

https://almanac.httparchive.org/static/images/2020/css/layout-methods.png
https://almanac.httparchive.org/static/images/2020/css/layout-methods.png
https://caniuse.com/css-grid
https://getbootstrap.com/docs/4.5/layout/grid/

Usage of different Grid layout techniques

The Grid layout specification gives a number of ways to describe and define layout in CSS. The

most basic usage involves laying items out from one grid line to another66. What about naming

lines67, or use of grid-template-areas ?

For named lines, we checked for the presence of square brackets in a track listing. The name or

names being placed inside square brackets.

.wrapper {

 display: grid;

 grid-template-columns: [main-start] 1fr [content-start] 1fr

[content-end] 1fr [main-end];

}

The result of this showed that 0.23% of Grid-using pages on mobile had named lines, and 0.27%

on desktop.

The Grid template areas68 feature, allowing authors to name grid items then place them on the

grid as the value of the grid-template-areas property, fared a little better. Of Grid-using

sites, 19% on mobile and 20% on desktop were using this method.

These results show that not only is Grid layout usage still relatively low on production websites,

but the usage of it is also relatively simple. Authors are choosing to use the simple line-based

placement over methods which would allow them to name lines and areas. While there is

nothing wrong in choosing to do so, I wonder if slow adoption of Grid layout is partly due to the

fact that authors haven’t yet realized the power of these features. If Grid layout is seen as

essentially Flexbox with poor browser support, this would certainly make it a less compelling

choice.

Multiple-column layout

The multiple-column layout69, or multicol, specification enables laying out of content in columns,

much as in a newspaper. While popular in CSS as used for print, it is less useful on the web due

to the risk of creating a situation where a reader needs to scroll up and down to read the

content. Based on the data, however, there are significantly more pages using multicol than

66. https://www.smashingmagazine.com/2020/01/understanding-css-grid-lines/
67. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Layout_using_Named_Grid_Lines
68. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Grid_Template_Areas
69. https://developer.mozilla.org/docs/Web/CSS/CSS_Columns/Basic_Concepts_of_Multicol

Part I Chapter 1 : CSS

36 2020 Web Almanac by HTTP Archive

https://www.smashingmagazine.com/2020/01/understanding-css-grid-lines/
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Layout_using_Named_Grid_Lines
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Layout_using_Named_Grid_Lines
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Grid_Template_Areas
https://developer.mozilla.org/docs/Web/CSS/CSS_Columns/Basic_Concepts_of_Multicol

Grid layout with 15.33% on the desktop and 14.95% on mobile. While basic multicol properties

are well supported, more complex usage and controlling column breaks with fragmentation70

has patchy support71. Considering this, it was quite surprising to see how much usage there is.

Box sizing

It is useful to know how big the boxes on your page are going to be, but with the standard CSS

box model72 adding padding and border onto the size of the content-box, the size you gave your

box is smaller than the box rendered on your page. While we can’t change history, the box-
sizing property allows authors to switch to applying the specified size to the border-box ,

so the size you set is the size you see rendered. How many sites are using the box-sizing
property? Most of them! The box-sizing property appears in 83.79% of desktop CSS and

86.39% on mobile.

The median desktop page has 14 box-sizing declarations. Mobile has 17. Perhaps due to

component systems inserting the declaration per component, rather than globally as a rule for

all elements in the stylesheet.

Figure 1.37. Distribution of the number of border-box declarations per page.

70. https://www.smashingmagazine.com/2019/02/css-fragmentation/
71. https://caniuse.com/multicolumn
72. https://developer.mozilla.org/docs/Learn/CSS/Building_blocks/The_box_model#What_is_the_CSS_box_model

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 37

https://www.smashingmagazine.com/2019/02/css-fragmentation/
https://caniuse.com/multicolumn
https://developer.mozilla.org/docs/Learn/CSS/Building_blocks/The_box_model#What_is_the_CSS_box_model
https://developer.mozilla.org/docs/Learn/CSS/Building_blocks/The_box_model#What_is_the_CSS_box_model
https://almanac.httparchive.org/static/images/2020/css/box-sizing.png
https://almanac.httparchive.org/static/images/2020/css/box-sizing.png

Transitions and animations

Transitions and animations have overall become very popular with the transition property

being used on 81% of all pages and animation on 73% of mobile pages and 70% of desktop

pages. It is somewhat surprising that usage is not lower on mobile, where one would expect that

conserving battery power73 would be a priority. On the other hand, CSS animations are far more

battery efficient than JS animation, especially the majority of them that just animate

transforms and opacity (see next section).

The single most common transition property specified is all , used in 41% of pages. This is a

little baffling because all is the initial value, so it does not actually need to be explicitly

specified. After that, fade in/out transitions appear to be the most common type, used in over

one third of crawled pages, followed by transitions on the transform property (most likely

spin, scale, movement transitions). Surprisingly, transitioning height is much more popular

than transitioning max-height , even though the latter is a commonly taught workaround

when the start or end height is unknown (auto). It was also surprising to see significant usage

for the scale property (2%), despite its lack of support beyond Firefox. Intentional usage of

cutting edge CSS, a typo, or a misunderstanding of how to animate transforms?

We were glad to discover that most of these transitions are fairly short, with the median

transition duration being only 300ms, and 90% of websites having median durations of less

Figure 1.38. Adoption of transition properties as a percent of pages.

73. https://css-tricks.com/how-web-content-can-affect-power-usage/

Part I Chapter 1 : CSS

38 2020 Web Almanac by HTTP Archive

https://css-tricks.com/how-web-content-can-affect-power-usage/
https://almanac.httparchive.org/static/images/2020/css/transition-properties.png
https://almanac.httparchive.org/static/images/2020/css/transition-properties.png

than half a second. This is generally good practice, as longer transitions can make a UI feel

sluggish, while a short transition communicates a change without getting in the way.

The specification authors got it right! Ease is the most popular timing function specified, even

though it is the default so it can actually be omitted. Perhaps people explicitly specify the

defaults because they prefer the self-documenting verbosity, or—perhaps more likely—because

they don’t know that they are defaults. Despite the drawbacks of linearly progressing

animation (it tends to look dull and unnatural), linear is the second most highly used timing

function with 19.1%. It is also interesting that the built-in easing functions accommodate over

87% of all transitions: only 12.7% chose to specify a custom easing via cubic-bezier() .

Figure 1.39. Distribution of transition durations.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 39

https://almanac.httparchive.org/static/images/2020/css/transition-durations.png
https://almanac.httparchive.org/static/images/2020/css/transition-durations.png

A major driver of animation adoption seems to be Font Awesome, as evidenced by the

animation name fa-spin appearing in one out of four pages and thus topping the list of most

popular animation names. While there are a wide variety of animation names, it appears that

most of them fall into only a few basic categories, with one in five animations being some kind of

spin. That may also explain the high percentage of linearly progressing transitions & animations:

if we want a smooth perpetual rotation, linear is the way to go.

Figure 1.40. Relative popularity of timing functions as a percent of occurrences on mobile pages.

Part I Chapter 1 : CSS

40 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/transition-timing-functions.png
https://almanac.httparchive.org/static/images/2020/css/transition-timing-functions.png

Visual effects

CSS also offers a huge variety of visual effects giving designers access to advanced design

techniques built into browsers that can be accessed with small amounts of code.

Blend modes

Last year, 8% of pages were using blend modes. This year, adoption has increased significantly,

with 13% of pages using blend modes on elements (mix-blend-mode), and 2% in

backgrounds (background-blend-mode).

Filters

Adoption of filters has remained high, with the filter property making an appearance in

79.43% of pages. While at first this was quite exciting, a lot of it is likely to be old IE DX filters

(-ms-filter), which shared the same property name. When we only took into account valid

CSS filters that Blink recognizes, usage drops to 22% for mobile and 20% for desktop, with

blur() being the most popular filter type, appearing in 4% of pages.

Figure 1.41. Relative popularity of the categories of animation names used as a percent of
occurrences.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 41

https://almanac.httparchive.org/static/images/2020/css/transition-animation-names.png
https://almanac.httparchive.org/static/images/2020/css/transition-animation-names.png

Another filter property, backdrop-filter , allows us to apply filters to only the area behind

an element, which is incredibly useful for improving contrast on translucent backgrounds, and

creating the elegant “frosted glass” effect74 we’ve come to know from many native UIs. While

not nearly as popular as filter , we found backdrop-filter in 6% of pages.

The filter() function allows us to apply a filter only on a particular image, which can be

extremely useful for backgrounds. Sadly, it is currently only supported by Safari75. We did not

find any usage of filter() .

Masks

A decade ago, we got masks in Safari with -webkit-mask-image and it was exciting.

Everyone and their dog were using them. We eventually got a spec76 and a set of unprefixed

properties closely modeled after the WebKit prototype, and it seemed a matter of time until

masking became standard, with a consistent syntax across all browsers. Fast forward 10 years

later, and the unprefixed syntax is still not supported in Chrome or Safari, meaning its available

on less than 5% of users’ browsers worldwide77. It is therefore no surprise that -webkit-
mask-image is still more popular than its standard counterpart, being found in 22% of pages.

However, despite its very poor support, mask-image is found on 19% of pages. We see a

similar pattern across most other masking properties with the unprefixed versions appearing in

almost as many pages as the -webkit- ones. Overall, despite them falling out of hype, masks

are still found in nearly a quarter of the web, indicating that the use cases are still there, despite

lack of implementer interest (hint, hint!).

74. https://css-tricks.com/backdrop-filter-effect-with-css/
75. https://caniuse.com/css-filter-function
76. https://www.w3.org/TR/css-masking-1/
77. https://caniuse.com/css-masks

Part I Chapter 1 : CSS

42 2020 Web Almanac by HTTP Archive

https://css-tricks.com/backdrop-filter-effect-with-css/
https://caniuse.com/css-filter-function
https://www.w3.org/TR/css-masking-1/
https://caniuse.com/css-masks
https://caniuse.com/css-masks

Clipping paths

Around the same time masks got popular, another similar but simpler property (originally from

SVG) started making the rounds: clip-path . However, unlike masks, it had a brighter fate. It

got standardized fairly quickly, and got support across the board relatively fast, with the last

holdout being Safari which dropped the prefix in 2016. Today, it is found on 19% of pages

unprefixed and 13% with the -webkit- prefix.

Responsive design

Making sites that cope with the many different screen sizes and devices that browse the web

has become somewhat easier with the built-in flexible and responsive new layout methods such

Figure 1.42. Relative popularity of mask properties as a percent of occurrences.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 43

https://almanac.httparchive.org/static/images/2020/css/mask-properties.png
https://almanac.httparchive.org/static/images/2020/css/mask-properties.png

as Flexbox and Grid. These layout methods are usually further enhanced with the use of media

queries. The data shows that 80% of desktop sites and 83% of mobile sites use media queries

that are associated with responsive design, such as min-width .

Which media features are people using?

As you might expect, the most common media features in use are the viewport size features

which have been in use since the early days of responsive web design. The percentage of sites

checking for max-width is 78% for both desktop and mobile. A check for min-width
features on 75% of mobile and 73% of desktop sites.

The orientation media feature, which allows authors to differentiate their layout based on

whether the screen is portrait or landscape, can be found on 33% of all sites.

We are seeing some newer media features come up in the statistics. The prefers-reduced-
motion media feature provides a way to check if the user has requested reduced motion, so

that websites can adjust the amount of animation they use. This can be turned on either

explicitly, through a user-controlled operating system setting, or implicitly, for example due to

decreasing battery level. 24% of sites are checking for this feature.

In other good news, newer features from the Media Queries Level 478 specification are starting

to appear. On mobile 5% of sites are checking for the type of pointer the user has. A coarse
pointer indicates they are using a touchscreen, whereas a fine pointer indicates a pointing

device. Understanding the way a user is interacting with your site is often just as helpful, if not

more helpful, than looking at screen size. A person might be using a small screen device with a

keyboard and mouse, or a high resolution large screen device with a touchscreen and benefit

from larger hit areas.

78. https://www.w3.org/TR/mediaqueries-4/

Part I Chapter 1 : CSS

44 2020 Web Almanac by HTTP Archive

https://web.dev/prefers-reduced-motion/
https://web.dev/prefers-reduced-motion/
https://web.dev/prefers-reduced-motion/
https://web.dev/prefers-reduced-motion/
https://www.w3.org/TR/mediaqueries-4/

Common breakpoints

The most common breakpoint in use across desktop and mobile devices is a min-width of

768px. 54% of sites use this breakpoint, closely followed by a max-width of 767px at 50%.

The Bootstrap framework79 uses a min-width of 768px as its “Medium” size, so this may be

the source of much of the usage. The other two high-ranking min-width values of 1200px

(40%) and 992px (37%) are also found in Bootstrap.

Figure 1.43. The most popular media query features as a percent of pages.

79. https://getbootstrap.com/docs/4.1/layout/overview/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 45

https://almanac.httparchive.org/static/images/2020/css/media-query-features.png
https://almanac.httparchive.org/static/images/2020/css/media-query-features.png
https://getbootstrap.com/docs/4.1/layout/overview/

Pixels are very much the unit that is used for breakpoints. There are a few instances of em s a

long way down the list, however setting breakpoints in pixels appears to be the popular choice.

There are probably many reasons for this. Legacy: all of the early articles on responsive design

use pixels, and many people still think about targeting particular devices when creating

responsive designs. Sizing: using em s involves considering the size of the content rather than

the device, and this is a newer way of thinking about web design, perhaps one yet to fully be

taken advantage of along with intrinsic sizing methods for layout.

Properties used inside media queries

On mobile devices 79% and on desktop 77% of media queries are used to change the display
property. Perhaps indicating that people are testing before switching to a Flex or Grid

formatting context. Again, this may be linked frameworks, for example the Bootstrap

responsive utilities80. 78% of authors change the width property inside media queries,

margin , padding and font-size all rank highly for changed properties.

Figure 1.44. The most popular breakpoints by min-width and max-width as a percent of

mobile pages.

80. https://getbootstrap.com/docs/4.1/utilities/display/

Part I Chapter 1 : CSS

46 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/breakpoints.png
https://almanac.httparchive.org/static/images/2020/css/breakpoints.png
https://zellwk.com/blog/media-query-units/
https://zellwk.com/blog/media-query-units/
https://getbootstrap.com/docs/4.1/utilities/display/
https://getbootstrap.com/docs/4.1/utilities/display/

Custom properties

Last year, only 5% of websites were using custom properties. This year, adoption has

skyrocketed. Using last year’s query (which only counted declarations that set custom

properties), usage has quadrupled on mobile (19.29%) and tripled on desktop (14.47%).

However, when we look at values that reference custom properties via var() , we get an even

better picture: 27% of mobile pages and 22% of desktop pages were using the var() function

at least once, which indicates there is a sizeable number of pages only using var() to offer

customization hooks, without ever setting a custom property.

While at first glance this is impressive adoption, it appears that a major driver is WordPress, as

evidenced by the most popular custom property names, the top 4 of which ship with

WordPress.

Figure 1.45. The most popular properties used in media queries as a percent of pages.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 47

https://almanac.httparchive.org/static/images/2020/css/media-query-properties.png
https://almanac.httparchive.org/static/images/2020/css/media-query-properties.png

Naming

Out of the 1,000 top property names, fewer than 13 are “custom”, as in made up by individual

web developers. The vast majority are associated with popular software, such as WordPress,

Elementor, and Avada. To determine this, we took into account not only which custom

properties appear in what software (by searching on GitHub), but also which properties appear

in groups with similar frequencies. This does not necessarily mean that the main way a custom

property ends up on a website is through usage of that software (people do still copy and

paste!), but it does indicate there aren’t many organic commonalities between the custom

properties that developers define. The only custom property names that seem to have

organically made the list of top 1000 are --height , --primary-color , and --caption-
color .

Usage by type

The biggest usage of custom properties appears to be naming colors and keeping colors

consistent throughout. Approximately 1 in 5 desktop pages and 1 in 6 mobile pages uses

custom properties in background-color , and the top 11 properties that contain var()
references are either color properties or shorthands that contain colors. Lengths is the second

biggest usage, with width and height being used with var() in 7% of mobile pages

(interestingly, only around 3% of desktop pages). This is also confirmed by the types of most

Figure 1.46. Relative popularity of custom property names per software entity as a percent of
occurrences on mobile pages.

Part I Chapter 1 : CSS

48 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/custom-property-names.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-names.png

popular values, with color values accounting for 52% of all custom property declarations.

Dimensions (a number + a unit, e.g. lengths, angles, times etc.) were the second more popular

type, higher than unitless numbers (12%). This is despite guidance to prefer the latter, since

numbers can be converted to dimensions via calc() and multiplication, but dimensions

cannot be converted to numbers as dividing with dimensions is not supported yet.

In preprocessors, color variables are often manipulated to generate color variations, such as

different tints. However, in CSS color modification functions81 are merely an unimplemented

draft. Right now, the only way to generate new colors from variables is to use variables for

individual components and plug them into color functions, such as rgba() and hsla() .

However, fewer than 4% of mobile pages and 0.6% of desktop pages do that, indicating that the

high usage of color variables is primarily to hold entire colors, with variations thereof being

separate variables instead of dynamically generated.

Figure 1.47. The most popular property names used with custom properties as a percent of pages.

81. https://drafts.csswg.org/css-color-5/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 49

https://almanac.httparchive.org/static/images/2020/css/custom-property-properties.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-properties.png
https://drafts.csswg.org/css-color-5/

Complexity

Next, we looked at how complex custom property usage is. One way to assess code complexity

in software engineering is the shape of the dependency graph. We first looked at the depth of

each custom property. A custom property set to a literal value like e.g. #fff has a depth of 0,

whereas a property referencing that via var() would have a depth of 1 and so on. For example:

:root {

 --base-hue: 335; /* depth = 0 */

 --base-color: hsl(var(--base-hue) 90% 50%); /* depth = 1 */

 --background: linear-gradient(var(--base-color), black); /*

depth = 2 */

}

Figure 1.48. The most popular function names used with custom properties as a percent of pages.

Part I Chapter 1 : CSS

50 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/custom-property-functions.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-functions.png

2 out of 3 custom properties examined (67%) had a depth of 0, and 30% had a depth of 1

(slightly less on mobile). Less than 1.8% had a depth of 2, and virtually none (0.7%) had a depth

of 3+, which indicates rather basic usage. The upside of such basic usage is that it is harder to

make mistakes: fewer than 0.5% of pages included cycles.

Examining the selectors on which custom properties are declared further confirms that most

custom property usage in the wild is fairly basic. Two out of three custom property declarations

are on the root element, indicating that they are used essentially as global constants. It is

important to note that many popular polyfills have required them to be global in this vein, so

developers using said polyfills may not have had a choice.

CSS and JS

The last few years has seen a greater interaction between CSS and JavaScript, beyond the

simple setting of CSS classes and styles or off. So how much are we using technologies like

Houdini and techniques like CSS-in-JS?

Figure 1.49. Distribution of depths of custom properties as a percent of occurrences.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 51

https://almanac.httparchive.org/static/images/2020/css/custom-property-depth.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-depth.png

Houdini

You have likely heard of Houdini82 by now. Houdini is a set of low-level APIs that exposes parts

of the CSS engine, giving developers the power to extend CSS by hooking into the styling and

layout process of a browser’s rendering engine. Since several Houdini specs have shipped in

browsers83, we figured it is time to see if they are actually used in the wild yet. Short answer: no.

And now for the longer answer…

First, we looked at the Properties & Values API84, which allows developers to register a custom

property and give it a type, an initial value, and prevent it from being inherited. One of the

primary use cases is being able to animate custom properties, so we also looked at how

frequently custom properties are being animated.

As is common with bleeding edge tech, especially when not supported in all browsers, adoption

in the wild has been extremely low. Only 32 desktop and 20 mobile pages were found to have

any registered custom properties, though this excludes custom properties that were registered

but were not being applied at the time of the crawl. Only 325 mobile pages and 330 desktop

ones (0.00%) use custom properties in animations, and most (74%) of that seems to be driven

by a Vue component85. Virtually none of those appear to have registered them, though this is

likely because the animation wasn’t active at the time of the crawl, so there was no computed

style needing to be registered.

The Paint API86 is a more broadly implemented Houdini spec which allows developers to create

custom CSS functions that return <image> values, e.g. to implement custom gradients or

patterns. Only 12 pages were found to be using paint() . Each worklet name (hexagon ,

ruler , lozenge , image-cross , grid , dashed-line , ripple) only appeared on one

page each, so it appears the only in-the-wild use cases were likely demos.

Typed OM87, another Houdini specification, allows access to structured values instead of the

strings of the classic CSS OM. It appears to have considerably higher adoption compared to

other Houdini specs, though still low overall. It is used in 9,864 desktop pages (0.18%) and

6,391 mobile ones (0.1%). While this may seem low, to put it in perspective, these are similar

numbers to the adoption of <input type="date"> ! Note that unlike most stats in this

chapter, these numbers reflect actual usage, and not just inclusion in a website’s assets.

CSS-in-JS

There is so much discussion (or argument) about CSS-in-JS that one could assume everyone and

82. https://developer.mozilla.org/docs/Web/Houdini
83. https://ishoudinireadyyet.com/
84. https://developer.mozilla.org/docs/Web/API/CSS/RegisterProperty
85. https://quasar.dev/vue-components/expansion-item
86. https://developer.mozilla.org/docs/Web/API/CSS_Painting_API
87. https://github.com/w3c/css-houdini-drafts/blob/master/css-typed-om/README.md

Part I Chapter 1 : CSS

52 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Houdini
https://ishoudinireadyyet.com/
https://ishoudinireadyyet.com/
https://developer.mozilla.org/docs/Web/API/CSS/RegisterProperty
https://quasar.dev/vue-components/expansion-item
https://developer.mozilla.org/docs/Web/API/CSS_Painting_API
https://github.com/w3c/css-houdini-drafts/blob/master/css-typed-om/README.md

their dog is using it.

However, when we looked at usage of various CSS-in-JS libraries, it turned out that only about

2% of websites use any CSS-in-JS method, with Styled Components88 accounting for almost half

of that.

Internationalization

English, like many languages, is written in horizontal lines and the characters are laid out from

left to right. But some languages (such as Arabic and Hebrew) are mostly written right to left

and then there are languages which may be written in vertical lines, from top to bottom. Not to

mention quotations from other languages. So things can get quite complicated. Both HTML and

CSS have ways to handle this.

Figure 1.50. The percentage of sites using any CSS-in-JS method.

2%

Figure 1.51. Relative popularity of CSS-in-JS libraries as a percent of occurrences on mobile pages.

88. https://styled-components.com/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 53

https://styled-components.com/
https://almanac.httparchive.org/static/images/2020/css/css-in-js.png
https://almanac.httparchive.org/static/images/2020/css/css-in-js.png

Direction

When text is presented in horizontal lines, most writing systems display characters from left to

right. Urdu, Arabic and Hebrew display characters from right to left, except for numbers, which

are written from left to right; they are bidirectional. Some characters—such as brackets, quote

marks, punctuation—could be used in either a left to right or a right to left context and are said

to be directionally neutral. Things get more complex when text strings of different languages

are nested in one another—English text containing a short quote in Hebrew which contains

some English words, for example. The Unicode bidirectional algorithm defines how to lay out

paragraphs of mixed-direction text, but it needs to know the base direction of the paragraph.

To support bidirectionality, explicit support for indicating direction is available in both HTML

via (the dir attribute and the <bdo> element), and CSS (the direction89 and unicode-bidi
properties. We looked at usage of both HTML and CSS methods.

Only 12.14% of pages on mobile (and a similar 10.76% on desktop) set the dir attribute on

the <html> element. Which is fine: most writing systems in the world are ltr , and the

default dir value is ltr . Of the pages which did set dir on <html> , 91% set it to ltr
while 8.5% set it to rtl and 0.32% to auto (the explicit direction is unknown value, mainly

useful for templates which will be filled with unknown content). An even smaller number,

2.63%, set dir on <body> than on the <html> . Which is good, because setting it on

<html> also covers you for content in the <head> , like <title> .

Why set direction using HTML attributes rather than CSS styling? One reason is separation of

concerns: direction has to do with content which is the purview of HTML. It is also the

recommended practice90: “Avoid using CSS or Unicode control codes for managing direction

where you can use markup”. After all, the stylesheet might not load, and the text still needs to

be readable.

Logical vs physical properties

Many of the first properties we are taught when we learn CSS, things like width , height ,

margin-left , padding-bottom , right and so on are grounded on a specific physical

direction. However, when content needs to be presented in multiple languages with different

directionality characteristics, these physical directions are often language dependent, e.g.

margin-left often needs to become margin-right in a right-to-left language such as

Arabic. Directionality is a 2D characteristic. For example, height may need to become

width when we are presenting content in vertical writing (such as traditional Chinese).

89. https://www.w3.org/TR/css-writing-modes-3/#direction
90. https://www.w3.org/International/tutorials/bidi-xhtml/index.en

Part I Chapter 1 : CSS

54 2020 Web Almanac by HTTP Archive

https://html.spec.whatwg.org/multipage/dom.html#the-dir-attribute
https://html.spec.whatwg.org/multipage/dom.html#the-dir-attribute
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-bdo-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-bdo-element
https://www.w3.org/TR/css-writing-modes-3/#direction
https://www.w3.org/TR/css-writing-modes-3/#unicode-bidi
https://www.w3.org/TR/css-writing-modes-3/#unicode-bidi
https://www.w3.org/International/tutorials/bidi-xhtml/index.en

In the past, the only solution to these problems was a separate stylesheet with overrides for

different writing systems. However, more recently CSS has acquired logical properties and

values that work just like their physical counterparts but are sensitive to the directionality of

their context . For example, instead of width we could write inline-size , and instead of

left we could use the inset-inline property. In addition to logical properties, there are

also logical keywords, such as float: inline-start instead of float: left .

While these properties are fairly well supported91 (with some exceptions), they are not used

very much outside of user agent stylesheets. None of the logical properties were used on more

than 0.6% of pages. Most usage was to specify margins and paddings. Logical keywords for

text-align were used on 2.25% of pages, but apart from that, none of the other keywords

were even encountered at all. This is by large driven by browser support: text-align:
start and end have fairly good browser support92 whereas logical keywords for clear and

float are only supported in Firefox.

Browser support

A perennial problem with the web platform is how to introduce new features and extend the

platform. CSS has seen us moving from vendor prefixes to feature queries as a better way of

introducing change so we wanted to look at how those two techniques were being used.

Vendor prefixes

Even though prefixing is now recognized as a failed way to introduce experimental features to

developers, and browsers have largely stopped using it, opting for flags instead, a whopping

91% of pages still use at least one prefixed feature.

Figure 1.52. Percent of mobile pages using any vendor prefixed feature.

91.05%

91. https://caniuse.com/css-logical-props
92. https://caniuse.com/mdn-css_properties_text-align_flow_relative_values_start_and_end

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 55

https://developer.mozilla.org/docs/Web/CSS/CSS_Logical_Properties
https://developer.mozilla.org/docs/Web/CSS/CSS_Logical_Properties
https://developer.mozilla.org/docs/Web/CSS/inset-inline
https://developer.mozilla.org/docs/Web/CSS/inset-inline
https://caniuse.com/css-logical-props
https://caniuse.com/mdn-css_properties_text-align_flow_relative_values_start_and_end

Prefixed properties take up the lion’s share of that, since 84% of all prefixed features used were

properties and these were used on 90.76% of mobile pages, and 89.66% of desktop pages. This

is most likely a remnant of the prefix-happy CSS3 era circa 2009-2014. This is also evident from

the most popular prefixed ones, none of which have actually needed prefixes since 2014:

Figure 1.53. The most popular vendor-prefixed features by type as a percent of pages.

Part I Chapter 1 : CSS

56 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-features.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-features.png

Some of these prefixes, like -moz-border-radius , haven’t been useful since 2011. Even

more mind-boggling, other prefixed properties that never existed, are still moderately common,

with roughly 9% of all pages including -o-border-radius !

It may come as no surprise that -webkit- is by far the most popular prefix, with half of

prefixed properties using it:

Figure 1.54. Relative popularity of properties that are most used with vendor prefixes, as a percent
of occurrences.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 57

https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-properties.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-properties.png

Prefixed pseudo-classes are not nearly as common as properties, with none of them being used

in more than 10% of pages. Nearly two thirds of all prefixed pseudo-classes overall are for

styling placeholders. In contrast, the standard :placeholder-shown pseudo-class is barely

used, encountered in less than 0.34% of pages.

Figure 1.55. Relative popularity of vendor prefixes, as a percent of occurrences.

Part I Chapter 1 : CSS

58 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/top-vendor-prefixes.png
https://almanac.httparchive.org/static/images/2020/css/top-vendor-prefixes.png

The most common prefixed pseudo-element is ::-moz-focus-inner , used to disable

Firefox’s inner focus ring. It makes up almost a quarter of prefixed pseudo-elements and for

which there is no standard alternative. Another quarter of prefixed pseudo-elements is yet

again for styling placeholders, while the standard version, ::placeholder , trails far behind,

used in only 4% of pages.

The remaining half of prefixed pseudo-elements is primarily devoted to styling scrollbars and

Shadow DOM of native elements (search inputs, video & audio controls, spinner buttons,

sliders, meters, progress bars). This indicates a strong developer need for customization of

built-in UI controls, for which standards-compliant CSS still falls short, although there are

Figure 1.56. The most popular vendor-prefixed pseudo-classes as a percent of pages.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 59

https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-classes.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-classes.png

multiple ongoing93 CSS WG discussions94 to ameliorate that.

It is no secret that Chrome and Safari have been way more prefix-happy, but it is especially true

with pseudo-elements: nearly half of all prefixed pseudo-elements we found had a -webkit-
prefix.

Figure 1.57. Usage of prefixed pseudo-elements by category.

93. https://github.com/w3c/csswg-drafts/issues/4410
94. https://github.com/w3c/csswg-drafts/issues/5187

Part I Chapter 1 : CSS

60 2020 Web Almanac by HTTP Archive

https://github.com/w3c/csswg-drafts/issues/4410
https://github.com/w3c/csswg-drafts/issues/5187
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-elements.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-elements.png

Nearly all usage of prefixed functions (98%) is to specify gradients, even though this has not

been necessary since 201495. The most popular of these is -webkit-linear-gradient()
used in over a quarter of pages examined. The remaining <2% is primarily for calc, for which a

prefix has not been necessary since 201396.

Usage of prefixed media features is lower overall, with the most popular one, -webkit-min-
pixel-ratio used in 13% of pages to detect “Retina” displays. The corresponding standard

media feature, resolution has finally surpassed it in popularity and is used in 22% of mobile

pages and 15% desktop pages.

Overall, -*-min-pixel-ratio comprises three quarters of prefixed media features on

desktop and about half on mobile. The reason for the difference is not reduced mobile usage,

but that another prefixed media feature, -*-high-contrast , is far more popular on mobile

Figure 1.58. Relative popularity of pseudo-element vendor prefixes as a percent of occurrences on
mobile pages.

Figure 1.59. Percent of gradient functions across all occurrences of vendor-prefixed functions in
mobile pages

98.22%

95. https://caniuse.com/css-gradients
96. https://caniuse.com/calc

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 61

https://almanac.httparchive.org/static/images/2020/css/top-pseudo-element-prefixes.png
https://almanac.httparchive.org/static/images/2020/css/top-pseudo-element-prefixes.png
https://caniuse.com/css-gradients
https://caniuse.com/css-gradients
https://caniuse.com/calc
https://caniuse.com/calc
https://developer.mozilla.org/docs/Web/CSS/@media/resolution
https://developer.mozilla.org/docs/Web/CSS/@media/resolution

making up almost the entire other half of prefixed media features, but only 18% on desktop.

The corresponding standard media feature, forced-colors97 is still experimental and behind a

flag in Chrome and Firefox and did not appear at all in our analysis.

Feature queries

Feature queries (@supports) have been steadily gaining traction for the past few years, and

were used in 39% of pages, a notable increase from last year’s 30%.

But what are they used for? We looked at the most popular queries. The results may come as a

big surprise—it was to us! We expected Grid-related queries to top the list, but instead, the

most popular feature queries by far are for position: sticky ! They comprise half of all

feature queries and are used in about a quarter of pages. In contrast, Grid-related queries

account for only 2% of all queries, indicating that developers feel comfortable enough with

Grid’s browser support that they don’t need to use it only as progressive enhancement.

What is even more mysterious is that position: sticky itself is not used as much as the

feature queries about it, appearing in 10% of desktop pages and 13% of mobile pages. So there

are over half a million pages that detect position: sticky without ever using it! Why?!

Figure 1.60. Relative popularity of vendor-prefixed media features as a percent of occurrences on
mobile pages.

97. https://developer.mozilla.org/docs/Web/CSS/@media/forced-colors

Part I Chapter 1 : CSS

62 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/@media/forced-colors
https://almanac.httparchive.org/static/images/2020/css/vendor-prefixed-media.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefixed-media.png
https://developer.mozilla.org/docs/Web/CSS/@supports

Lastly, it was encouraging to see max() already in the top 10 most detected features,

appearing in 0.6% of desktop pages and 0.7% of mobile pages. Given that max() (and min() ,

and clamp()) was only supported across the board this year98, it is quite impressive adoption

and highlights how desperately developers needed this.

A small but notable number of pages (around 3000 or 0.05%) were oddly using @supports
with CSS 2 syntax, such as display: block or padding: 0px , syntax that existed well

before @supports was implemented. It is unclear what this was meant to achieve. Perhaps it

was used to shield CSS rules from old browsers that don’t implement @supports ?

Meta

Up until now we’ve looked at what CSS developers have used, but in this section we want to

look more about how they are using it.

Declaration repetition

To tell how efficient and maintainable a stylesheet is, one rough factor is declaration repetition,

that is, the ratio between unique (different) and total number of declarations. The factor is a

Figure 1.61. Relative popularity of @supports features queried as a percent of occurrences.

98. https://caniuse.com/mdn-css_types_max

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 63

https://caniuse.com/mdn-css_types_max
https://almanac.httparchive.org/static/images/2020/css/supports-criteria.png
https://almanac.httparchive.org/static/images/2020/css/supports-criteria.png

rough one because it is not trivial to normalize declarations (border: none , border: 0 ,

even border-width: 0 —plus a few more—are all different but say the same thing), and also

because there are levels for the repetition: media query (most useful but harder to measure),

stylesheet, or data set level as with the Almanac’s overall metrics.

We did look at declaration repetition and found that the median web page, on mobile, uses a

total of 5,454 declarations, of which 2,398 are unique. The median ratio (which is based on the

data set, not these two values) comes out at 45.43%. What this means is that on the median

page, each declaration is used roughly two times.

These ratios are better, then, than what we know from scarce previous data. In 2017, Jens

Oliver Meiert sampled 220 popular websites99 and came out with the following averages: 6,121

declarations, of which 1,698 were unique, and a unique/total ratio of 28% (median 34%). The

topic could need further investigation, but from the little we know so far, declaration repetition

is tangible—and may have either improved or be more of a problem for the more popular and

likely larger sites.

Shorthands and longhands

Some shorthands are more successful than others. Sometimes the shorthand is sufficiently easy

to use and its syntax memorable, that we end up only using the longhands intentionally, when

we want to override certain values independently. And then there are these shorthands that

are hardly ever used because their syntax is too confusing.

Shorthands before longhands

Some shorthands are more successful than others. Sometimes the shorthand is sufficiently easy

to use and its syntax memorable, that we end up only using the longhands intentionally, when

we want to override certain values independently. And then there are these shorthands that

are hardly ever used because their syntax is too confusing. Using a shorthand and overriding it

Figure 1.62. Distribution of repetition ratios on mobile pages.

Percentile Unique / Total

10 30.97%

50 45.43%

90 63.67%

99. https://meiert.com/en/blog/70-percent-css-repetition/

Part I Chapter 1 : CSS

64 2020 Web Almanac by HTTP Archive

https://meiert.com/en/blog/70-percent-css-repetition/

with a few longhands in the same rule is a good strategy for a variety of reasons:

First, it is good defensive coding. The shorthand resets all its longhands to their initial values if

they have not been explicitly specified. This prevents rogue values coming in through the

cascade.

Second, it is good for maintainability, to avoid repetition of values when the shorthand has

smart defaults. For example, instead of margin: 1em 1em 0 1em we can write:

margin: 1em;

margin-bottom: 0;

Similarly, for list-valued properties, longhands can help us reduce repetition when a value is the

same across all list values:

background: url("one.png"), url("two.png"), url("three.png");

background-repeat: no-repeat;

Third, for cases where parts of the shorthand’s syntax are too weird, longhands can help

improve readability:

/* Instead of: */

background: url("one.svg") center / 50% 50% content-box border-box;

/* This is more readable: */

background: url("one.svg") center;

background-size: 50% 50%;

background-origin: content-box;

background-clip: border-box;

So how frequently does this occur? Very, as it turns out. 88% of pages use this strategy at least

once. By far, the most frequent longhand this happens with is background-size , accounting

for 40% of all longhands that come after their shorthand, indicating that the slash syntax for

background-size in background may not have been the most readable or memorable

syntax we could have come up with. No other longhand comes close to this frequency. The

remaining 60% is a long tail spread across many other properties evenly.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 65

font

The font shorthand is fairly popular (used 49 million times on 80% of pages) but used far less

than most of its longhands (except font-variant and font-stretch). This indicates that

most developers are comfortable using it (since it appears on so many websites). Developers

often need to override specific typographic aspects on descendant rules, which likely explains

why the longhands are used so much more.

Figure 1.63. Most popular longhands that come after their shorthands in the same rule.

Part I Chapter 1 : CSS

66 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/most-popular-longhand-after-shorthand.png
https://almanac.httparchive.org/static/images/2020/css/most-popular-longhand-after-shorthand.png

background

As one of the oldest shorthands, background is also highly used, appearing 1 billion times in

92% of pages. it is used more frequently than any of its longhands except background-
color , which is used 1.5 billion times, in roughly the same number of pages. However, this

doesn’t mean developers are fully comfortable with all of its syntax: nearly all (>90%) of

background usage is very simple, with one or two values, most likely colors and images or

images and positions. For anything further, the longhands are seen as more self-explanatory.

Figure 1.64. Adoption of font shorthand and longhand properties.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 67

https://almanac.httparchive.org/static/images/2020/css/font-shorthands.png
https://almanac.httparchive.org/static/images/2020/css/font-shorthands.png

Margins and paddings

Both the margin and padding shorthands, as well as their longhands were some of the most

highly used CSS properties. Padding is considerably more likely to be specified as a shorthand

(1.5B uses for padding vs 300-400M for each shorthand), whereas there is less of a

difference for margin (1.1B uses of margin vs 500-800M for each of its longhands). Given the

initial confusion of many CSS developers about the clockwise order of values in these

shorthands and the repetition rule for 2 or 3 values, we expected that most of these uses of the

shorthands would be simple (1 value), however we saw the entire range of 1,2,3 or 4 values.

Obviously 1 or 2 values were more common, but 3 or 4 were not at all uncommon, occurring in

over 25% of margin uses and over 10% of padding usage.

Figure 1.65. Usage comparison of the background shorthand and its longhands.

Part I Chapter 1 : CSS

68 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/background-shorthand-versus-longhand.png
https://almanac.httparchive.org/static/images/2020/css/background-shorthand-versus-longhand.png

Flex

Nearly all flex , flex-* properties are very highly used, appearing in 30-60% of pages.

However, both flex-wrap and flex-direction are used far more than their shorthand,

flex-flow . When flex-flow is used, it is used with two values, i.e. as a shorter way to set

both of its longhands. Despite the elaborate sensible defaults100 for using flex with one or two

values, around 90% of usage consists of the 3 value syntax, explicitly setting all three of its

longhands.

Figure 1.66. Usage comparison of the margin & padding shorthands and their longhands.

100. https://developer.mozilla.org/docs/Web/CSS/
flex#Syntax:~:text=The%20flex%20property%20may%20be%20specified%20using%20one%2C%20two%2C%20or%20three%20values

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 69

https://almanac.httparchive.org/static/images/2020/css/margin-padding-shorthand-vs-longhand.png
https://almanac.httparchive.org/static/images/2020/css/margin-padding-shorthand-vs-longhand.png
https://developer.mozilla.org/docs/Web/CSS/flex#Syntax:~:text=The%20flex%20property%20may%20be%20specified%20using%20one%2C%20two%2C%20or%20three%20values

Grid

Did you know that grid-template-columns , grid-template-rows , and grid-
template-areas are actually shorthands of grid-template ? Did you know that there’s a

grid property and all of those are some of its longhands? No? Well, you’re in good company:

neither do most developers. The grid property was only used in 5,279 websites (0.08%) and

grid-template on 8,215 websites (0.13%). In comparison, grid-template-columns is

used in 1.7 million websites, over 200 times more!

Figure 1.67. Usage comparison of the flex shorthands and their longhands.

Part I Chapter 1 : CSS

70 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/flex-shorthand-vs-longhand.png
https://almanac.httparchive.org/static/images/2020/css/flex-shorthand-vs-longhand.png

CSS mistakes

As with any complex, evolving platform not everything is done correctly. So let’s look at some of

the mistakes developers are making out there.

Syntax errors

For most of the metrics in this chapter, we used Rework101, a CSS parser. While this helps

dramatically improve accuracy, it also means we could be less forgiving of syntax errors

compared to a browser. Even if one declaration in the entire stylesheet has a syntax error,

parsing would fail, and that stylesheet would be left out of the analysis. But how many

Figure 1.68. Usage comparison of the grid shorthands and their longhands.

101. https://github.com/reworkcss/css

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 71

https://almanac.httparchive.org/static/images/2020/css/usage-of-grid-properties.png
https://almanac.httparchive.org/static/images/2020/css/usage-of-grid-properties.png
https://github.com/reworkcss/css

stylesheets do contain such syntax errors? Quite substantially more on desktop than mobile it

turns out! More specifically, nearly 10% of stylesheets found on desktop pages included at least

one unrecoverable syntax error, whereas only 2% of mobile. Do note that these are essentially

lower bounds for syntax errors, since not all syntax errors actually cause parsing to fail. For

example, a missing semicolon would just result in the next declaration being parsed as part of

the value (e.g. {property: "color", value: "red background: yellow"}), it would

not cause the parser to fail.

Nonexistent properties

We also looked at most common nonexistent properties, by using a list of known properties.

We excluded prefixed properties from this part of the analysis, and manually excluded

unprefixed proprietary properties (e.g. Internet Explorer’s behavior , which oddly still

appears on 200K websites). Out of the remaining nonexistent properties:

• 37% of them were a mangled form of a prefixed property (e.g. webkit-
transition or -transition)

• 43% were an unprefixed form of a property that only exists only prefixed (e.g.

font-smoothing , which appeared on 384K websites), probably included for

compatibility under the incorrect assumption that it is standard, or due to wishful

thinking that it will become standard.

• A typo that has found its way to a popular library. Through this analysis, we found

that the property white-wpace was present in 234,027 websites. This is way too

many websites for the same typo to have occurred organically, so we decided to

look into it. And lo and behold, it turns out102 it was the Facebook widget! The fix is

already in.

• And another oddity: The property font-rendering appears on 2,575 pages.

However, we cannot find evidence of such a property existing, with or without a

prefix. There is the nonstandard -webkit-font-smoothing which is wildly

popular, appearing in 3 million websites, or about 49% of pages, but font-
rendering is not sufficiently close to be a misspelling. There is text-rendering
which is used in about 100K of websites, so it is conceivable that 2.5K developers all

misremembered and coined a portmanteau of font-smoothing and text-
rendering .

102. https://twitter.com/rick_viscomi/status/1326739379533000704

Part I Chapter 1 : CSS

72 2020 Web Almanac by HTTP Archive

https://twitter.com/rick_viscomi/status/1326739379533000704
https://medium.com/better-programming/improving-font-rendering-with-css-3383fc358cbc
https://medium.com/better-programming/improving-font-rendering-with-css-3383fc358cbc
https://developer.mozilla.org/docs/Web/CSS/text-rendering
https://developer.mozilla.org/docs/Web/CSS/text-rendering

Longhands before shorthands

Using longhands after shorthands is a nice way to use the defaults and override a few

properties. It is especially useful with list-valued properties, where using a longhand helps us

avoid repeating the same value multiple times. The opposite on the other hand—using

longhands before shorthands—is always a mistake, since the shorthand will overwrite the

longhand. For example, take a look at this:

background-color: rebeccapurple; /* longhand */

background: linear-gradient(white, transparent); /* shorthand */

This will not produce a gradient from white to rebeccapurple , but from white to

transparent . The rebeccapurple background color will be overwritten by the

background shorthand that comes after it that resets all its longhands to their initial values.

There are two main reasons that developers make this kind of mistake: either a

misunderstanding about how shorthands work and which longhand is reset by which

shorthand, or simply leftover cruft from moving declarations around.

So how common is this mistake? Surely, it cannot be that common in the top 6 million websites,

Figure 1.69. Most popular unknown properties.

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 73

https://almanac.httparchive.org/static/images/2020/css/most-popupular-unknown-properties.png
https://almanac.httparchive.org/static/images/2020/css/most-popupular-unknown-properties.png

right? Wrong! It turns out, it is exceedingly common, occurring at least once in 54% of websites!

This kind of confusion seems to happen way more with the background shorthand than any

other shorthand: over half (55%) of these mistakes involve putting background-* longhands

before background . In this case, this may actually not be a mistake at all, but good

progressive enhancement: Browsers that don’t support a feature -- such as linear gradients --

will render the previously defined longhand values, in this case, a background color. Browsers

that do understand the shorthand override the longhand value, either implicitly or explicitly.

Sass

While analyzing CSS code tells us what CSS developers are doing, looking at preprocessor code

can tell us a bit about what CSS developers want to be doing, but can’t, which in some ways is

more interesting. Sass consists of two syntaxes: Sass, which is more minimal, and SCSS, which is

closer to CSS. The former is falling out of favor and is not used very much today, so we only

looked at the latter. We used CSS files with sourcemaps to extract and analyze SCSS stylesheets

in the wild. We chose to look at SCSS because it is the most popular preprocessing syntax,

based on our analysis of sourcemaps.

We’ve known for a while that developers need color modification functions and are working on

Figure 1.70. Most popular shorthands after longhands.

Part I Chapter 1 : CSS

74 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/most-popupular-shorthands-after-longhands.png
https://almanac.httparchive.org/static/images/2020/css/most-popupular-shorthands-after-longhands.png

them in CSS Color 5103. However, analyzing SCSS function calls gives us hard data to prove just

how necessary color modification functions are, and also tells us which types of color

modifications are most commonly needed.

Overall, over one third of all Sass function calls are to modify colors or extract color

components. Virtually all color modifications we found were rather simple. Half were to make

colors darker. In fact, darken() was the most popular Sass function call overall, used even

more than the generic if() ! It appears that a common strategy is to define bright core colors,

and use darken() to create darker variations. The opposite, making them lighter, is less

common, with only 5% of function calls being lighten() , though that was still the 6th most

popular function overall. Functions that change the alpha channel were about 4% of overall

function calls and mixing colors makes up 3.5% of all function calls. Other types of color

modifications such as adjusting hue, saturation, red/green/blue channels, or the more complex

adjust-color() were used very sparingly.

103. https://drafts.csswg.org/css-color-5/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 75

https://drafts.csswg.org/css-color-5/

Defining custom functions is something that has been discussed for years in Houdini104, but

studying Sass stylesheets gives us data on how common the need is. Quite common, it turns out.

At least half of SCSS stylesheets studied contain custom functions, since the median SCSS sheet

contains not one, but two custom functions.

There are also recent105 discussions106 in the CSS WG about introducing a limited form of

conditionals, and Sass gives us some data on how commonly this is needed. Almost two thirds of

SCSS sheets contain at least one @if block, making up almost two thirds of all control flow

statements. There is also an if() function for conditionals within values, which is the second

most common function used overall (14%).

Figure 1.71. Most popular Sass function calls.

104. https://github.com/w3c/css-houdini-drafts/issues/857
105. https://github.com/w3c/csswg-drafts/issues/5009
106. https://github.com/w3c/csswg-drafts/issues/5624

Part I Chapter 1 : CSS

76 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/most-popupular-sass-function-calls.png
https://almanac.httparchive.org/static/images/2020/css/most-popupular-sass-function-calls.png
https://github.com/w3c/css-houdini-drafts/issues/857
https://github.com/w3c/csswg-drafts/issues/5009
https://github.com/w3c/csswg-drafts/issues/5624

Another future spec that is currently worked on is CSS Nesting107, which will afford us the ability

to nest rules within other rules similarly to what we can do in Sass and other preprocessors by

using & . How commonly is nesting used in SCSS sheets? Very, it turns out. The vast majority of

SCSS sheets use at least one explicitly nested selector, with pseudo-classes (e.g. &:hover) and

classes (e.g. &.active) making up three quarters of it. And this does not account for implicit

nesting, where a descendant is assumed, and the & character is not required.

Figure 1.72. Usage of control flow statements in SCSS.

107. https://drafts.csswg.org/css-nesting/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 77

https://almanac.httparchive.org/static/images/2020/css/usage-of-control-flow-statements-scss.png
https://almanac.httparchive.org/static/images/2020/css/usage-of-control-flow-statements-scss.png
https://drafts.csswg.org/css-nesting/

Conclusion

Whew! That was a lot of data! We hope you have found it as interesting as we did, and perhaps

even formed your own insights about some of them.

One of our takeaways was that popular libraries such as WordPress, Bootstrap, and Font

Awesome are primary drivers behind adoption of new features, while individual developers

tend to be more conservative.

Another observation is that there is more old code on the web than new code. The web in

practice spans a huge range, from code that could have been written 20 years ago to bleeding

edge tech that only works in the latest browsers. What this study showed us, though, is that

there are powerful features that are often misunderstood and underused, despite good

interoperability.

It also showed us some of the ways that developers want to use CSS but can’t and gave us some

insight on what they find confusing. Some of this data will be brought back to the CSS WG to

help drive CSS’s evolution, because data-driven decisions are the best kind of decisions.

Figure 1.73. Usage of explicit nesting in SCSS.

Part I Chapter 1 : CSS

78 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/usage-of-explicit-nesting-in-scss.png
https://almanac.httparchive.org/static/images/2020/css/usage-of-explicit-nesting-in-scss.png

We are excited about the ways that this analysis could have further impact in the way we

develop websites and looking forward to seeing how these metrics develop over time!

Authors

Lea Verou

@leaverou LeaVerou https://lea.verou.me/

Lea teaches HCI & web programming108 and researches how to make web

programming easier109 at MIT110. She is a bestselling technical author111 and

experienced speaker112. She is passionate about open web standards and is a

longtime CSS Working Group113 member. Lea has started several popular open

source projects and web applications114, such as Prism115, and Awesomplete116. She

tweets @leaverou and blogs at lea.verou.me117.

Chris Lilley

@svgeesus svgeesus https://svgees.us

Chris Lilley is a Technical Director at the World Wide Web Consortium (W3C).

Considered “the father of SVG”, he also co-authored PNG, was co-editor of CSS2,

chaired the group that developed @font-face , and co-developed WOFF. Ex

Technical Architecture Group. Chris is still trying to get Color Management on the

web, sigh. Currently working on CSS levels 3/4/5 (no, really), Web Audio, and

WOFF2.

Rachel Andrew

@rachelandrew rachelandrew https://rachelandrew.co.uk

I’m a web developer, writer, public speaker. Co-founder of Perch CMS118 and

Notist119. Member of the CSS Working Group120. Editor in Chief of Smashing

Magazine121.

108. https://designftw.mit.edu
109. https://mavo.io
110. https://mit.edu
111. https://www.amazon.com/CSS-Secrets-Lea-Verou/dp/1449372635?tag=leaverou-20
112. https://lea.verou.me/speaking
113. https://www.w3.org/Style/CSS/members.en.php3
114. https://github.com/leaverou
115. https://prismjs.com
116. https://github.com/leaverou/awesomplete
117. https://lea.verou.me
118. https://grabaperch.com
119. https://noti.st
120. https://www.w3.org/wiki/CSSWG
121. https://www.smashingmagazine.com/

Part I Chapter 1 : CSS

2020 Web Almanac by HTTP Archive 79

https://twitter.com/leaverou
https://github.com/LeaVerou
https://lea.verou.me/
https://designftw.mit.edu/
https://mavo.io/
https://mavo.io/
https://mit.edu/
https://www.amazon.com/CSS-Secrets-Lea-Verou/dp/1449372635?tag=leaverou-20
https://lea.verou.me/speaking
https://www.w3.org/Style/CSS/members.en.php3
https://github.com/leaverou
https://github.com/leaverou
https://prismjs.com/
https://github.com/leaverou/awesomplete
https://twitter.com/leaverou
https://lea.verou.me/
https://twitter.com/svgeesus
https://github.com/svgeesus
https://svgees.us/
https://twitter.com/rachelandrew
https://github.com/rachelandrew
https://rachelandrew.co.uk/
https://grabaperch.com/
https://noti.st/
https://www.w3.org/wiki/CSSWG
https://www.smashingmagazine.com/
https://www.smashingmagazine.com/

80 2020 Web Almanac by HTTP Archive

Part I Chapter 2

JavaScript

Written by Tim Kadlec
Reviewed by Sawood Alam and Artem Denysov
Analyzed by Rick Viscomi and Paul Calvano
Edited by Rick Viscomi

Introduction

JavaScript has come a long way from its humble origins as the last of the three web

cornerstones—alongside CSS and HTML. Today, JavaScript has started to infiltrate a broad

spectrum of the technical stack. It is no longer confined to the client-side and it’s an increasingly

popular choice for build tools and server-side scripting. JavaScript is also creeping its way into

the CDN layer as well thanks to edge computing solutions.

Developers love us some JavaScript. According to the Markup chapter, the script element is

the 6th most popular HTML element in use (ahead of elements like p and i , among countless

others). We spend around 14 times as many bytes on it as we do on HTML, the building block of

the web, and 6 times as many bytes as CSS.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 81

But nothing is free, and that’s especially true for JavaScript—all that code has a cost. Let’s dig in

and take a closer look at how much script we use, how we use it, and what the fallout is.

How much JavaScript do we use?

We mentioned that the script tag is the 6th most used HTML element. Let’s dig in a bit

deeper to see just how much JavaScript that actually amounts to.

The median site (the 50th percentile) sends 444 KB of JavaScript when loaded on a desktop

device, and slightly fewer (411 KB) to a mobile device.

Figure 2.1. Median page weight per content type.

Part I Chapter 2 : JavaScript

82 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution-content-type.png
https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution-content-type.png

It’s a bit disappointing that there isn’t a bigger gap here. While it’s dangerous to make too many

assumptions about network or processing power based on whether the device in use is a phone

or a desktop (or somewhere in between), it’s worth noting that HTTP Archive mobile tests are

done by emulating a Moto G4 and a 3G network. In other words, if there was any work being

done to adapt to less-than-ideal circumstances by passing down less code, these tests should be

showing it.

The trend also seems to be in favor of using more JavaScript, not less. Comparing to last year’s

results122, at the median we see a 13.4% increase in JavaScript as tested on a desktop device, and

a 14.4% increase in the amount of JavaScript sent to a mobile device.

At least some of this weight seems to be unnecessary. If we look at a breakdown of how much of

that JavaScript is unused on any given page load, we see that the median page is shipping 152

KB of unused JavaScript. That number jumps to 334 KB at the 75th percentile and 567 KB at

Figure 2.2. Distribution of the amount of JavaScript kilobytes loaded per page.

Figure 2.3. Year-over-year change in the median number of JavaScript kilobytes per page.

Client 2019 2020 Change

Desktop 391 444 13.4%

Mobile 359 411 14.4%

122. https://almanac.httparchive.org/en/2019/javascript#how-much-javascript-do-we-use

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 83

https://almanac.httparchive.org/static/images/2020/javascript/bytes-2020.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-2020.png
https://almanac.httparchive.org/en/2019/javascript#how-much-javascript-do-we-use
https://almanac.httparchive.org/en/2019/javascript#how-much-javascript-do-we-use

the 90th percentile.

As raw numbers, those may or may not jump out at you depending on how much of a

performance nut you are, but when you look at it as a percentage of the total JavaScript used

on each page, it becomes a bit easier to see just how much waste we’re sending.

That 153 KB equates to ~37% of the total script size that we send down to mobile devices.

There’s definitely some room for improvement here.

module and nomodule

One mechanism we have to potentially reduce the amount of code we send down is to take

advantage of the module / nomodule pattern. With this pattern, we create two sets of

bundles: one bundle intended for modern browsers and one intended for legacy browsers. The

bundle intended for modern browsers gets a type=module and the bundle intended for

legacy browsers gets a type=nomodule .

Figure 2.4. Distribution of the amount of wasted JavaScript bytes per mobile page.

Figure 2.5. Percent of the median mobile page’s JavaScript bytes that are unused.

37.22%

Part I Chapter 2 : JavaScript

84 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/unused-js-bytes-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/unused-js-bytes-distribution.png
https://web.dev/serve-modern-code-to-modern-browsers/
https://web.dev/serve-modern-code-to-modern-browsers/
https://web.dev/serve-modern-code-to-modern-browsers/

This approach lets us create smaller bundles with modern syntax optimized for the browsers

that support it, while providing conditionally loaded polyfills and different syntax to the

browsers that don’t.

Support for module and nomodule is broadening, but still relatively new. As a result,

adoption is still a bit low. Only 3.6% of mobile pages use at least one script with type=module
and only 0.7% of mobile pages use at least one script with type=nomodule to support legacy

browsers.

Request count

Another way of looking at how much JavaScript we use is to explore how many JavaScript

requests are made on each page. While reducing the number of requests was paramount to

maintaining good performance with HTTP/1.1, with HTTP/2 the opposite is the case: breaking

JavaScript down into smaller, individual files123 is typically better for performance124.

At the median, pages make 20 JavaScript requests. That’s only a minor increase over last year,

when the median page made 19 JavaScript requests.

Figure 2.6. Distribution of JavaScript requests per page.

123. https://web.dev/granular-chunking-nextjs/
124. https://almanac.httparchive.org/en/2019/http#impact-of-http2

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 85

https://web.dev/granular-chunking-nextjs/
https://almanac.httparchive.org/en/2019/http#impact-of-http2
https://almanac.httparchive.org/static/images/2020/javascript/requests-2020.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-2020.png

Where does it come from?

One trend that likely contributes to the increase in JavaScript used on our pages is the

seemingly ever-increasing amount of third-party scripts that get added to pages to help with

everything from client-side A/B testing and analytics, to serving ads and handling

personalization.

Let’s drill into that a bit to see just how much third-party script we’re serving up.

Right up until the median, sites serve roughly the same number of first-party scripts as they do

third-party scripts. At the median, 9 scripts per page are first-party, compared to 10 per page

from third-parties. From there, the gap widens a bit: the more scripts a site serves in the total,

the more likely it is that the majority of those scripts are from third-party sources.

Figure 2.7. Distribution of JavaScript requests per page in 2019.

Part I Chapter 2 : JavaScript

86 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/requests-2019.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-2019.png

While the amount of JavaScript requests are similar at the median, the actual size of those

scripts is weighted (pun intended) a bit more heavily toward third-party sources. The median

site sends 267 KB of JavaScript from third-parties to desktop devices ,compared to 147 KB

from first-parties. The situation is very similar on mobile, where the median site ships 255 KB of

third-party scripts compared to 134 KB of first-party scripts.

Figure 2.8. Distribution of the number of JavaScript requests by host for desktop.

Figure 2.9. Distribution of the number of JavaScript requests by host for mobile.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 87

https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-mobile.png

How do we load our JavaScript?

The way we load JavaScript has a significant impact on the overall experience.

Figure 2.10. Distribution of the number of JavaScript bytes by host for desktop.

Figure 2.11. Distribution of the number of JavaScript bytes by host for mobile.

Part I Chapter 2 : JavaScript

88 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-mobile.png

By default, JavaScript is parser-blocking. In other words, when the browser discovers a script
element, it must pause parsing of the HTML until the script has been downloaded, parsed, and

executed. It’s a significant bottleneck and a common contributor to pages that are slow to

render.

We can start to offset some of the cost of loading JavaScript by loading scripts either

asynchronously (with the async attribute), which only halts the HTML parser during the parse

and execution phases and not during the download phase, or deferred (with the defer
attribute), which doesn’t halt the HTML parser at all. Both attributes are only available on

external scripts—inline scripts cannot have them applied.

On mobile, external scripts comprise 59.0% of all script elements found.

As an aside, when we talked about how much JavaScript is loaded on a page earlier, that total didn’t

account for the size of these inline scripts—because they’re part of the HTML document, they’re

counted against the markup size. This means we load even more script that the numbers show.

Of those external scripts, only 12.2% of them are loaded with the async attribute and 6.0% of

them are loaded with the defer attribute.

Figure 2.12. Distribution of the number of external and inline scripts per mobile page.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 89

https://almanac.httparchive.org/static/images/2020/javascript/external-inline-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/external-inline-mobile.png

Considering that defer provides us with the best loading performance (by ensuring

downloading the script happens in parallel to other work, and execution waits until after the

page can be displayed), we would hope to see that percentage a bit higher. In fact, as it is that

6.0% is slightly inflated.

Back when supporting IE8 and IE9 was more common, it was relatively common to use both the

async and defer attributes. With both attributes in place, any browser supporting both will

use async . IE8 and IE9, which don’t support async will fall back to defer .

Nowadays, the pattern is unnecessary for the vast majority of sites and any script loaded with

the pattern in place will interrupt the HTML parser when it needs to be executed, instead of

deferring until the page has loaded. The pattern is still used surprisingly often, with 11.4% of

mobile pages serving at least one script with that pattern in place. In other words, at least some

of the 6% of scripts that use defer aren’t getting the full benefits of the defer attribute.

There is an encouraging story here, though.

Harry Roberts tweeted about the anti-pattern on Twitter125, which is what prompted us to check

to see how frequently this was occurring in the wild. Rick Viscomi checked to see who the top

culprits were126, and it turns out “stats.wp.com” was the source of the most common offenders.

@Kraft from Automattic replied, and the pattern will now be removed going forward127.

Figure 2.13. Distribution of the number of async and defer scripts per mobile page.

125. https://twitter.com/csswizardry/status/1331721659498319873
126. https://twitter.com/rick_viscomi/status/1331735748060524551
127. https://twitter.com/Kraft/status/1336772912414601224

Part I Chapter 2 : JavaScript

90 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/async-defer-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/async-defer-mobile.png
https://twitter.com/csswizardry/status/1331721659498319873
https://twitter.com/rick_viscomi/status/1331735748060524551
https://twitter.com/rick_viscomi/status/1331735748060524551
https://twitter.com/Kraft/status/1336772912414601224

One of the great things about the openness of the web is how one observation can lead to

meaningful change and that’s exactly what happened here.

Resource hints

Another tool we have at our disposal for offsetting some of the network costs of loading

JavaScript are resource hints, specifically, prefetch and preload .

The prefetch hint lets developers signify that a resource will be used on the next page

navigation, therefore the browser should try to download it when the browser is idle.

The preload hint signifies that a resource will be used on the current page and that the

browser should download it right away at a higher priority.

Overall, we see 16.7% of mobile pages using at least one of the two resource hints to load

JavaScript more proactively.

Of those, nearly all of the usage is coming from preload . While 16.6% of mobile pages use at

least one preload hint to load JavaScript, only 0.4% of mobile pages use at least one

prefetch hint.

There’s a risk, particularly with preload , of using too many hints and reducing their

effectiveness, so it’s worth looking at the pages that do use these hints to see how many they’re

using.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 91

At the median, pages that use a prefetch hint to load JavaScript use three, while pages that

use a preload hint only use one. The long tail gets a bit more interesting, with 12 prefetch
hints used at the 90th percentile and 7 preload hints used on the 90th as well. For more

detail on resource hints, check out this year’s Resource Hints chapter.

Figure 2.14. Distribution of the number prefetch hints per page with any prefetch hints.

Figure 2.15. Distribution of the number preload hints per page with any preload hints.

Part I Chapter 2 : JavaScript

92 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/prefetch-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/prefetch-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/preload-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/preload-distribution.png

How do we serve JavaScript?

As with any text-based resource on the web, we can save a significant number of bytes through

minimization and compression. Neither of these are new optimizations—they’ve been around

for quite awhile—so we should expect to see them applied in more cases than not.

One of the audits in Lighthouse checks for unminified JavaScript, and provides a score (0.00

being the worst, 1.00 being the best) based on the findings.

The chart above shows that most pages tested (77%) get a score of 0.90 or above, meaning that

few unminified scripts are found.

Overall, only 4.5% of the JavaScript requests recorded are unminified.

Interestingly, while we’ve picked on third-party requests a bit, this is one area where third-

party scripts are doing better than first-party scripts. 82% of the average mobile page’s

unminified JavaScript bytes come from first-party code.

Figure 2.16. Distribution of unminified JavaScript Lighthouse audit scores per mobile page.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 93

https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js.png
https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js.png

Compression

Minification is a great way to help reduce file size, but compression is even more effective and,

therefore, more important—it provides the bulk of network savings more often than not.

Figure 2.17. Average distribution of unminified JavaScript bytes by host.

Part I Chapter 2 : JavaScript

94 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js-by-3p.png
https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js-by-3p.png

85% of all JavaScript requests have some level of network compression applied. Gzip makes up

the majority of that, with 65% of scripts having Gzip compression applied compared to 20% for

Brotli (br). While the percentage of Brotli (which is more effective than Gzip) is low compared

to its browser support, it’s trending in the right direction, increasing by 5 percentage points in

the last year.

Once again, this appears to be an area where third-party scripts are actually doing better than

first-party scripts. If we break the compression methods out by first- and third-party, we see

that 24% of third-party scripts have Brotli applied, compared to only 15% of first-party scripts.

Figure 2.18. Distribution of the percent of JavaScript requests by compression method.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 95

https://almanac.httparchive.org/static/images/2020/javascript/compression-method-request.png
https://almanac.httparchive.org/static/images/2020/javascript/compression-method-request.png

Third-party scripts are also least likely to be served without any compression at all: 12% of

third-party scripts have neither Gzip nor Brotli applied, compared to 19% of first-party scripts.

It’s worth taking a closer look at those scripts that don’t have compression applied.

Compression becomes more efficient in terms of savings the more content it has to work with.

In other words, if the file is tiny, sometimes the cost of compressing the file doesn’t outweight

the miniscule reduction in file size.

Thankfully, that’s exactly what we see, particularly in third-party scripts where 90% of

uncompressed scripts are less than 5 KB in size. On the other hand, 49% of uncompressed first-

party scripts are less than 5 KB and 37% of uncompressed first-party scripts are over 10 KB. So

while we do see a lot of small uncompressed first-party scripts, there are still quite a few that

would benefit from some compression.

Figure 2.19. Distribution of the percent of mobile JavaScript requests by compression method and
host.

Figure 2.20. Percent of uncompressed third-party JavaScript requests under 5 KB.

90.25%

Part I Chapter 2 : JavaScript

96 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/compression-method-3p.png
https://almanac.httparchive.org/static/images/2020/javascript/compression-method-3p.png

What do we use?

As we’ve increasingly used more JavaScript to power our sites and applications, there has also

been an increasing demand for open-source libraries and frameworks to help with improving

developer productivity and overall code maintainability. Sites that don’t wield one of these tools

are definitely the minority on today’s web—jQuery alone is found on nearly 85% of the mobile

pages tracked by HTTP Archive.

It’s important that we think critically about the tools we use to build the web and what the

trade-offs are, so it makes sense to look closely at what we see in use today.

Libraries

HTTP Archive uses Wappalyzer to detect technologies in use on a given page. Wappalazyer

tracks both JavaScript libraries (think of these as a collection of snippets or helper functions to

ease development, like jQuery) and JavaScript frameworks (these are more likely scaffolding

and provide templating and structure, like React).

The popular libraries in use are largely unchanged from last year, with jQuery continuing to

dominate usage and only one of the top 21 libraries falling out (lazy.js, replaced by DataTables).

In fact, even the percentages of the top libraries has barely changed from last year.

Figure 2.21. Adoption of the top JavaScript frameworks and libraries as a percent of pages.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 97

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-libraries.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-libraries.png

Last year, Houssein posited a few reasons for why jQuery’s dominance continues128:

Both are very sound guesses, and it seems the situation hasn’t changed much on either front.

In fact, the dominance of jQuery is supported even further when you stop to consider that, of

the top 10 libraries, 6 of them are either jQuery or require jQuery in order to be used: jQuery

UI, jQuery Migrate, FancyBox, Lightbox and Slick.

Frameworks

When we look at the frameworks, we also don’t see much of a dramatic change in terms of

adoption in the main frameworks that were highlighted last year. Vue.js has seen a significant

increase, and AMP grew a bit, but most of them are more or less where they were a year ago.

It’s worth noting that the detection issue that was noted last year still applies129, and still impacts

the results here. It’s possible that there has been a significant change in popularity for a few

more of these tools, but we just don’t see it with the way the data is currently collected.

What it all means

More interesting to us than the popularity of the tools themselves is the impact they have on

the things we build.

First, it’s worth noting that while we may think of the usage of one tool versus another, in

reality, we rarely only use a single library or framework in production. Only 21% of pages

analyzed report only one library or framework. Two or three frameworks are pretty common,

and the long-tail gets very long, very quickly.

When we look at the common combinations that we see in production, most of them are to be

expected. Knowing jQuery’s dominance, it’s unsurprising that most of the popular

combinations include jQuery and any number of jQuery-related plugins.

WordPress, which is used in more than 30% of sites, includes jQuery by default.

Switching from jQuery to a newer client-side library can take time depending

on how large an application is, and many sites may consist of jQuery in

addition to newer client-side libraries. "

128. https://almanac.httparchive.org/en/2019/javascript#open-source-libraries-and-frameworks
129. https://github.com/AliasIO/wappalyzer/issues/2450

Part I Chapter 2 : JavaScript

98 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/javascript#open-source-libraries-and-frameworks
https://github.com/AliasIO/wappalyzer/issues/2450

We do also see a fair amount of more “modern” frameworks like React, Vue, and Angular paired

with jQuery, for example as a result of migration or inclusion by third-parties.

Figure 2.22. The most popular combinations of libraries and frameworks on mobile pages.

Combinations Pages (%)

jQuery 1,312,601 20.7%

jQuery, jQuery Migrate 658,628 10.4%

jQuery, jQuery UI 289,074 4.6%

Modernizr, jQuery 155,082 2.4%

jQuery, jQuery Migrate, jQuery UI 140,466 2.2%

Modernizr, jQuery, jQuery Migrate 85,296 1.3%

FancyBox, jQuery 84,392 1.3%

Slick, jQuery 72,591 1.1%

GSAP, Lodash, React, RequireJS, Zepto 61,935 1.0%

Modernizr, jQuery, jQuery UI 61,152 1.0%

Lightbox, jQuery 60,395 1.0%

Modernizr, jQuery, jQuery Migrate, jQuery UI 53,924 0.8%

Slick, jQuery, jQuery Migrate 51,686 0.8%

Lightbox, jQuery, jQuery Migrate 50,557 0.8%

FancyBox, jQuery, jQuery UI 44,193 0.7%

Modernizr, YUI 42,489 0.7%

React, jQuery 37,753 0.6%

Moment.js, jQuery 32,793 0.5%

FancyBox, jQuery, jQuery Migrate 31,259 0.5%

MooTools, jQuery, jQuery Migrate 28,795 0.5%

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 99

More importantly, all these tools typically mean more code and more processing time.

Looking specifically at the frameworks in use, we see that the median JavaScript bytes for pages

using them varies dramatically depending on what is being used.

The graph below shows the median bytes for pages where any of the top 35 most commonly

detected frameworks were found, broken down by client.

Figure 2.23. The most popular combinations of React, Angular, and Vue with and without jQuery.

Combination Without jQuery With jQuery

GSAP, Lodash, React, RequireJS, Zepto 1.0%

React, jQuery 0.6%

React 0.4%

React, jQuery, jQuery Migrate 0.4%

Vue.js, jQuery 0.3%

Vue.js 0.2%

AngularJS, jQuery 0.2%

GSAP, Hammer.js, Lodash, React, RequireJS, Zepto 0.2%

Grand Total 1.7% 1.4%

Part I Chapter 2 : JavaScript

100 2020 Web Almanac by HTTP Archive

On one of the spectrum are frameworks like React or Angular or Ember, which tend to ship a lot

of code regardless of the client. On the other end, we see minimalist frameworks like Alpine.js

and Svelte showing very promising results. Defaults are very important, and it seems that by

Figure 2.24. The median number of JavaScript kilobytes per page by JavaScript framework.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 101

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-bytes.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-bytes.png

starting with highly performant defaults, Svelte and Alpine are both succeeding (so far… the

sample size is pretty small) in creating a lighter set of pages.

We get a very similar picture when looking at main thread time for pages where these tools

were detected.

Ember’s mobile main thread time jumps out and kind of distorts the graph with how long it

takes. (I spent some more time looking into this and it appears to be heavily influenced by one

particular platform using this framework inefficiently130, rather than an underlying problem with

Ember itself.) Pulling it out makes the picture a bit easier to understand.

Figure 2.25. The median main thread time per page by JavaScript framework.

130. https://timkadlec.com/remembers/2021-01-26-what-about-ember/

Part I Chapter 2 : JavaScript

102 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread.png
https://timkadlec.com/remembers/2021-01-26-what-about-ember/
https://timkadlec.com/remembers/2021-01-26-what-about-ember/

Tools like React, GSAP, and RequireJS tend to spend a lot of time on the main thread of the

browser, regardless of whether it’s a desktop or mobile page view. The same tools that tend to

lead to less code overall—tools like Alpine and Svelte—also tend to lead to lower impact on the

main thread.

The gap between the experience a framework provides for desktop and mobile is also worth

digging into. Mobile traffic is becoming increasingly dominant, and it’s critical that our tools

perform as well as possible for mobile pageviews. The bigger the gap we see between desktop

and mobile performance for a framework, the bigger the red flag.

Figure 2.26. The median main thread time per page by JavaScript framework, excluding Ember.js.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 103

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember.png

As you would expect, there’s a gap for all tools in use due to the lower processing power of the

emulated Moto G4. Ember and Polymer seem to jump out as particularly egregious examples,

while tools like RxJS and Mustache vary only minorly from desktop to mobile.

What’s the impact?

We have a pretty good picture now of how much JavaScript we use, where it comes from, and

what we use it for. While that’s interesting enough on its own, the real kicker is the “so what?”

What impact does all this script actually have on the experience of our pages?

The first thing we should consider is what happens with all that JavaScript once its been

downloaded. Downloading is only the first part of the JavaScript journey. The browser still has

to parse all that script, compile it, and eventually execute it. While browsers are constantly on

the lookout for ways to offload some of that cost to other threads, much of that work still

happens on the main thread, blocking the browser from being able to do layout or paint-related

work, as well as from being able to respond to user interaction.

If you recall, there was only a 30 KB difference between what is shipped to a mobile device

versus a desktop device. Depending on your point of view, you could be forgiven for not getting

too upset about the small gap in the amount of code sent to a desktop browser versus a mobile

one—after all, what’s an extra 30 KB or so at the median, right?

Figure 2.27. Difference between desktop and mobile median main thread time per page by
JavaScript framework, excluding Ember.js.

Part I Chapter 2 : JavaScript

104 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember-diff.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember-diff.png
http://127.0.0.1:8080/en/2020/methodology#webpagetest

The biggest problem comes when all of that code gets served to a low-to-middle-end device,

something a bit less like the kind of devices most developers are likely to have, and a bit more

like the kind of devices you’ll see from the majority of people across the world. That relatively

small gap between desktop and mobile is much more dramatic when we look at it in terms of

processing time.

The median desktop site spends 891 ms on the main thread of a browser working with all that

JavaScript. The median mobile site, however, spends 1,897 ms—over two times the time spent

on the desktop. It’s even worse for the long tail of sites. At the 90th percentile, mobile sites

spend a staggering 8,921 ms of main thread time dealing with JavaScript, compared to 3,838

ms for desktop sites.

Correlating JavaScript use to Lighthouse scoring

One way of looking at how this translates into impacting the user experience is to try to

correlate some of the JavaScript metrics we’ve identified earlier with Lighthouse scores for

different metrics and categories.

Figure 2.28. Distribution of main thread time.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 105

https://almanac.httparchive.org/static/images/2020/javascript/main-thread-time.png
https://almanac.httparchive.org/static/images/2020/javascript/main-thread-time.png

The above chart uses the Pearson coefficient of correlation131. There’s a long, kinda complex

definition of what that means precisely, but the gist is that we’re looking for the strength of the

correlation between two different numbers. If we find a coefficient of 1.00, we’d have a direct

positive correlation. A correlation of 0.00 would show no connection between two numbers.

Anything below 0.00 indicates a negative correlation—in other words, as one number goes up

the other one decreases.

First, there doesn’t seem to be much of a measurable correlation between our JavaScript

metrics and the Lighthouse accessibility (“LH A11y” in the chart) score here. That stands in

stark opposition to what’s been found elsewhere, notably through WebAim’s annual research132.

The most likely explanation for this is that Lighthouse’s accessibility tests aren’t as

comprehensive (yet!) as what is available through other tools, like WebAIM, that have

accessibility as their primary focus.

Where we do see a strong correlation is between the amount of JavaScript bytes (“Bytes”) and

both the overall Lighthouse performance (“LH Perf”) score and Total Blocking Time (“TBT”).

The correlation between JavaScript bytes and Lighthouse performance scores is -0.47. In other

words, as JS bytes increase, Lighthouse performance scores decrease. The overall bytes has a

stronger correlation than the amount of third-party bytes (“3P bytes”), hinting that while they

Figure 2.29. Correlations of JavaScript on various aspects of user experience.

131. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
132. https://webaim.org/projects/million/#frameworks

Part I Chapter 2 : JavaScript

106 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/correlations.png
https://almanac.httparchive.org/static/images/2020/javascript/correlations.png
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://webaim.org/projects/million/#frameworks

certainly play a role, we can’t place all the blame on third-parties.

The connection between Total Blocking Time and JavaScript bytes is even more significant

(0.55 for overall bytes, 0.48 for third-party bytes). That’s not too surprising given what we know

about all the work browsers have to do to get JavaScript to run in a page—more bytes means

more time.

Security vulnerabilities

One other helpful audit that Lighthouse runs is to check for known security vulnerabilities in

third-party libraries. It does this by detecting which libraries and frameworks are used on a

given page, and what version is used of each. Then it checks Snyk’s open-source vulnerability

database133 to see what vulnerabilities have been discovered in the identified tools.

According to the audit, 83.5% of mobile pages use a JavaScript library or framework with at

least one known security vulnerability.

This is what we call the jQuery effect. Remember how we saw that jQuery is used on a

whopping 83% of pages? Several older versions of jQuery contain known vulnerabilities, which

comprises the vast majority of the vulnerabilities this audit checks.

Of the roughly 5 million or so mobile pages that are tested against, 81% of them contain a

vulnerable version of jQuery—a sizeable lead over the second most commonly found vulnerable

library—jQuery UI at 15.6%.

Figure 2.30. Percent of mobile pages contain at least one vulnerable JavaScript library.

83.50%

133. https://snyk.io/vuln?type=npm

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 107

https://snyk.io/vuln?type=npm
https://snyk.io/vuln?type=npm

In other words, if we can get folks to migrate away from those outdated, vulnerable versions of

jQuery, we would see the number of sites with known vulnerabilities plummet (at least, until we

start finding some in the newer frameworks).

The bulk of the vulnerabilities found fall into the “medium” severity category.

Figure 2.31. Top 10 libraries contributing to the highest numbers of vulnerable mobile pages
according to Lighthouse.

Library Vulnerable pages

jQuery 80.86%

jQuery UI 15.61%

Bootstrap 13.19%

Lodash 4.90%

Moment.js 2.61%

Handlebars 1.38%

AngularJS 1.26%

Mustache 0.77%

Dojo 0.58%

jQuery Mobile 0.53%

Part I Chapter 2 : JavaScript

108 2020 Web Almanac by HTTP Archive

Conclusion

JavaScript is steadily rising in popularity, and there’s a lot that’s positive about that. It’s

incredible to consider what we’re able to accomplish on today’s web thanks to JavaScript that,

even a few years ago, would have been unimaginable.

But it’s clear we’ve also got to tread carefully. The amount of JavaScript consistently rises each

year (if the stock market were that predictable, we’d all be incredibly wealthy), and that comes

with trade-offs. More JavaScript is connected to an increase in processing time which

negatively impacts key metrics like Total Blocking Time. And, if we let those libraries languish

without keeping them updated, they carry the risk of exposing users through known security

vulnerabilities.

Carefully weighing the cost of the scripts we add to our pages and being willing to place a

critical eye on our tools and ask more of them are our best bets for ensuring that we build a web

that is accessible, performant, and safe.

Figure 2.32. Distribution of the percent of mobile pages having JavaScript vulnerabilities by severity.

Part I Chapter 2 : JavaScript

2020 Web Almanac by HTTP Archive 109

https://almanac.httparchive.org/static/images/2020/javascript/vulnerabilities-by-severity.png
https://almanac.httparchive.org/static/images/2020/javascript/vulnerabilities-by-severity.png

Author

Tim Kadlec

@tkadlec tkadlec https://timkadlec.com/

Tim is a web performance consultant and trainer focused on building a web

everyone can use. He is the author of High Performance Images (O’Reilly, 2016)

and Implementing Responsive Design (New Riders, 2012). He writes about all

things web at timkadlec.com134. You can find him sharing his thoughts in a briefer

format on Twitter at @tkadlec.

134. https://timkadlec.com/

Part I Chapter 2 : JavaScript

110 2020 Web Almanac by HTTP Archive

https://twitter.com/tkadlec
https://github.com/tkadlec
https://timkadlec.com/
https://timkadlec.com/
https://twitter.com/tkadlec

Part I Chapter 3

Markup

Written by Jens Oliver Meiert, Catalin Rosu, and Ian Devlin
Reviewed by Simon Pieters, Manuel Matuzović, and Brian Kardell
Analyzed by Tony McCreath
Edited by Rick Viscomi

Introduction

The web is built on HTML. Without HTML there are no web pages, no web sites, no web apps.

Nothing. There may be plain-text documents, perhaps, or XML trees, in some parallel universe

that enjoyed that particular kind of challenge. In this universe, HTML is the foundation of the

user-facing web. There are many standards that the web is resting on, but HTML is certainly

one of the most important ones.

How do we use HTML, then, how great of a foundation do we have? In the introductory section

of the 2019 Markup chapter135, author Brian Kardell136 suggested that for a long time, we haven’t

really known. There were some smaller samples. For example, there was Ian Hickson’s

research137 (one of modern HTML’s parents) among a few others, but until last year we lacked

major insight into how we as developers, as authors, make use of HTML. In 2019 we had both

135. https://almanac.httparchive.org/en/2019/markup#introduction
136. https://almanac.httparchive.org/en/2019/contributors#bkardell
137. https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 111

https://almanac.httparchive.org/en/2019/markup#introduction
https://almanac.httparchive.org/en/2019/contributors#bkardell
https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html

Catalin Rosu’s work138 (one of this chapter’s co-authors) as well as the 2019 edition of the Web

Almanac to give us a better view again of HTML in practice.

Last year’s analysis was based on 5.8 million pages, of which 4.4 million were tested on desktop

and 5.3 million on mobile. This year we analyzed 7.5 million pages, of which 5.6 million were

tested on desktop and 6.3 million on mobile, using the latest data on the websites users are

visiting in 2020. We do make some comparisons to last year, but just as we’ve tried to analyze

additional metrics for new insights, we’ve also tried to impart our own personalities and

perspectives throughout the chapter.

In this Markup chapter, we’re focusing almost exclusively on HTML, rather than SVG or MathML,

which are also considered markup languages. Unless otherwise noted, stats presented in this chapter

refer to the set of mobile pages. Additionally, the data for all Web Almanac chapters is open and

available. Take a look at the results139 and share your observations140 with the community!

General

In this section, we’re covering the higher-level aspects of HTML like document types, the size of

documents, as well as the use of comments and scripts. “Living HTML” is very much alive!

Doctypes

96.82% of pages declare a doctype. HTML documents declaring a doctype is useful for historical

reasons, “to avoid triggering quirks mode in browsers” as Ian Hickson explained in 2009141. What

are the most popular values?

Figure 3.1. Percent of pages with a doctype.

96.82%

138. https://www.advancedwebranking.com/html/
139. https://docs.google.com/spreadsheets/d/1Ta7amoUeaL4pILhWzH-SCzMX9PsZeb1x_mwrX2C4eY8/
140. https://discuss.httparchive.org/t/2039
141. https://lists.w3.org/Archives/Public/public-html-comments/2009Jul/0020.html

Part I Chapter 3 : Markup

112 2020 Web Almanac by HTTP Archive

https://www.advancedwebranking.com/html/
https://docs.google.com/spreadsheets/d/1Ta7amoUeaL4pILhWzH-SCzMX9PsZeb1x_mwrX2C4eY8/
https://discuss.httparchive.org/t/2039
https://developer.mozilla.org/docs/Glossary/Doctype
https://lists.w3.org/Archives/Public/public-html-comments/2009Jul/0020.html

You can already tell how the numbers decrease quite a bit after XHTML 1.0, before entering the

long tail with a few standard, some esoteric, and also bogus doctypes.

Two things stand out from these results:

1. Almost 10 years after the announcement of living HTML143 (aka “HTML5”), living

HTML has clearly become the norm.

2. The web before living HTML can still be seen in the next most popular doctypes, like

XHTML 1.0. XHTML. Although their documents are likely delivered as HTML with a

MIME type of text/html , these older doctypes are not dead yet.

Document size

A page’s document size refers to the amount of HTML bytes transferred over the network,

including compression if enabled. At the extremes of the set of 6.3 million documents:

• 1,110 documents are empty (0 bytes).

• The average document size is 49.17 KB (in most cases compressed144).

• The largest document by far weighs 61.19 MB, almost deserving its own analysis

and chapter in the Web Almanac.

How is this situation in general, then? The median document weighs 24.65 KB, which comes

without surprises145:

Figure 3.2. The 5 most popular doctypes.

Doctype Pages Pages (%)

HTML (“HTML5”) 5,441,815 85.73%

XHTML 1.0 Transitional 382,322 6.02%

XHTML 1.0 Strict 107,351 1.69%

HTML 4.01 Transitional 54,379 0.86%

HTML 4.01 Transitional (quirky142) 38,504 0.61%

142. https://hsivonen.fi/doctype/#xml
143. https://blog.whatwg.org/html-is-the-new-html5
144. https://w3techs.com/technologies/details/ce-gzipcompression
145. https://httparchive.org/reports/page-weight

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 113

https://hsivonen.fi/doctype/#xml
https://blog.whatwg.org/html-is-the-new-html5
https://w3techs.com/technologies/details/ce-gzipcompression
https://httparchive.org/reports/page-weight

Document language

We identified 2,863 different values for the lang attribute on the html start tag (compare

that to the 7,117 spoken languages146 as per Ethnologue). Almost all of them seem valid,

according to the Accessibility chapter.

22.36% of all documents specify no lang attribute. The commonly accepted view is that they

should147, but ignoring the fact that software could eventually detect language automatically148,

document language can also be specified on the protocol level149, which is something we didn’t

check.

Here are the 10 most popular (normalized) languages in our sample. It’s important to note that

the HTTP Archive crawls from US data centers with English language settings, so looking at the

language pages are written in, will be skewed towards English. Nevertheless we present the

lang attributes seen to give some context to the sites analyzed.

Figure 3.3. The amount of HTML bytes transferred over the network, including compression if
enabled.

146. https://www.ethnologue.com/guides/how-many-languages
147. https://www.w3.org/TR/i18n-html-tech-lang/#overall
148. https://meiert.com/en/blog/lang/
149. https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language

Part I Chapter 3 : Markup

114 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/markup/document-size.png
https://almanac.httparchive.org/static/images/2020/markup/document-size.png
https://www.ethnologue.com/guides/how-many-languages
https://www.w3.org/TR/i18n-html-tech-lang/#overall
https://www.w3.org/TR/i18n-html-tech-lang/#overall
https://meiert.com/en/blog/lang/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language

Comments

Adding comments to code is generally a good practice and HTML comments are there to add

notes to HTML documents, without having them rendered by user agents.

<!-- This is a comment in HTML -->

Although many pages will have been stripped of comments for production, we found that home

pages in the 90th percentile are using about 73 comments on mobile, respectively 79

comments on desktop, while in the 10th percentile the number of the comments is about 2. The

median page uses 16 (mobile) or 17 comments (desktop).

Around 89% of pages contain at least one HTML comment, while about 46% of them contain a

conditional comment.

Conditional comments

<!--[if IE 8]>

Figure 3.4. The top HTML lang attributes.

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 115

https://almanac.httparchive.org/static/images/2020/markup/document-language.png
https://almanac.httparchive.org/static/images/2020/markup/document-language.png

 <p>This renders in Internet Explorer 8 only.</p>

<![endif]-->

The above is a non-standard HTML conditional comment. While those have proven to be

helpful in the past in order to tackle browser differences, they have been consigned to history

for some time as Microsoft dropped conditional comments150) in Internet Explorer 10.

Still, on the above percentile extremes, we found that web pages are using about 6 conditional

comments in the 90th percentile, and 1 conditional comment while in the 10th percentile. Most

of the pages include them for helpers such as html5shiv151, selectivizr152, and respond.js153. While

being decentish and still active pages, our conclusion is that many of them were using obsolete

CMS themes.

For production, HTML comments are usually stripped by build tools. Considering all the above

counts and percentages, and referring to the use of comments in general, we suppose that lots

of pages are served without involving an HTML minifier.

Script use

As shown in the Top elements section below, the script element is the 6th most frequently

used HTML element. For the purposes of this chapter, we were interested in the ways the

script element is used across these millions of pages from the data set.

Overall, around 2% of pages contain no scripting at all, not even structured data scripts with the

type="application/ld+json" attribute. Considering that nowadays it’s pretty common

for a page to include at least one script for an analytics solution, this seems noteworthy.

At the opposite end of the spectrum, the numbers show that about 97% of pages contain at

least one script, either inline or external.

150. https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/hh801214(v=vs.85)
151. https://github.com/aFarkas/html5shiv
152. http://selectivizr.com/
153. https://github.com/scottjehl/Respond

Part I Chapter 3 : Markup

116 2020 Web Almanac by HTTP Archive

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/hh801214(v=vs.85)
https://github.com/aFarkas/html5shiv
http://selectivizr.com/
https://github.com/scottjehl/Respond

When scripting is unsupported or turned off in the browser, the noscript element helps to

add an HTML section within a page. Considering the above script numbers, we were curious

about the noscript element as well.

Following the analysis, we found that about 49% of pages are using a noscript element. At

the same time, about 16% of noscript elements contain an iframe with a src value

referring to “googletagmanager.com”.

This seems to confirm the theory that the total number of noscript elements in the wild may

be affected by common scripts like Google Tag Manager which enforce users to add a

noscript snippet after the body start tag on a page.

Script types

What type attribute values are used with script elements?

• text/javascript : 60.03%

• application/ld+json : 1.68%

• application/json : 0.41%

• text/template : 0.41%

Figure 3.5. Usage of the script element.

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 117

https://almanac.httparchive.org/static/images/2020/markup/script-use.png
https://almanac.httparchive.org/static/images/2020/markup/script-use.png

• text/html : 0.27%

When it comes to loading JavaScript module scripts154 using type="module" , we found that

0.13% of script elements currently specify this attribute-value combination. nomodule is

used by 0.95% of all tested pages. (Note that one metric relates to elements, the other to

pages.)

36.38% of all scripts have no type values set whatsoever.

Elements

In this section, the focus is on elements: what elements are used, how frequently, which

elements are likely to appear on a given page, and how the situation is with respect to custom,

obsolete, and proprietary elements. Is divitis still a thing? Yes.

Element diversity

Let’s have a look at how diverse use of HTML actually is: Do authors use many different

elements, or are we looking at a landscape that makes use of relatively few elements?

The median web page, it turns out, uses 30 different elements, 587 times:

154. https://jakearchibald.com/2017/es-modules-in-browsers/

Part I Chapter 3 : Markup

118 2020 Web Almanac by HTTP Archive

https://jakearchibald.com/2017/es-modules-in-browsers/
https://en.wiktionary.org/wiki/divitis

Given that living HTML155 currently has 112 elements, the 90th percentile not using more than

41 elements may suggest that HTML is not nearly being exhausted by most documents. Yet it’s

hard to interpret what this really means for HTML and our use of it, as the semantic wealth that

Figure 3.6. Distribution of the number of element types per page.

Figure 3.7. Distribution of the total number elements per page by percentile.

155. https://html.spec.whatwg.org/multipage/

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 119

https://almanac.httparchive.org/static/images/2020/markup/element-diversity-element-types.png
https://almanac.httparchive.org/static/images/2020/markup/element-diversity-element-types.png
https://almanac.httparchive.org/static/images/2020/markup/element-diversity.png
https://almanac.httparchive.org/static/images/2020/markup/element-diversity.png
https://html.spec.whatwg.org/multipage/

HTML offers doesn’t mean that every document would need all of it: HTML elements should be

used per purpose (semantics), not per availability.

How are these elements distributed?

Not that much changed compared to 2019156!

Top elements

In 2019, the Markup chapter of the Web Almanac featured the most frequently used elements

in reference to Ian Hickson’s work in 2005157. We found this useful and had a look at that data

again:

Figure 3.8. Distribution of the total number of elements per page.

156. https://almanac.httparchive.org/en/2019/markup#fig-3
157. https://web.archive.org/web/20060203031713/http://code.google.com/webstats/2005-12/elements.html

Part I Chapter 3 : Markup

120 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/markup/distribution-of-elements-per-page.png
https://almanac.httparchive.org/static/images/2020/markup/distribution-of-elements-per-page.png
https://almanac.httparchive.org/en/2019/markup#fig-3
https://web.archive.org/web/20060203031713/http://code.google.com/webstats/2005-12/elements.html

Nothing changed in the Top 7, but the option element went a little out of favor and dropped

from 8 to 10, letting both the link and the i element pass in popularity. These elements

have risen in use, possibly due to an increase in use of resource hints (as with prerendering and

prefetching), as well icon solutions like Font Awesome158, which de facto misuses i elements for

the purpose of displaying icons.

details and summary

Another thing we were curious about was the use of the details and summary elements,

especially since 2020 brought broad support159. Are they being used? Are they attractive

for—even popular—among authors? As it turns out, only 0.39% of all tested pages are using

them—although it’s hard to gauge whether they were all used the correct way in exactly the

situations when you need them—”popular” is the wrong word.

Here’s a simple example showing the use of a summary in a details element:

Figure 3.9. The most popular elements in 2005, 2019, and 2020.

2005 2019 2020

title div div

a a a

img span span

meta li li

br img img

table script script

td p p

tr option link

i

option

158. https://fontawesome.com/
159. https://caniuse.com/details

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 121

https://fontawesome.com/
https://html.spec.whatwg.org/multipage/rendering.html#the-details-and-summary-elements
https://html.spec.whatwg.org/multipage/rendering.html#the-details-and-summary-elements
https://html.spec.whatwg.org/multipage/rendering.html#the-details-and-summary-elements
https://caniuse.com/details

<details>

 <summary>Status: Operational</summary>

 <p>Velocity: 12m/s</p>

 <p>Direction: North</p>

</details>

A while ago, Steve Faulkner pointed out160 how these two elements were used inadequately in

the wild. As you can tell from the example above, for each details element you’d need a

summary element that may only be used as the first child161 of details .

Accordingly, we looked at the number of details and summary elements and it seems that

they do continue to be misused. The count of summary elements is higher on both mobile and

desktop, with a ratio of 1.11 summary elements for every details element on mobile, and

1.19 on desktop, respectively:

Probability of element use

Taking another look at element popularity, how likely is it to find a certain element in the DOM

of a page? Sure, html , head , body are present on every HTML page (even though these tags

are all optional162), making them common elements, but what other elements are to be

commonly found?

Figure 3.10. Adoption of the details and summary elements.

Occurrences

Element Mobile (0.39%) Desktop (0.22%)

summary 62,992 43,936

details 56,60 36,743

160. https://twitter.com/stevefaulkner/status/806474286592561152
161. https://developer.mozilla.org/docs/Web/HTML/Element/summary#Usage_notes
162. https://meiert.com/en/blog/optional-html/

Part I Chapter 3 : Markup

122 2020 Web Almanac by HTTP Archive

https://twitter.com/stevefaulkner/status/806474286592561152
https://developer.mozilla.org/docs/Web/HTML/Element/summary#Usage_notes
https://meiert.com/en/blog/optional-html/
https://meiert.com/en/blog/optional-html/

Standard elements are those that are or were part of the HTML specification. Which ones are

rare to find? In our sample, that would bring up the following:

We’re including these elements to give an idea what elements may have gone out of favor. But

while dir and basefont were last specified in XHTML 1.0 (2000) and are no longer part of

HTML, the rare use of rp (which was mentioned as early as 1998163 and is still part of HTML164),

may just suggest that ruby markup165 is not very popular.

Figure 3.11. High probabilities of finding a given element in pages of the Web Almanac 2020
sample.

Element Probability

title 99.34%

meta 99.00%

div 98.42%

a 98.32%

link 97.79%

script 97.73%

img 95.83%

span 93.98%

p 88.71%

ul 87.68%

Figure 3.12. Low probabilities of finding a given element in pages of the sample.

Element Probability

dir 0.0082%

rp 0.0087%

basefont 0.0092%

163. https://www.w3.org/TR/1998/WD-ruby-19981221/#a2-4
164. https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-rp-element
165. https://www.w3.org/TR/ruby/

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 123

https://www.w3.org/TR/1998/WD-ruby-19981221/#a2-4
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-rp-element
https://www.w3.org/TR/ruby/

Custom elements

The 2019 edition of the Web Almanac handled custom elements166 by discussing several non-

standard elements. This year, we found it valuable to have a closer look at custom elements.

How did we determine these? Roughly by looking at their definition167, notably their use of a

hyphen. Let’s focus on the top elements, in this case elements used on ≥1% of all URLs in the

sample:

These elements come from three sources: Yandex Metrica168 (ym-), an analytics solution we

also saw last year; Slider Revolution169 (rs-), a WordPress slider, for which there are more

Figure 3.13. The 14 most popular custom elements.

Element Pages Pages (%)

ym-measure 141,156 2.22%

wix-image 76,969 1.21%

rs-module-wrap 71,272 1.12%

rs-module 71,271 1.12%

rs-slide 70,970 1.12%

rs-slides 70,993 1.12%

rs-sbg-px 70,414 1.11%

rs-sbg-wrap 70,414 1.11%

rs-sbg 70,413 1.11%

rs-progress 70,651 1.11%

rs-mask-wrap 63,871 1.01%

rs-loop-wrap 63,870 1.01%

rs-layer-wrap 63,849 1.01%

wix-iframe 63,590 1%

166. https://almanac.httparchive.org/en/2019/markup#custom-elements
167. https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
168. https://metrica.yandex.com/about
169. https://www.sliderrevolution.com/

Part I Chapter 3 : Markup

124 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/markup#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
https://metrica.yandex.com/about
https://www.sliderrevolution.com/

elements to be found near the top of the sample; and Wix170 (wix-), a website builder.

Other groups that stand out include AMP markup171 with amp- elements like amp-img
(11,700 pages), amp-analytics (10,256), and amp-auto-ads (7,621), as well as Angular172

app- elements like app-root (16,314), app-footer (6,745), and app-header (5,274).

Obsolete elements

There are more questions to ask about the use of HTML, including the use of obsolete elements

(which are elements like applet , bgsound , blink , center , font , frame , isindex ,

marquee , or spacer).

In our mobile dataset of 6.3 million pages, around 0.9 million pages (14.01%) contain one or

more of these elements. Here are the top 9, which are used more than 10,000 times:

Even spacer is still being used 1,584 times, and present on every 5,000th page. We know that

Google has been using a center element on their homepage173 for 22 years now174, but why are

there so many imitators?

Figure 3.14. Obsolete elements with more than 10,000 uses.

Element Pages Pages (%)

center 458,402 7.22%

font 430,987 6.79%

marquee 67,781 1.07%

nobr 31,138 0.49%

big 27,578 0.43%

frame 19,363 0.31%

frameset 19,163 0.30%

strike 17,438 0.27%

noframes 15,016 0.24%

170. https://www.wix.com/
171. https://amp.dev/
172. https://angular.io/
173. https://www.google.com/
174. https://web.archive.org/web/19981202230410/https://www.google.com/

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 125

https://www.wix.com/
https://amp.dev/
https://angular.io/
https://www.google.com/
https://web.archive.org/web/19981202230410/https://www.google.com/

isindex

If you were wondering: The total number of isindex elements in this dataset is: one. Exactly

one page used an isindex element. isindex was part of the specs until HTML 4.01 and

XHTML 1.0175, yet only properly specified176 in 2006 (aligning with how it was implemented in

browsers), and then removed177 in 2016.

Proprietary and made-up elements

In our set of elements we found some that were neither standard HTML (nor SVG nor MathML)

elements, nor custom ones, nor obsolete ones, but somewhat proprietary ones. The top 10 that

we identified are the following:

The source of these elements appears to be mixed, as in some are unknown while others can be

traced. The most popular one, noindex , is probably due to Yandex’s recommendation178 of it to

prohibit page indexing. jdiv was noted in last year’s Web Almanac179 and is from JivoChat.

Figure 3.15. Elements of questionable heritage.

Element Pages (%)

noindex 0.89%

jdiv 0.85%

mediaelementwrapper 0.49%

ymaps 0.26%

yatag 0.20%

ss 0.11%

include 0.08%

olark 0.07%

h7 0.06%

limespot 0.05%

175. https://meiert.com/en/indices/html-elements/
176. https://lists.w3.org/Archives/Public/public-whatwg-archive/2006Feb/0111.html
177. https://github.com/whatwg/html/pull/1095
178. https://yandex.com/support/webmaster/adding-site/indexing-prohibition.html
179. https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup

Part I Chapter 3 : Markup

126 2020 Web Almanac by HTTP Archive

https://www.w3.org/TR/html401/interact/forms.html#edef-ISINDEX
https://www.w3.org/TR/html401/interact/forms.html#edef-ISINDEX
https://meiert.com/en/indices/html-elements/
https://meiert.com/en/indices/html-elements/
https://lists.w3.org/Archives/Public/public-whatwg-archive/2006Feb/0111.html
https://github.com/whatwg/html/pull/1095
https://yandex.com/support/webmaster/adding-site/indexing-prohibition.html
https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup

mediaelementwrapper comes from the MediaElement media player. Both ymaps and

yatag are also from Yandex. The ss element could be from ProStores, a former ecommerce

product from eBay, and olark may be from the Olark chat software. h7 appears to be a

mistake. limespot is probably related to the Limespot personalization program for

ecommerce. None of these elements are part of a web standard.

Headings

Headings180 make for a special category of elements that play an important role in sectioning181

and for accessibility182.

You might have expected to only see the standard <h1> to <h6> elements, but some sites

actually use more levels:

The last two have never been part of HTML, of course, and should not be used.

Figure 3.16. Frequency and average use of standard heading elements.

Heading Occurrences Average per page

h1 10,524,810 1.66

h2 37,312,338 5.88

h3 44,135,313 6.96

h4 20,473,598 3.23

h5 8,594,500 1.36

h6 3,527,470 0.56

Figure 3.17. Frequency and average use of non-standard heading elements.

Heading Occurrences Average per page

h7 30,073 0.005

h8 9,266 0.0015

180. https://html.spec.whatwg.org/multipage/dom.html#heading-content
181. https://html.spec.whatwg.org/multipage/dom.html#sectioning-content-2
182. https://www.w3.org/WAI/tutorials/page-structure/headings/

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 127

https://html.spec.whatwg.org/multipage/dom.html#heading-content
https://html.spec.whatwg.org/multipage/dom.html#sectioning-content-2
https://www.w3.org/WAI/tutorials/page-structure/headings/

Attributes

This section focuses on how attributes are used in documents and explores patterns in data-
* usage. Our findings show that class is the queen of all attributes.

Top attributes

Similar to the section on the most popular elements, this section delves into the most popular

attributes on the web. Given how important the href attribute is for the web itself, or the

alt attribute in order to make information accessible, would these be most popular

attributes?

The most popular attribute is class , with nearly 3 billion occurrences in our dataset and

constituting 34% of all attributes in use.

The value attribute, which specifies the value of an input element, surprisingly completes

the top 10. It’s surprising to us because, subjectively, we didn’t get the impression value
attributes were used that frequently.

Figure 3.18. Top 10 attributes by frequency of use.

Attribute Occurrences Percentage

class 2,998,695,114 34.23%

href 928,704,735 10.60%

style 523,148,251 5.97%

id 452,110,137 5.16%

src 341,604,471 3.90%

type 282,298,754 3.22%

title 231,960,356 2.65%

alt 172,668,703 1.97%

rel 171,802,460 1.96%

value 140,666,779 1.61%

Part I Chapter 3 : Markup

128 2020 Web Almanac by HTTP Archive

Attributes on pages

Are there attributes that we find in every document? Not quite, but almost:

These results raise questions that we cannot answer. For example, type is used on other

elements, too, but why this tremendous popularity? Especially given that it’s usually not needed

to specify for style sheets or scripts, with CSS and JavaScript being assumed default. Or, how do

we really fare with alt ? Do those 9.25% of pages not contain any images or are they just

inaccessible?

data-* attributes

Per the HTML spec, data-* attributes “are intended to store custom data, state, annotations,

and similar, private to the page or application, for which there are no more appropriate

attributes or elements.” How are they used? What are the popular ones? Is there anything

interesting here?

The two most popular ones stand out because they are almost twice as popular than each of the

attributes that followed (with >1% use):

Figure 3.19. Top 10 attributes by page.

Element Pages (%)

href 99.21%

src 99.18%

content 98.88%

name 98.61%

type 98.55%

class 98.24%

rel 97.98%

id 97.46%

style 95.95%

alt 90.75%

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 129

https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes

Attributes like data-type , data-id , and data-src can have multiple generic uses

although data-src is used a lot with lazy image loading via JavaScript (e.g., Bootstrap 4).

Bootstrap183 again explains the presence of data-toggle , where it’s used as a state styling

hook on toggle buttons. The Slick carousel plugin184 is the source of data-slick-index ,

whereas data-element_type is part of Elementor’s WordPress website builder185. Both

data-requiremodule and data-requirecontext , then, are part of RequireJS186.

Interestingly, the use of native lazy loading on images is similar to that of data-src . 3.86% of

pages187 use loading="lazy" on elements. This appears to be growing very fast, as

back in February, this number was about 0.8%188. It’s possible that these are being used together

for a cross-browser solution189.

Miscellaneous

We’ve covered the use of HTML in general as well as the adoption of top elements and

attributes. In this section, we’re reviewing some of the special cases of viewports, favicons,

buttons, inputs, and links. One thing we note here is that too many links still point to “http”

URLs.

Figure 3.20. The most popular data-* attributes.

Attribute Occurrences Percentage

data-src 26,734,560 3.30%

data-id 26,596,769 3.28%

data-toggle 12,198,883 1.50%

data-slick-index 11,775,250 1.45%

data-element_type 11,263,176 1.39%

data-type 11,130,662 1.37%

data-requiremodule 8,303,675 1.02%

data-requirecontext 8,302,335 1.02%

183. https://getbootstrap.com/
184. https://kenwheeler.github.io/slick/
185. https://elementor.com/
186. https://requirejs.org/
187. https://docs.google.com/spreadsheets/d/1ram47FshAjzvbQVJbAQPgxZN7PPOPCKIK67VJZCo92c/edit#gid=2109061092
188. https://twitter.com/zcorpan/status/1237016679667970050
189. https://addyosmani.com/blog/lazy-loading/

Part I Chapter 3 : Markup

130 2020 Web Almanac by HTTP Archive

https://getbootstrap.com/
https://kenwheeler.github.io/slick/
https://elementor.com/
https://requirejs.org/
https://docs.google.com/spreadsheets/d/1ram47FshAjzvbQVJbAQPgxZN7PPOPCKIK67VJZCo92c/edit#gid=2109061092
https://docs.google.com/spreadsheets/d/1ram47FshAjzvbQVJbAQPgxZN7PPOPCKIK67VJZCo92c/edit#gid=2109061092
https://twitter.com/zcorpan/status/1237016679667970050
https://addyosmani.com/blog/lazy-loading/

viewport specifications

The viewport190 meta element is used to control layout on mobile browsers. While years ago, the

motto was kind of “don’t forget the viewport meta element” when building a web page,

eventually this became a common practice and the motto changed to “make sure zooming and

scaling are not disabled.”

Users should be able to zoom and scale the text up to 500%191. That’s why audits in popular tools

like Lighthouse192 or axe193 fail when user-scalable="no" is used within the meta
name="viewport" element, and when the maximum-scale attribute value is less than 5 .

We had a look at the data and in order to better understand the results, we normalized it by

removing spaces, converting everything to lowercase, and sorting by comma values of the

content attribute.

The results show that almost half of the pages we analyzed are using the typical viewport

content value. Still, around 10% of mobile pages are entirely missing a proper content
value for the viewport meta element, with the rest of them using an improper combination of

maximum-scale , minimum-scale , user-scalable=no , or user-scalable=0 .

For a while now, the Edge mobile browser allows users to zoom into a web page to at least 500%194,

Figure 3.21. viewport specifications, and lack thereof.

Content attribute value Pages
Pages

(%)

initial-scale=1,width=device-width 2,728,491 42.98%

blank 688,293 10,84%

initial-scale=1,maximum-scale=1,width=device-width 373,136 5.88%

initial-scale=1,maximum-scale=1,user-
scalable=no,width=device-width

352,972 5.56%

initial-scale=1,maximum-scale=1,user-
scalable=0,width=device-width

249,662 3.93%

width=device-width 231,668 3.65%

190. https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
191. https://dequeuniversity.com/rules/axe/4.0/meta-viewport-large
192. https://developers.google.com/web/tools/lighthouse
193. https://www.deque.com/axe/
194. https://blogs.windows.com/windows-insider/2017/01/12/announcing-windows-10-insider-preview-build-15007-pc-mobile/

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 131

https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
https://dequeuniversity.com/rules/axe/4.0/meta-viewport-large
https://developers.google.com/web/tools/lighthouse
https://www.deque.com/axe/
https://blogs.windows.com/windows-insider/2017/01/12/announcing-windows-10-insider-preview-build-15007-pc-mobile/

regardless of the zoom settings defined by a web page employing the viewport meta element.

Favicons

The situation around favicons is fascinating. Favicons work with or without markup (some

browsers would fall back to looking at the domain root195), accept several image formats, and

then also promote several dozen sizes (some tools are reported to generate 45 of them;

realfavicongenerator.net196 would return 37 if requested to handle every case). As of this time of

writing, there is an open issue197 for the HTML spec to help improve the situation.

When we built our tests we didn’t check for the presence of images, but only looked at the

markup. That means, when you review the following, note that it’s more about how favicons are

referenced rather than whether or how often they are used.

There are a couple of surprises in here:

• Support for other formats is there but ICO is still the go-to format for favicons on

the web.

• JPG is a relatively popular favicon format even though it may not yield the best

Figure 3.22. Common favicon formats.

Favicon format Pages Pages (%)

ICO 2,245,646 35.38%

PNG 1,966,530 30.98%

No favicon defined 1,643,136 25.88%

JPG 319,935 5.04%

No extension specified (no format identifiable) 37,011 0.58%

GIF 34,559 0.54%

WebP 10,605 0.17%

…

SVG 5,328 0.08%

195. https://realfavicongenerator.net/faq#why_icons_in_root
196. https://realfavicongenerator.net/
197. https://github.com/whatwg/html/issues/4758

Part I Chapter 3 : Markup

132 2020 Web Almanac by HTTP Archive

https://realfavicongenerator.net/faq#why_icons_in_root
https://realfavicongenerator.net/
https://github.com/whatwg/html/issues/4758

results (or a comparatively large weight) for many favicon sizes.

• WebP is twice as popular as SVG! This might change, however, with SVG favicon

support198 improving.

Button and input types

There has been a lot of discussion199 on buttons lately and how often they are misused. We

looked into this to present findings on some of the native HTML buttons.

Our analysis shows that about 60% of pages contain a button element and more than half of

those pages (32.43%) have at least one button that fails to specify a type attribute. Note that

the button element has a default type200 of submit , so the default behavior of buttons on

these 32% of pages is to submit the current form data. To avoid possibly unexpected behavior

like this, a best practice is to specify the type attribute.

Figure 3.23. Percent of pages with button elements.

60.56%

Figure 3.24. Adoption of button types.

Button types Occurrences Pages (%)

<button type="button"> 15,926,061 36.41%

<button> without type 11,838,110 32.43%

<button type="submit"> 4,842,946 28.55%

<input type="submit" value="…"> 4,000,844 31.82%

<input type="button" value="…"> 1,087,182 4.07%

<input type="image" src="…"> 322,855 2.69%

<button type="reset"> 41,735 0.49%

198. https://caniuse.com/link-icon-svg
199. https://adrianroselli.com/2016/01/links-buttons-submits-and-divs-oh-hell.html
200. https://dev.w3.org/html5/spec-LC/the-button-element.html

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 133

https://caniuse.com/link-icon-svg
https://caniuse.com/link-icon-svg
https://adrianroselli.com/2016/01/links-buttons-submits-and-divs-oh-hell.html
https://dev.w3.org/html5/spec-LC/the-button-element.html

Pages in the 10th and 25th percentiles contain no buttons at all, while a page in the 90th

percentile contains 13 native button elements. In other words, 10% of pages contain 13 or

more buttons.

Link targets

The anchor element201, or a element, links web resources together. In this section, we analyze

the adoption of the protocols included in the respective link targets.

Figure 3.25. Distribution of the number of buttons per page.

Percentile Buttons per page

10 0

25 0

50 1

75 5

90 13

201. https://developer.mozilla.org/docs/Web/HTML/Element/a

Part I Chapter 3 : Markup

134 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/a

We can see how https and http are most dominant, followed by “benign” links to make

writing email, making phone calls, and sending messages easier. javascript stands out as a

link target that’s still very popular even though JavaScript offers native and gracefully

degrading options to work with.

Links in new windows

Using target="_blank" has been known to be a security vulnerability202 for some time now.

Yet 71.35% of pages contain links with target="_blank" , without noopener or

noreferrer .

Figure 3.26. Adoption of link target protocols.

Protocol Occurrences Pages (%)

https 5,756,444 90.69%

http 4,089,769 64.43%

mailto 1,691,220 26.64%

javascript 1,583,814 24.95%

tel 1,335,919 21.05%

whatsapp 34,643 0.55%

viber 25,951 0.41%

skype 22,378 0.35%

sms 17,304 0.27%

intent 12,807 0.20%

Figure 3.27. Percent of pages having neither noopener nor noreferrer attributes on

target="_blank" links.

71.35%

202. https://mathiasbynens.github.io/rel-noopener/

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 135

https://mathiasbynens.github.io/rel-noopener/

As a rule of thumb and for usability reasons203, it is recommended not to use

target="_blank" in the first place.

Within the latest Safari and Firefox versions, setting target="_blank" on a elements implicitly

provides the same rel behavior as setting rel="noopener" . This is already implemented in

Chromium204 as well and will land in Chrome 88.

Conclusion

We’ve touched on some observations throughout the chapter, but as a reflection on the state of

markup in 2020, here are some things that stood out for us:

Fewer pages land in quirks mode. In 2016, that number was at around 7.4%205. At the end of

2019, we observed 4.85%206. And now, we’re at about 3.97%. This trend, to paraphrase Simon

Pieters in his review of this chapter, seems clear and encouraging.

Although we lack historic data to draw the full development picture, “meaningless” div ,

span , and i markup has pretty much replaced the table markup we’ve observed in the

1990s and early 2000s. While one may question whether div and span elements are always

used without there being a semantically more appropriate alternative, these elements are still

preferable to table markup, though, as during the heyday of the old web, these were

seemingly used for everything but tabular data.

Figure 3.28. Blank relationships.

Elements Pages

 13.63%

 14.14%

 0.56%

Figure 3.29. Percent of pages with a quirky doctype.

3.97%

203. https://www.nngroup.com/articles/new-browser-windows-and-tabs/
204. https://chromium-review.googlesource.com/c/chromium/src/+/1630010
205. https://discuss.httparchive.org/t/how-many-and-which-pages-are-in-quirks-mode/777
206. https://twitter.com/zcorpan/status/1205242913908838400

Part I Chapter 3 : Markup

136 2020 Web Almanac by HTTP Archive

https://www.nngroup.com/articles/new-browser-windows-and-tabs/
https://chromium-review.googlesource.com/c/chromium/src/+/1630010
https://chromium-review.googlesource.com/c/chromium/src/+/1630010
https://discuss.httparchive.org/t/how-many-and-which-pages-are-in-quirks-mode/777
https://twitter.com/zcorpan/status/1205242913908838400

Elements per page and element types per page stayed roughly the same, showing no significant

change in our HTML writing practice when compared to 2019. Such changes may require more

time to manifest.

Proprietary product-specific elements like g:plusone (used on 17,607 pages in the mobile

sample) and fb:like (11,335) have almost disappeared after still being among the most

popular ones207 last year. However, we observe more custom elements for things like Slider

Revolution, AMP, and Angular. Elements like ym-measure , jdiv , and ymaps are also still

prevalent. What we imagine we’re seeing here is that, under the sea of slowly changing

practices, HTML is very much being developed and maintained, as authors toss deprecated

markup and embrace new solutions.

Now, the 2019 Web Almanac Markup chapter208 had 14 years of catch up to do since the last

major study on the topic, so you’d think we wouldn’t have much to cover in the year since. Yet

what we observe with this year’s data is that there’s a lot of movement at the bottom and near

the shore of said sea of HTML. We approach near-complete adoption of living HTML. We are

quick to prune our pages of fads like Google and Facebook widgets. We’re also fast in adopting

and shunning frameworks, as both Angular and AMP (though a “component framework”) seem

to have significantly lost in popularity, likely for solutions like React and Vue.

And still, there are no signs we exhausted the options HTML gives us. The median of 30

different elements used on a given page, which is roughly a quarter of the elements HTML

provides us with, suggests a rather one-sided use of HTML. That is supported by the immense

popularity of elements like div and span , and no custom elements to potentially meet the

demands that these two elements may represent. Unfortunately, we couldn’t validate each

document in the sample; however, anecdotally and to be taken with caution, we learned that

79%209 of W3C-tested documents have validation errors. After everything we’ve seen, it looks

like we’re still far from mastering the craft of HTML.

That compels us to close with an appeal: Pay attention to HTML. Focus on HTML. It’s important

and worthwhile to invest in HTML. HTML is a document language that may not have the charm

of a programming language, and yet the web is built on it. Use less HTML and learn what’s really

needed. Use more appropriate HTML—learn what’s available and what it’s there for. And

validate210 your HTML. Anyone can write invalid HTML (just invite the next person you meet to

write an HTML document and validate the output) but a professional developer can be

expected to produce valid HTML. Writing correct and valid HTML is a craft to take pride in.

For the next edition of the Web Almanac’s chapter, let’s prepare to look closer at the craft of

writing HTML and, hopefully, how we’ve been improving on it.

207. https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup
208. https://almanac.httparchive.org/en/2019/markup
209. https://github.com/HTTPArchive/almanac.httparchive.org/issues/899#issuecomment-717856201
210. https://validator.w3.org/docs/why.html

Part I Chapter 3 : Markup

2020 Web Almanac by HTTP Archive 137

https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup
https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup
https://almanac.httparchive.org/en/2019/markup
https://github.com/HTTPArchive/almanac.httparchive.org/issues/899#issuecomment-717856201
https://validator.w3.org/docs/why.html

We’re leaving the rest open to you. What are your observations? What has caught your eye? What do

you think has taken a turn for the worse, and what has improved? Leave a comment211 to share your

thoughts!

Authors

Jens Oliver Meiert

@j9t j9t https://meiert.com/en/

Jens Oliver Meiert is a web developer and author (CSS Optimization Basics212, The

Web Development Glossary213), who works as an engineering manager at Jimdo214.

He’s an expert on web development specializing in HTML and CSS optimization.

Jens contributes to technical standards and regularly writes about his work and

research, particularly on his website, meiert.com215.

Catalin Rosu

@catalinred catalinred https://catalin.red/

Catalin Rosu is a front-end developer at Caphyon216 and currently works on

Wattspeed217. He has a passion for web standards and a keen eye for great UX & UI,

things he tweets218 and writes about on his website219.

Ian Devlin

@iandevlin iandevlin https://iandevlin.com

Ian Devlin is a web developer who advocates for good, semantic HTML, as well as

accessibility. He once wrote a book about HTML5 Multimedia220, and sporadically

writes on his website221 about the Web and other things. He currently works as a

Senior Frontend Engineer at real.digital222 in Germany.

211. https://discuss.httparchive.org/t/2039
212. https://leanpub.com/css-optimization-basics
213. https://leanpub.com/web-development-glossary
214. https://www.jimdo.com/
215. https://meiert.com/en/
216. https://www.caphyon.com/
217. https://www.wattspeed.com/
218. https://twitter.com/catalinred
219. https://catalin.red/
220. https://www.peachpit.com/store/html5-multimedia-develop-and-design-9780321793935
221. https://iandevlin.com/
222. https://www.real-digital.de/

Part I Chapter 3 : Markup

138 2020 Web Almanac by HTTP Archive

https://discuss.httparchive.org/t/2039
https://twitter.com/j9t
https://github.com/j9t
https://meiert.com/en/
https://leanpub.com/css-optimization-basics
https://leanpub.com/web-development-glossary
https://leanpub.com/web-development-glossary
https://www.jimdo.com/
https://meiert.com/en/
https://twitter.com/catalinred
https://github.com/catalinred
https://catalin.red/
https://www.caphyon.com/
https://www.wattspeed.com/
https://twitter.com/catalinred
https://catalin.red/
https://twitter.com/iandevlin
https://github.com/iandevlin
https://iandevlin.com/
https://www.peachpit.com/store/html5-multimedia-develop-and-design-9780321793935
https://iandevlin.com/
https://www.real-digital.de/

Part I Chapter 4

Fonts

Written by Raph Levien and Jason Pamental
Reviewed by Roel Nieskens, Chris Lilley, Dave Crossland, Rod Sheeter, and Mandy Michael
Analyzed by Abby Tsai
Edited by Barry Pollard

Introduction

Text is at the heart of most web sites, and typography is the art of presenting that text in a way

that’s visually appealing and effective. Creating good typography requires choosing the

appropriate fonts and designers have a tremendous range of web fonts to choose from. As with

all resources, there are performance and compatibility concerns but, done right, the benefit is

well worth it. In this chapter, we’ll dive into data to show how web fonts are being used, and in

particular how they’re optimized.

Where are web fonts being used?

Web font usage has been growing steadily over time (it was near zero as late as 2011), with

82% of web pages for desktop using web fonts, and mobile at 80%.

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 139

Usage of web fonts is fairly consistent around the world, with a few outliers. The charts below

are based on the median number of kilobytes of web fonts per web page, which can be an

indicator of lots of fonts, large fonts, or both.

Figure 4.1. Web font usage over time.

Figure 4.2. Web fonts usage by country (desktop).

Part I Chapter 4 : Fonts

140 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-by-country.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-by-country.png

The country that uses the most font bytes is South Korea, which is not all that surprising given

their consistently high internet speeds and low latency and the fact that Korean (Hangul) fonts

are almost an order of magnitude larger than Latin. Web font usage in Japan and Chinese-

speaking countries is considerably lower, likely because Chinese and Japanese fonts are vastly

larger (the median font size can be 1000 times or more larger than the median Latin size). This

means web font usage in Japan is very low, and usage in China is effectively zero. Although

recent developments in progressive font enhancement223–which we will cover more below–may

make web fonts usable in both countries within a couple of years. There have been reports that

Google Fonts have not been reliably accessible in China and that might also have been a factor

holding back adoption.

There’s an interesting thread on web font usage by country224 on the HTTP Archive discussion

forum that certainly influenced the queries used by this chapter. Given the large number of

typefaces produced for Asian languages, it’s likely usage will rise in that region as technology

for serving those fonts more efficiently becomes available.

Figure 4.3. Web fonts usage, top countries (desktop).

223. https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
224. https://discuss.httparchive.org/t/how-does-web-font-usage-vary-by-country/1649

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 141

https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-top-countries.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-top-countries.png
https://discuss.httparchive.org/t/how-does-web-font-usage-vary-by-country/1649

Serving with a service

It likely comes as no surprise that Google Fonts225 remains by far the most popular platform, but

the percentage use has actually dropped almost 5% from 2019 to about 70%. Adobe Fonts226

(formerly Typekit) has dropped about 3% as well, but Bootstrap usage227 has grown from about

3% to over 6% (in aggregate from several providers). It is worth noting that the largest provider

for Bootstrap (BootstrapCDN228) also provides icon fonts from Font Awesome229, so it may be

that it is not Bootstrap itself but rather older versions also referencing icon font files that is

behind the rise in that source data.

Another surprise in the data is the rise in fonts being served by Shopify230. Growing from roughly

1.1% in 2019 to about 4% in 2020, there has clearly been a significant uptick in usage of web

fonts by sites hosted on that platform. It is unclear if that is due to that service offering more

fonts that they host on their CDN, if it is growth in use of their platform, or both. However, the

increase in usage of both Shopify and Bootstrap represent the largest amount of growth other

than Google Fonts, making it a very noticeable data point.

Figure 4.4. Popularity of Google Fonts amongst font-hosting services.

70.3%

225. https://fonts.google.com/
226. https://fonts.adobe.com/
227. https://getbootstrap.com/
228. https://www.bootstrapcdn.com/
229. https://fontawesome.com/
230. https://www.shopify.com/

Part I Chapter 4 : Fonts

142 2020 Web Almanac by HTTP Archive

https://fonts.google.com/
https://fonts.adobe.com/
https://getbootstrap.com/
https://www.bootstrapcdn.com/
https://fontawesome.com/
https://www.shopify.com/

Not all services have the same service

It was interesting to note the differences in speed for sites using the various free/open source

and commercial services. When looking at First Content Paint (FCP) and Last Content Paint

(LCP) times, sites using Google Fonts are roughly in the middle, but generally a bit slower than

the median value. The fastest sites in the dataset are Shopify and Wix (serving assets from

parastorage.com), and it might be presumed they focus on a small number of highly

optimized files. Google on the other hand is also serving web fonts globally of widely varying

sizes (due to language), likely resulting in slightly slower median times.

Figure 4.5. Median FCP of sites using hosted fonts.

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 143

https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-fcp-of-sites-using-hosted-fonts.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-fcp-of-sites-using-hosted-fonts.png

When viewing commercial services such as Adobe (use.typekit.net) or Monotype

(fast.fonts.com) it is interesting to note that on desktop they tend to be as fast or slightly

faster than Google Fonts, but are noticeably slower on mobile. Conventional wisdom has

generally held that the tracking scripts used by those services substantially slow them down,

but that is apparently less an issue today than it has been in years past. While it’s true that we

are measuring site performance and not necessarily performance of the font host, those

tracking scripts impact font loading on the client so it seems relevant to include these

observations.

Self-hosting isn’t always better

Self-hosting fonts on the same domain as the website can be faster, as we discovered for this

very website231, however this is not always the case as the data shows.

Figure 4.6. Median LCP of sites using hosted fonts.

231. https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/

Part I Chapter 4 : Fonts

144 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-lcp-of-sites-using-hosted-fonts.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-lcp-of-sites-using-hosted-fonts.png
https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/

It wouldn’t be sound to infer causality between hosting strategy from the above data, as there

are other variables that may confound the relationship. But, putting that aside, we find that

adding the self-hosting fonts doesn’t always lead to better performance. Hosted font solutions

often perform a number of optimizations (like subsetting, removing OpenType features, and

ensuring the smallest possible font format) that may not always be replicated when self-

Figure 4.7. Web font hosting performance, desktop.

Figure 4.8. Web font hosting performance, mobile.

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 145

https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-mobile.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-mobile.png

hosting.

Local isn’t always better

Another option from self-hosting fonts on the site’s server, is to use the system-installed fonts

on the client where they exist through the use of local in the font-face declaration. The

use of local is controversial232, as it can save bytes, but it can also yield bad results if the

locally installed version of the font is outdated. As of November 2020233, Google Fonts has

moved to using local only for Roboto on mobile platforms, otherwise the font is always

fetched over the network.

Racing to first paint

The biggest performance concern about integrating web fonts is that they may delay the time

when the first readable text is displayed. Two optimization techniques can help mitigate those

issues: font-display and resource hints.

The font-display setting controls what happens while waiting for the web font to load and

is generally a trade-off between performance and visual richness. The most popular is swap ,

used on about 10% of web pages, which displays using the fallback font if the web font doesn’t

load quickly, then swaps in the web font when it does load. Other settings include block ,

which delays displaying text at all (minimizing the potential flashing effect), and fallback ,

which is like swap but gives up quickly and uses the fallback font if the font doesn’t load in a

moderate amount of time, and optional , which immediately gives up and uses the fallback

font; this is used by only 1% of web pages, presumably those most concerned with

performance.

232. https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
233. https://twitter.com/googlefonts/status/1328761547041148929?s=19

Part I Chapter 4 : Fonts

146 2020 Web Almanac by HTTP Archive

https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://twitter.com/googlefonts/status/1328761547041148929?s=19
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

We can analyze the effect of these settings on First Contentful Paint and Largest Contentful

Paint. Not surprisingly, the optional setting has a major effect on Largest Contentful Paint.

There is also an effect on First Contentful Paint, but that might be more correlation than

causation, as all of the modes except for block display some text after an “extremely small

block period.”

Figure 4.9. Usage of font-display.

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 147

https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-font-display.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-font-display.png

There are two other interesting inferences from this data. One might expect the block setting

to have a significant impact on FCP, especially on mobile, but in practice the effect is not that

large. That suggests that waiting for font assets is seldom the limiting factor for the web page

performance as a whole, though it would certainly be a major factor in pages without lots of

resources such as images. The auto setting (which is also what you get if you don’t specify it) is

Figure 4.10. font-display performance on desktop.

Figure 4.11. font-display performance on mobile.

Part I Chapter 4 : Fonts

148 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-mobile.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-mobile.png

up to the browser. It looks a lot like block because the default is blocking in most cases234.

Finally, one justification for using fallback is to improve Largest Content Paint times

compared to swap (which is more likely to respect the designer’s visual intent), but the data do

not support this case; this performance metric is no better. Perhaps this is why the setting is not

popular, used by only about 1% of pages.

Google Fonts now recommends swap in its suggested integration code. If you’re not using it

now, adding it might be a way to improve performance, especially for users on slow

connections.

Resource hints

While font-display can speed up the presentation of the page when the fonts are slow to

load, resource hints can move the loading of web font assets to earlier in the cascade.

Ordinarily, fetching web fonts is a two-stage process. The first stage is loading the CSS, which

contains a reference (in @font-face sections) to the actual font binaries.

This is especially relevant for hosted font solutions. Only after discovering the font is needed,

can the connection to that server begin, which further breaks down into the DNS query for the

server, and actually initiating a connection (which, these days, usually involves an HTTPS

cryptographic handshake).

234. https://nooshu.github.io/blog/2020/02/23/improving-perceived-performance-with-the-css-font-display-property/

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 149

https://nooshu.github.io/blog/2020/02/23/improving-perceived-performance-with-the-css-font-display-property/

Adding a resource hint element235 in the HTML starts that second connection earlier. The

various resource hint settings control how far that gets before having the URL for the actual

font resource. The most common (at about 32% of web pages) is dns-prefetch , even though

in most cases there are better choices.

Next we will look at whether these resource hints have an impact on page performance.

Figure 4.12. Resource hints use on fonts.

235. https://www.w3.org/TR/resource-hints/#resource-hints

Part I Chapter 4 : Fonts

150 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-use.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-use.png
https://www.w3.org/TR/resource-hints/#resource-hints

Analysis of this data suggests that the dns-prefetch setting, while the most popular, doesn’t

improve performance much, if at all. Presumably, the DNS for popular web font servers are

likely to be cached anyway. The other settings give a lot more bang for the buck, with

preconnect being a sweet spot for ease of use, flexibility, and performance improvement. As

of March 2020, Google Fonts recommends adding this line to the HTML source, immediately

Figure 4.13. Resource hints performance, desktop.

Figure 4.14. Resource hints performance, mobile.

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 151

https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-mobile.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-mobile.png

before the CSS link:

<link rel="preconnect" href="https://fonts.gstatic.com">

The use of preconnect has grown considerably since last year, now at 8% from 2%, but

there’s a lot more potential performance still left on the table. Adding this line might be the

single best optimization for web pages that use Google Fonts.

It might be tempting to go even farther into the pipeline, preloading or prerendering the font

asset, but that potentially conflicts with other optimizations, such as fine-tuning the font for the

capabilities of the rendering engine, or the unicode-range optimization described below. To

preload a resource, you have to know exactly what resource to load, and the best resource for

the task may depend on information not readily available at HTML authoring time.

Home on the (Unicode) range

Fonts increasingly have support for lots and lots of languages. Other fonts can have a large

number of glyphs because the writing system (especially CJK) requires it. Either reason can

increase the file size. That’s unfortunate if the web page is not in fact a multilingual dictionary,

and only uses a fraction of the font’s capabilities.

One older approach is for the HTML author to explicitly indicate a font subset. However, that

requires deeper knowledge of the content, and risks a “ransom note” effect when the content

uses characters supported by the font but not by the chosen subset. See the excellent essay

When fonts fall236 by Marcin Wichary for lots more detail about how fallback works.

Static subsets, indicated by unicode-range , are a better approach to this problem. The font

is sliced into subsets, each with a separate @font-face rule that indicates the Unicode

coverage for that slice with a unicode-range descriptor. The browser then analyzes the

content as part of its rendering pipeline, and downloads only the slices needed to render that

content.

For alphabetic languages, this typically works well although it can result in poor kerning

between characters in different subsets. For languages which rely on glyph shaping, such as

Arabic, Urdu and many Indic languages, static subsets frequently result in broken text

rendering. And for CJK, static subsets based on contiguous Unicode ranges provide almost no

benefit because the characters used on a particular page are scattered almost randomly across

the various subsets. Because of these issues, correct and performant use of static subsets is

236. https://www.figma.com/blog/when-fonts-fall/

Part I Chapter 4 : Fonts

152 2020 Web Almanac by HTTP Archive

https://www.figma.com/blog/when-fonts-fall/

tricky, and requires careful analysis and implementation.

Correctly applying unicode-range is tricky, as there’s a lot of complexity to the way text

layout maps Unicode into glyphs, but Google Fonts does this automatically and transparently. It

is only likely to be a win for fonts with large glyph counts. In any case, current usage is 37% on

desktop and 38% on mobile.

Formats and MIME types

WOFF2 is the best compression format and is now supported237 by effectively all browsers

except for versions 11 and earlier of Internet Explorer. It is almost possible to serve web fonts

using an @font-face rule with a WOFF2 source only. This format makes up about 75% of all

fonts served.

Figure 4.15. Usage of unicode-range .

237. https://caniuse.com/woff2

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 153

https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-unicode-range.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-unicode-range.png
https://caniuse.com/woff2

WOFF is an older, less efficient compression mechanism, but almost universally supported,

accounting for an additional 11.6% of fonts served. In almost all cases (Internet Explorer 9-11

being the main exception), serving a font as WOFF is leaving performance on the table, and

shows a risk of self-hosting; even if the format choices were optimal at the time of integration, it

requires extra effort to update them as browsers improve. Using a hosted service guarantees

that the best format is chosen, along with all relevant optimizations.

Ancient versions of Internet Explorer (6-8), which still make about 1.5% of global browser

share, only support the EOT format. These don’t show up in the top 5 MIME formats but are

necessary for maximum compatibility.

Uncompressed fonts, like OTF and TTF files, are 2-3x larger than compressed, but still make up

almost 5% of all fonts served, disproportionately on mobile. If you’re serving these, it should be

a red flag that optimization is possible.

Popular fonts

Icon fonts are half of the top 10 most popular web fonts, the rest being clean, robust sans-serif

typeface designs (Roboto Slab is at #19 and Playfair Display at #26 in this ranking, for debuts of

other styles, though serif designs are well represented in the tail of the distribution).

Figure 4.16. Popular web font MIME types.

Part I Chapter 4 : Fonts

154 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-font-mime-types.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-font-mime-types.png

A note of caution, in determining the most popular fonts you can get different results

depending on measurement methodology. The chart above is based on counting the number of

pages that include an @font-face rule referencing the named font. That counts multiple

styles only once, which arguably weights in favor of single-style fonts.

Color fonts

Color fonts, in one form or other, are supported by most modern browsers, but usage is still

close to nonexistent (a total of 755 pages total, the majority of which are in SVG format, which

is not supported in Chrome). No doubt part of the problem is the diversity of formats, in fact

four in widespread use. These come in bitmap and vector flavors. The two bitmap formats are

technologically very similar, but SBIX (originally a proprietary Apple format) is not supported in

Firefox, while CBDT/CBLC is not supported in Safari.

The COLR vector format is supported on all major modern browsers, but only fairly recently.

Figure 4.17. Popular typefaces.

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 155

https://almanac.httparchive.org/static/images/2020/fonts/fonts-popular-typefaces.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-popular-typefaces.png

The fourth format is embedding SVG in OpenType (not to be confused with SVG fonts), but not

supported in Chrome. One drawback of SVG in OpenType is lack of support for font variations,

an increasingly important aspect of modern Web design. For this reason, the COLR format is

likely to prevail, particularly as support for gradients and clipping is being developed for a

future version of COLR. Vector formats are usually much smaller than images, and also scale

cleanly to larger sizes, so when COLR arrives with a richer shading model, it could well become

popular.

One reason for the poor support of color fonts on the web is that the colors have to be baked

into the font files themselves. If you use the same typeface with three different color

combinations, near-identical files have to be downloaded three times and changing a color

means reaching for a font editor.

While there is a feature in CSS to override or replace the color palettes in fonts238, this has not

yet been implemented in browsers, which certainly holds back the ease of deploying color web

fonts.

Probably most usage of color fonts is for emoji, but the capability is general purpose and color

fonts offer many design possibilities. While color web fonts haven’t taken off yet, the underlying

technology is heavily used to deliver system emoji, where file format compatibility is much less

of an issue.

Browser support is so fragmented that color fonts are not yet tracked by caniuse.com, though

there is an issue open for it239.

Lots more information about color fonts, including examples, are available at colorfonts.wtf240.

Variable fonts

Variable fonts are certainly one of the biggest stories this year. They’re seen in 10.54% of

desktop pages, and 11.00% of mobile. That’s up from an average of 1.8% last year, a huge

growth factor. It is not hard to see why their popularity is increasing – they offer more design

Figure 4.18. Usage of variable fonts on mobile.

11.00%

238. https://drafts.csswg.org/css-fonts-4/#font-palette-values
239. https://github.com/Fyrd/caniuse/issues/1018
240. https://www.colorfonts.wtf/

Part I Chapter 4 : Fonts

156 2020 Web Almanac by HTTP Archive

https://drafts.csswg.org/css-fonts-4/#font-palette-values
https://github.com/Fyrd/caniuse/issues/1018
https://www.colorfonts.wtf/

flexibility, and also potentially smaller binary font sizes, especially if multiple styles of the same

font are used on the same page.

Likely the greatest driver of this increase is due to Google Fonts now serving a number of their

more popular offerings as variable fonts when there are enough weights in use on a page and

the browser supports them. The ability to ’swap in’ variable fonts where a performance gain can

be achieved without altering any of the CSS in use or any intervention required of the web

author is a remarkable testament to the viability of the technology.

The simplest description of the variable font format is a single font file that acts as many: rather

than individual font files for every weight and width or even italics, they can all be contained in a

single, highly efficient file. That resulting file can render the font at a given combination of axis

values via CSS (or other applications that support them). There are a number of standardized,

or ’registered’, axes plus the ability for font designers to define their own axes and expose them

to the user.

Weight (wght) corresponds to the traditional notion of regular or bold or light; width (wdth)

maps to styles like condensed or extended; slant (slnt) refers to an oblique angle of the font;

italic (ital) usually slants the font and replaces certain glyphs with alternate styles; and

optical size (opsz) refers to something relatively new to the web, but is actually a revival of a

technique common in metal type creation going back hundreds of years. Historically, optical

sizing refers to the practice of reducing stroke contrast (thick and thin lines) and open up letter

spacing when a font is made at a physically smaller size in order to increase legibility, and

conversely to increase that contrast and tighten spacing when a font is displayed at much larger

sizes. Enabling this in digital type can allow a single font to look and behave substantially

differently when used at very small or large sizes. You can learn more about them and see lots

of examples at variablefonts.io241.

241. https://variablefonts.io

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 157

https://variablefonts.io/

By far the most commonly used axis is wght (which controls weight), at 84.7% desktop and

90.4% mobile. However, wdth (width) accounts for approximately 5% of variable font usage. In

2020, Google Fonts began serving 2-axis fonts with both width and weight axes.

It is worth noting that the preferred method is to use font-weight and font-stretch
rather than the lower-level font-variation-settings syntax for these two axes as they

are completely supported by all browsers that support variable fonts. By setting weight via

font-weight: [number] and width via font-stretch: [number]% , authors provide

more appropriate style hints to the browser, which in turn enables better rendering for the end

user should the variable font fail to load. This also avoids altering the normal inheritance of

styles via the cascade.

The optical size (opsz) feature is used for approximately 2% of the variable font usage. This is

one to watch, as tuning the appearance of a font to match its intended size of presentation

improves the visual refinement in perhaps subtle but very real ways. Usage is also likely to

increase once some current cross-browser and cross-platform uncertainties on how the optical

sizes are defined are cleared up. One appealing aspect of the optical size feature is that with the

auto setting, the variation happens automatically, so the developer gets the benefit of that

refinement just by using a font with the opsz feature.

There are many potential benefits to using variable fonts. While each included axis increases

file size, the tipping point seems to be generally if more than two or three weights of a given

typeface are in use, a variable version will likely be similar in total file size or smaller. This is

Figure 4.19. Usage of font-variation-settings axes.

Part I Chapter 4 : Fonts

158 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-variation-settings-usage.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-variation-settings-usage.png

supported by the dramatic increase in variable fonts being served by Google Fonts242.

Adopting and leveraging variable fonts for more varied design (by using more of the available

range of weights and widths) is another. Using a width axis could improve line wrapping on

smaller screens, especially with larger headings and longer languages. With the rise in adoption

of alternate light modes, making small adjustments to font-weight when switching modes can

improve legibility (see variablefonts.io243 for more on usage and implementation).

Conclusion

Web font technology is fairly mature, with incremental improvements in compression and

other technical improvements, but new features are arriving. Browser support for variable

fonts has become quite good, and this is the feature that’s seen the most growth in the previous

year.

The performance landscape is changing somewhat, as the advent of cache partitioning244

reduces the performance benefit from sharing the cache of CDN font resources across multiple

sites. The trend of hosting more font assets on the same domain as the site, rather than using a

CDN, will probably continue. Even so, services such as Google Fonts are highly optimized, and

best practices such as use of swap and preconnect mitigate much of the impact of the

additional HTTP connection.

The use of variable fonts is accelerating greatly, and that trend will no doubt continue,

especially as browser and design tool support improve. It is also possible that 2021 will be the

year of the color web font; even though the technology has been in place, that certainly hasn’t

happened yet.

Finally, it is worth mentioning a new concept in web font technology currently being researched

by the W3C’s Web Font Working Group: Progressive Font Enrichment. PFE is designed as an

answer to many of the challenges pointed out in this chapter: addressing performance and user

experience when using large glyph count font files (like Arabic or CJK fonts), larger multi-axis or

color fonts, or just slow network connectivity environments.

The concept in its simplest terms is that only a portion of a given font file would need to be

downloaded in order to render the content on a given page. Subsequent page loads would then

deliver a ’patch’ to the font file that includes only the glyphs necessary to render each new page.

Thus at no time would the user need to download the whole font file at once.

There are various details to work out, including ones that will help ensure privacy and

242. https://fonts.google.com/?vfonly=true
243. https://variablefonts.io
244. https://developers.google.com/web/updates/2020/10/http-cache-partitioning

Part I Chapter 4 : Fonts

2020 Web Almanac by HTTP Archive 159

https://fonts.google.com/?vfonly=true
https://variablefonts.io/
https://developers.google.com/web/updates/2020/10/http-cache-partitioning

backwards compatibility—but initial research has been extremely promising, and it is hoped

this technology will reach the wider web sometime in the next couple years. You can learn more

about it in this introduction by Jason Pamental245, and read the full Working Group Evaluation

Report246 on the W3C site.

Authors

Raph Levien

@raphlinus raphlinus https://levien.com

Raph Levien has been working with fonts for over 35 years, including a PhD from

UC Berkeley in font design tools. He is rejoining Google Fonts247 as a font

technology researcher, after having co-founded the team in 2010.

Jason Pamental

@jpamental jpamental https://rwt.io

Designer, tinkerer, typographer. Author of Responsive Typography, Invited Expert

to the W3C, and 10yrs+ experience focused on better typography on the web.

245. https://rwt.io/typography-tips/progressive-font-enrichment-reinventing-web-font-performance
246. https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
247. https://fonts.google.com/

Part I Chapter 4 : Fonts

160 2020 Web Almanac by HTTP Archive

https://rwt.io/typography-tips/progressive-font-enrichment-reinventing-web-font-performance
https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
https://twitter.com/raphlinus
https://github.com/raphlinus
https://levien.com/
https://fonts.google.com/
https://twitter.com/jpamental
https://github.com/jpamental
https://rwt.io/

Part I Chapter 5

Media

Written by Tamas Piros, Ben Seymour, and Eric Portis
Reviewed by Nicolas Hoizey, Colin Bendell, Doug Sillars, and Navaneeth Krishna
Analyzed by Stefan Matei
Edited by Barry Pollard

Introduction

Today, we live in the world of the visual web, where media provides the soul for websites.

Websites use both images and videos to engage audiences by telling visual stories to inform

and to entertain. This chapter analyses how we use (or in some cases, misuse) images and

videos on the web.

Images

“A picture is worth a thousand words,” but byte-wise, they often cost an order of magnitude or

two more.

Images offer a most powerful pairing: instant communication, capable of triggering an innate

emotional response. However, they are also much heavier than text, and require considered

implementations to avoid bogging user experiences down. Let’s explore how well modern

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 161

browsers’ capabilities are being leveraged.

Responsive HTML markup for images

While there are myriad approaches to embedding media using JavaScript, we were interested

in the ongoing uptake of varying forms of HTML markup. Several responsive images approaches

including the <picture> element, and srcset and sizes attributes have had growing

support since first introduced in 2014.

Srcset

The srcset attribute enables the user agent to attempt to determine the most appropriate

media asset to load from a candidate list.

For example:

<img srcset="images/example_3x.jpg 3x, images/example_2x.jpg 2x"

 src="images/example.jpg" alt="...">

Around 26.5% of all pages now include srcset

The number of images presented to the user agents to choose from has direct implications for

two main performance factors:

1. Image breakpoints248 (to meet a performance budget)

2. Caching efficiencies

The fewer the number of image candidates, the greater the likelihood of the asset being cached,

and if a CDN is being used, the greater the likelihood of it being available on a client’s nearest

edge node. However the greater the difference in media dimensions, the more likely we are to

end up serving media which is less-suited to the device and context in question.

248. https://cloudfour.com/thinks/responsive-images-101-part-9-image-breakpoints/

Part I Chapter 5 : Media

162 2020 Web Almanac by HTTP Archive

https://cloudfour.com/thinks/responsive-images-101-part-9-image-breakpoints/

Srcset: quantity of image candidates

In addition to the caching inefficiencies already mentioned, a greater number of dimensional

variants will typically increase both the complexity of the media pipeline or service in use, and

the required media storage.

When looking at this data, note that a few platforms (such as WordPress249) use automated

approaches which impact a large number of sites.

Srcset: descriptors

When providing the candidate list to the user agent, we have two mechanisms to annotate the

candidate images: x descriptors and w descriptors.

x descriptors describe the device pixel ratio of the specific resource. For example a 2x
descriptor would indicate that the specific image resource is of twice the dimensional size in

each axis (containing four times as many pixels) and is suitable for devices with a

window.devicePixelRatio of 2 . Likewise, a 3x descriptor signifies nine times the

number of pixels, which of course can have considerable payload implications.

Figure 5.1. Srcset number of candidates.

249. https://make.wordpress.org/core/2015/11/10/responsive-images-in-wordpress-4-4/

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 163

https://almanac.httparchive.org/static/images/2020/media/srcset-number-of-candidates.png
https://almanac.httparchive.org/static/images/2020/media/srcset-number-of-candidates.png
https://make.wordpress.org/core/2015/11/10/responsive-images-in-wordpress-4-4/

<img srcset="images/example_3x.jpg 3x, images/example_2x.jpg 2x"

 src="images/example.jpg" alt="...">

w descriptors describe the candidate’s pixel width, along with a sizes attribute that is used

to select the appropriate image.

<img srcset="images/example_small.jpg 600w, images/

example_medium.jpg 1400w, images/example_large.jpg 2400w"

 sizes="100vw"

 src="images/example_fallback.jpg" alt="...">

Both approaches enable the user agent to mathematically factor in the current device pixel

ratio when assessing the most appropriate image candidate.

In the early days of responsive images, some browsers only supported x descriptors, but

clearly w descriptors are currently by far the most favored.

While it can be common to choose image candidates which are spaced by dimension (rendering

every image at a set of pre-chosen widths, e.g. 720px, 1200px, and 1800px) there are also

approaches to give more linear payload steps (e.g. a series of resources which are 50kb in

Figure 5.2. Srcset descriptor usage.

Part I Chapter 5 : Media

164 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/srcset-descriptor-usage.png
https://almanac.httparchive.org/static/images/2020/media/srcset-descriptor-usage.png

difference). Tools like the Responsive Image Breakpoints Generator250 can be useful in

facilitating this.

Sizes

Without the sizes attribute, the user agent will make its calculations based on a worst-case-

scenario assumption that the image occupies the full width of the viewport. With it, browsers

have more information about the image’s actual layout size and can make better choices.

For example:

<img sizes="(min-width: 640px) 50vw, 100vw"

 srcset="images/example_small.jpg 600w, images/

example_medium.jpg 1400w, images/example_large.jpg 2400w"

 src="images/example_fallback.jpg" alt="...">

For the 2020 data around 35% of sites using srcset did not also combine it with sizes .

Though the browser will happily fall back to a sizes="100vw" default, leaving the attribute

off is technically incorrect251, and we regularly encounter instances where this oversight means

Figure 5.3. Use of sizes in srcset.

250. https://www.responsivebreakpoints.com/
251. https://alistapart.com/blog/post/article-update-dont-rely-on-default-sizes/

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 165

https://www.responsivebreakpoints.com/
https://almanac.httparchive.org/static/images/2020/media/srcset-sizes-usage.png
https://almanac.httparchive.org/static/images/2020/media/srcset-sizes-usage.png
https://alistapart.com/blog/post/article-update-dont-rely-on-default-sizes/

that the mathematics to determine the most appropriate image candidate are flawed, often

leading to unnecessarily-large images being requested.

Many people that we have discussed this with express that sizes is particularly tricky to

implement in a correct, resilient fashion, due to the need to ensure cross-resource alignment

between layout (as managed and determined by CSS) and responsive image markup (in HTML).

Picture

While srcset and sizes provide us with tooling to help provide browsers with images

which are dimensionally more suited for a given viewport, device and layout - the <picture>
element enables us to provide more sophisticated media strategies, including leveraging more

effective image formats and empowering us to explore “art direction”.

Current uptake shows around 19% of pages being served using the <picture> element

serving at least one image.

Picture: format switching

While there are some services and image CDNs which can provide auto-format switching from

a single image URL using logic on the backend, we can also achieve similar behaviors using

markup alone, with the <picture> element.

Figure 5.4. Use of <picture> .

Part I Chapter 5 : Media

166 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/use-of-picture.png
https://almanac.httparchive.org/static/images/2020/media/use-of-picture.png

<picture>

 <source type="image/webp" srcset="images/example.webp">

</picture>

Breaking this down into the number of formats offered:

Of pages using <picture> for format-switching, around 68% are offering a single type

variation, in addition to the which acts as the default.

Figure 5.5. <picture> number of formats.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 167

https://almanac.httparchive.org/static/images/2020/media/picture-number-of-formats.png
https://almanac.httparchive.org/static/images/2020/media/picture-number-of-formats.png

We see that WebP is the dominant usage across <source> elements, followed by PNG, and

that and JPG is only 4.83% of <picture> usage.

Note our crawler crawls as Chrome which supports WebP, but if using another browser which does not

support this then you will see different results.

Here is an example of the markup syntax that could be used to offer multiple format variants:

<picture>

 <source type="image/avif" srcset="images/example.avif">

 <source type="image/webp" srcset="images/example.webp">

 <source type="image/jp2" srcset="images/example.jp2">

 <source type="image/vnd.ms-photo" srcset="images/example.jxr">

</picture>

The user agent will effectively select the first one that it has a positive match on, and hence the

ordering here is important.

Of those pages using <picture> for format switching, 83% offer WebP as one of the format

variants, which in part relates to its growing browser support.

Figure 5.6. Picture format usage by type.

Part I Chapter 5 : Media

168 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/picture-format-usage-by-type.png
https://almanac.httparchive.org/static/images/2020/media/picture-format-usage-by-type.png

Format support across browsers is a movable feast: WebP has now got much broader support.

• WebP: 90% coverage252 (Edge, Firefox, Chrome, Opera, Android)

• JPEG 2000: 18.5% coverage253 (Safari)

• JPEG XR: 1.7% coverage254 (IE)

• AVIF: 25% coverage255 (Chrome, Opera)

When constructing a set of fallback formats, authors must consider features, in addition to

compression performance. For example, if an image contains transparency, a good “lowest-

common denominator” to supply in the img src would be PNG. Then, one or more

<source> elements containing next-generation formats that also support transparency – like

WebP, JPEG 2000 and AVIF – could be used on top of that.

Similarly, consider stacking Animated WebPs or muted, looped, autoplaying MP4s on top of

Animated GIFs (though mixing videos and images will have implications for the markup

approach, and media processing needs).

There are three aspects to consider when implementing format-switching:

• The browser format support landscape

• A site’s media pipeline: the processes it uses to create the needed media in a variety

of formats

• Implementing the markup to tell browsers which formats are on offer, and when to

select each

Several Dynamic Media Services and Image CDNs can greatly simplify this by automating it and

endeavoring to track and keep in sync with the ever-changing browser format support

landscape.

Note: though AVIF has been supported in Chrome since version 85 (released late August 2020), the

data for this Almanac is predominantly from prior to this time. However running an ad hoc query on

more recent data from early November 2020 shows tens of thousands of AVIF requests.

252. https://caniuse.com/webp
253. https://caniuse.com/jpeg2000
254. https://caniuse.com/jpegxr
255. https://caniuse.com/avif

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 169

https://caniuse.com/webp
https://caniuse.com/jpeg2000
https://caniuse.com/jpegxr
https://caniuse.com/avif

Picture: media art direction

The media art direction capabilities offered by the <picture> element enable us to provide

the kind of sophisticated viewport-dependent media manipulation that we have enjoyed when

designing type and layouts for some time.

Consider how poorly landscape-oriented media with very wide-and-short aspect ratios (such as

banners) works when squeezed into narrow, portrait-oriented mobile layouts. Adapting the

crop or content of images based on media queries, is, in our opinion, an underutilized capability.

In this example, we are changing out the aspect ratio of the served media, from square (1:1) to

4:3 and eventually 16:9 depending on the viewport width, endeavoring to make the best use of

the available space for our media:

<picture>

 <source media="(max-width: 780px)"

 srcset="image/example_square.jpg 1x, image/

example_square_2x.jpg 2x">

 <source media="(max-width: 1400px)"

 srcset="image/example_4_3_aspect.jpg 1x, image/

example_4_3_aspect_2x.jpg 2x">

 <source srcset="image/example_16_9_aspect.jpg 1x, image/

example_16_9_aspect_2x.jpg 2x">

</picture>

Picture: orientation switching

While the data shows that only a little under 1% of pages using <picture> make use of

orientation, this feels like an area that warrants further exploration from website designers and

developers.

Part I Chapter 5 : Media

170 2020 Web Almanac by HTTP Archive

Mobile devices have small, constricted viewports, and are easy to turn from portrait to

landscape mode in the hand. There is some interesting, underutilized potential for using the

orientation media query.

Example syntax:

<picture>

 <source srcset="images/example_wide.jpg"

 media="(min-width: 960px) and (orientation: landscape)">

 <source srcset="images/example_tall.jpg"

 media="(min-width: 960px) and (orientation: portrait)">

</picture>

Effective leveraging of image formats

Using the appropriate image format and the capabilities that format offers is critical to make

effective use of media on web pages.

Figure 5.7. <picture> usage of orientation.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 171

https://almanac.httparchive.org/static/images/2020/media/picture-usage-of-orientation.png
https://almanac.httparchive.org/static/images/2020/media/picture-usage-of-orientation.png

MIME types vs extensions

We observed a high distribution of extensions and various spellings of the same extension (e.g.,

jpg vs JPG vs jpeg vs JPEG). In some cases the MIME type is also specified incorrectly. For

example - image/jpeg is the correct and recognized MIME type for JPEG images. However

we can see that 0.02% of all the pages that use JPEG have specified the incorrect MIME type.

Furthermore we can see that an extension of pnj was used 28,420 times (likely to be a typo)

and its MIME time was set to image/jpeg .

We have seen further inconsistencies between extensions and MIME types - for example

.jpg s delivered with a MIME type of image/webp , however it is likely that some of these are

natural artifacts caused by Image CDN delivery services with on-the-fly transformation and

optimization capabilities.

Progressive JPEGs

How common are progressive JPEGs256? WebPageTest gives each page a “score,” which adds up

all of the JPEG bytes that were loaded from progressively-encoded JPEGs and divides it by the

total number of JPEG bytes that could have been progressively encoded. The majority (57%) of

pages served less than 25% of their JPEG-bytes, progressively. This represents a large

opportunity for no-downsides compression savings, that’s yet to be taken despite years of

Figure 5.8. Image usage by extension.

256. https://www.smashingmagazine.com/2018/02/progressive-image-loading-user-perceived-performance/#back-to-basis-progressive-jpegs

Part I Chapter 5 : Media

172 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/image-usage-by-extension.png
https://almanac.httparchive.org/static/images/2020/media/image-usage-by-extension.png
https://www.smashingmagazine.com/2018/02/progressive-image-loading-user-perceived-performance/#back-to-basis-progressive-jpegs

progressive JPEGs being a best practice and modern encoders like MozJPEG encoding

progressively by default.

Microbrowsers

Let us turn now to the topic of microbrowsers257. Also known as “link unfurlers” and “link

expanders,” these are the user agents that request web pages and grab bits and pieces from

them to assemble rich previews when links are shared in messaging or on social media. The

lingua franca of microbrowsers is Facebook’s Open Graph protocol258, so we looked at what

percentage of web pages are including images and video specifically targeted towards

microbrowsers in Open Graph <meta> tags.

Figure 5.9. Progressive JPEG score.

257. https://24ways.org/2019/microbrowsers-are-everywhere/
258. https://ogp.me

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 173

https://almanac.httparchive.org/static/images/2020/media/progressive-jpeg-score.png
https://almanac.httparchive.org/static/images/2020/media/progressive-jpeg-score.png
https://24ways.org/2019/microbrowsers-are-everywhere/
https://ogp.me/

A third of web pages include images, in Open Graph tags, for microbrowsers. But only around

0.1 percent of pages include microbrowser-specific videos; just about every page that included

a video, also included an image.

A third of sampled web pages seems very healthy; the power of relational, word-of-mouth

marketing combined with microbrowser-tailored rich previews is clearly worth investing in.

Given that video content is expensive to produce and much less common on the web than

images, we understand the comparatively low usage. But the fact that videos are often playable

and even autoplay-able from within the link previews themselves, without requiring a trip to a

full-on browser, means that this is a big opportunity for boosting engagement.

Figure 5.10. Open Graph image and video usage.

Part I Chapter 5 : Media

174 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/open-graph-image-and-video-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-image-and-video-usage.png

The Open Graph protocol only allows for one image or video URL to be included; there is none

of the context-adaptive flexibility offered by <picture> and srcset . So, authors tend to be

rather conservative when picking formats to send to microbrowsers. Fully half of all

microbrowser-specific images are JPEGs; 45 percent are PNGs; a hair under 2 percent are GIFs.

WebPs only account for 0.2% of images for microbrowsers.

Figure 5.11. Open Graph image type usage.

Figure 5.12. Open Graph video type usage.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 175

https://almanac.httparchive.org/static/images/2020/media/open-graph-image-type-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-image-type-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-video-type-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-video-type-usage.png

Likewise, on the video front, the vast majority of resources are sent in the lowest-common-

denominator format: MP4. We are mystified as to why the second most popular format is the

now-depreciated259 SWF, and curious whether these are playable in any microbrowser.

Usage of rel=preconnect

Media assets can be stored either locally, or on an Image CDN. The way assets are optimized,

transformed and delivered to the end user highly depends on the appropriate technique used.

When including images from another domain, the rel=preconnect attribute can be used on

a <link> element to give browsers an opportunity to initiate DNS connections before they

are needed. While this is a relatively cheap operation, there could be situations when the

additional CPU time spent establishing such connections delays other work.

Analyzing the markup, on desktop we see 7.83% of pages using this, and on mobile it is 8.19%.

The Resource Hints chapter used a slightly different methodology by analyzing the DOM and

got similar, but slightly larger, numbers at 8.15% and 8.65% respectively.

Usage of data: URLs

Using data URLs (formerly known as data URIs) is a technique that allows developers to embed

a base64-encoded image directly in HTML. This ensures that an image will be fully loaded by

the time that the HTML has been parsed into a DOM tree, and virtually guarantees that the

image will be available for the first paint. However, because they don’t compress over the wire

as well as binaries, block other—possibly more important resources—from loading, and

complicate caching, so base-64’d images are something of an anti-pattern260.

Figure 5.13. Mobile pages using preconnect.

8.19%

Figure 5.14. Mobile pages using data URIs.

9.10%
259. https://blog.adobe.com/en/publish/2017/07/25/adobe-flash-update.html#gs.my93m2
260. https://calendar.perfplanet.com/2020/the-dangers-of-data-uris/

Part I Chapter 5 : Media

176 2020 Web Almanac by HTTP Archive

https://blog.adobe.com/en/publish/2017/07/25/adobe-flash-update.html#gs.my93m2
https://calendar.perfplanet.com/2020/the-dangers-of-data-uris/

The usage of these doesn’t seem to be that widespread: 9% of pages utilize data URLs for

displaying images. However, it should be noted that we only investigated HTML-embedded

base64 encoded image src s and did not include CSS-embedded base-64-encoded images for

background-images or the like.

SEO & Accessibility

Associating descriptive text with images not only helps accessibility for those who can’t view

the images and utilize screen-readers, but it is also being used by various computer vision

algorithms to understand the subject matter of an image. Descriptive text should be meaningful

in the context of the page and relevant to the image it is describing. More information on these

topics can be found in the SEO and Accessibility chapters.

Usage of alt text

The alt attribute for images is used to provide a description of the image. It is announced by

screen-readers and is also shown in visual browsers when the image doesn’t load.

Figure 5.15. Image alt usage by page.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 177

https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-page.png
https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-page.png

Around 96% of all the pages processed had an element - 21% of these images were

missing an alt attribute. 52% of the images had an alt attribute, however 26% of these

were left blank. Put simply: only around a quarter of images on the web have a non-blank alt
attribute; presumably even less than that have alt text that’s usefully descriptive.

Figure & Figcaption

HTML5 added various new semantic elements to the language. One such element is

<figure> , which can optionally contain a <figcaption> element as its child. Textual

descriptions contained within <figcaption> s are semantically grouped with the other

content of the <figure> .

Figure 5.16. Image alt usage by image.

Part I Chapter 5 : Media

178 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-image.png
https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-image.png

We can see that roughly 12% of the pages on both desktop and mobile use the <figure>
element, however only roughly 1% use <figcaption> to add a description.

Videos

If “a picture is worth a thousand words,” a minute of 30fps video must be worth 1.8 million!

Video is one of the most powerful ways to engage with an audience today, however adding

video to a site is no small undertaking. There are a maze of formats and codecs to navigate, and

myriad implementation details to consider. But the impact of video – both the visual impact,

and the performance impact – cannot be overstated.

The <video> element

The <video> element forms the core of video delivery on the web and is used either on its

own or in conjunction with JavaScript players which progressively enhance it to deliver video.

Sources (or not), and total usage

There are two ways to embed a video resource using the <video> element. You can either

Figure 5.17. Figure and Figcaption usage by page.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 179

https://almanac.httparchive.org/static/images/2020/media/figure-and-figcaption-usage-by-page.png
https://almanac.httparchive.org/static/images/2020/media/figure-and-figcaption-usage-by-page.png

stick a single resource URL into the src attribute on the element itself or give it any number of

child <source> elements, which the browser peruses until it finds a source it thinks it can

load. Our first query looks at how often we see each of these patterns across all sampled pages.

Twice as many <video> s have <source> children, vs a src attribute. This indicates that

authors want the ability to send different resources to different end users, depending on their

context, rather than sending a single lowest-common-denominator resource to everyone (or,

alternately, giving some portion of their audience a worse, or broken, experience).

Also, interestingly, we can see that across all pages only a percent or two contain <video>
elements at all. It is far less common than !

JavaScript players

We looked for the presence of a few common players (hls.js, video.js, Shaka Player, JW Player,

Brightcove Player, and Flowplayer). Pages with these particular players are less than half as

common as pages that use the native <video> element.

Figure 5.18. Video usage of Src versus Source.

Part I Chapter 5 : Media

180 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/video-usage-of-src-versus-source.png
https://almanac.httparchive.org/static/images/2020/media/video-usage-of-src-versus-source.png

The analysis is complicated a bit by the fact that many players – such as video.js – enhance in-

source <video> elements. Only 5-6% of the pages that used the searched-for players also

included a <video> element, but evidence of this pattern is actually more visible when we

look at the values of type attributes, within <video> and <source> elements.

Figure 5.19. Video element versus JavaScript player.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 181

https://almanac.httparchive.org/static/images/2020/media/video-element-versus-javascript-player.png
https://almanac.httparchive.org/static/images/2020/media/video-element-versus-javascript-player.png

Type attributes

Unsurprisingly, by far the most common type value is video/mp4 . But the second most

common – making up 15% of all desktop type s, and 20% of all type s sent to the mobile

crawler, is video/youtube – which is not a registered MIME type at all. Rather it is a special

value that several players (including WordPress) use when embedding YouTube videos. A few

notches down the list, we see a similar pattern, for Vimeo embeds.

As for the legitimate MIME types; they capture container formats; MP4 and WebM are the only

two in anything we might call common use. It would be interesting to know which codecs are

being used within these containers, and how much traction next-gen codecs like VP8, HVEC,

and AV1 have gotten. But such analysis is, unfortunately, outside the scope of this article.

Figure 5.20. Video source types.

Part I Chapter 5 : Media

182 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/video-source-types.png
https://almanac.httparchive.org/static/images/2020/media/video-source-types.png

Video preload

The preload attribute indicates whether a video should be downloaded, and it can have three

values: none , metadata , auto (note that if left empty, the auto value is assumed). We can

see that 4.81% of pages have <video> elements, and 45.37% of these have the preload
attribute. The numbers on mobile are slightly different, with only 3.59% of the pages having

<video> elements and 43.38% of these having the preload attribute.

Figure 5.21. Video preload values.

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 183

https://almanac.httparchive.org/static/images/2020/media/video-preload-values.png
https://almanac.httparchive.org/static/images/2020/media/video-preload-values.png

Autoplay and Muted

Looking at additional information about videos, we can see that 57.22% of the <video>
elements on desktop have the autoplay attribute, 56.36% of pages with a <video> element

on desktop utilize the muted attribute and last but not least 48.74% of pages use both

autoplay and muted together, on desktop. The numbers are similar for mobile, where

53.86% have autoplay , 53.41% have muted and 45.99% include both attributes.

Conclusion

The web is an amazing place to tell a visual story. During our research we could see that the

web is truly utilizing a lot of elements of media. This diversity is also shown in the number of

ways media is represented on the web today. Most basic features for displaying media are being

actively used, however using modern browsers we could do a lot more. Some of the advanced

media features that are used today are amazing, however sometimes they are used incorrectly

or in the wrong context. We would like to encourage everyone to go a level deeper: use all the

features and capabilities of the modern web to bring more amazing visual experiences to users.

Figure 5.22. Video autoplay and muted usage.

Part I Chapter 5 : Media

184 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/video-autoplay-and-muted-usage.png
https://almanac.httparchive.org/static/images/2020/media/video-autoplay-and-muted-usage.png

Authors

Tamas Piros

@tpiros tpiros https://tamas.io

Tamas Piros is a Developer Experience Engineer at Cloudinary261, Google

Developer Expert and Technical Instructor running Full Stack Training262.

Ben Seymour

@bseymour bseymour benseymour https://benseymour.com

Ben Seymour is a Dynamic Media & Content Specialist with Cloudinary263, author

of Practical Responsive Images264 and co-founder of Storyus265 and Haktive266.

Eric Portis

@etportis eeeps https://ericportis.com

Eric Portis is a Web Platform Advocate at Cloudinary267.

261. https://cloudinary.com/
262. https://fullstacktraining.com
263. https://cloudinary.com/
264. http://responsiveimag.es/
265. https://storyus.life/
266. https://haktive.com/
267. https://cloudinary.com/

Part I Chapter 5 : Media

2020 Web Almanac by HTTP Archive 185

https://twitter.com/tpiros
https://github.com/tpiros
https://tamas.io/
https://cloudinary.com/
https://fullstacktraining.com/
https://twitter.com/bseymour
https://github.com/bseymour
https://www.linkedin.com/in/benseymour/
https://benseymour.com/
https://cloudinary.com/
http://responsiveimag.es/
https://storyus.life/
https://haktive.com/
https://twitter.com/etportis
https://github.com/eeeps
https://ericportis.com/
https://cloudinary.com/

186 2020 Web Almanac by HTTP Archive

Part I Chapter 6

Third Parties

Written by Simon Hearne
Reviewed by Julia Yang and Shane Exterkamp
Analyzed by Max Ostapenko and Paul Calvano
Edited by Barry Pollard

Introduction

Third-party content is a critical component of most websites today. It powers everything:

analytics, live chat, advertising, video sharing and more. Third-party content provides value by

taking the heavy lifting off of site owners and allows them to focus on their core competencies.

Many think of third-party content as being JavaScript-based, but the data shows that this is

only true for 22% of requests. Third-party content comes in all forms, from images (37%) to

audio (0.1%).

In this chapter we will review the prevalence of third-party content and how this has changed

since 2019. We will also review: the impact of third-party content on page weight (a good proxy

for overall performance impact), scripts that load early in the page lifecycle, the impact of third-

party content on browser CPU time, and how open third-parties are with their performance

data.

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 187

Definitions

Before jumping into the data we should define the terminology used in this chapter.

“Third Party”

A third-party resource is an entity outside the primary site-user relationship. It involves the

aspects of the site not directly within the control of the site owner but present, with their

approval. For example, the Google Analytics script is a common third-party resource.

We consider third-party resources as those:

• Hosted on a shared and public origin

• Widely used by a variety of sites

• Uninfluenced by an individual site owner

To match these goals as closely as possible, the formal definition used throughout this chapter

for third-party resources is: a resource that originates from a domain whose resources can be

found on at least 50 unique pages in the HTTP Archive dataset.

Note that using these definitions, third-party content served from a first-party domain is

counted as a first-party content. For example: self-hosting Google Fonts or bootstrap.css is

counted as first-party content.

Similarly, first-party content served from a third-party domain is counted as third-party

content. An associated example: First-party images served over a CDN on a third-party domain

are considered third-party content.

Provider categories

This chapter divides third-party providers into different categories. A brief description is

included with each of the categories. The mapping of domain to category can be found in the

third-party-web repository268.

• Ad - display and measurement of advertisements

• Analytics - tracking site visitor behavior

268. https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5

Part I Chapter 6 : Third Parties

188 2020 Web Almanac by HTTP Archive

https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5

• CDN - providers that host public shared utilities or private content of their users

• Content - providers that facilitate publishers and host syndicated content

• Customer Success - support and customer relationship management functionality

• Hosting - providers that host the arbitrary content of their users

• Marketing - sales, lead generation, and email marketing functionality

• Social - social networks and their affiliated integrations

• Tag Manager - provider whose sole role is to manage the inclusion of other third

parties

• Utility - code that aids the development objectives of the site owner

• Video - providers that host the arbitrary video content of their users

• Other - uncategorized or non-conforming activity

Note on CDNs: The CDN category here includes providers that provide resources on public CDN

domains (e.g. bootstrapcdn.com, cdnjs.cloudflare.com, etc.) and does not include resources that are

simply served over a CDN. i.e. putting Cloudflare in front of a page would not influence its first-party

designation according to our criteria.

Caveats

• All data presented here is based on a non-interactive, cold load. These values could

start to look quite different after user interaction.

• The pages are tested from servers in the US with no cookies set, so third-parties

requested after opt-in are not included. This will especially affect pages hosted and

predominantly served to countries in scope for the General Data Protection

Regulation269, or other similar legislation.

• Only the home pages are tested. Other pages may having difference third-party

requirements.

• Roughly 84% of all third-party domains by request volume have been identified and

categorized. The remaining 16% fall into the “Other” category.

Learn more about our methodology.

269. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 189

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Prevalence

A good starting point for this analysis is to confirm the statement that third-party content is a

critical component of most websites today. How many websites use third-party content, and

how many third-parties do they use?

These prevalence numbers show a slight increase on the 2019 results270: 93.87% of pages in the

desktop crawl had at least one third-party request, the number was slightly higher at 94.10% of

pages in the mobile crawl. A brief look into the small number of pages with no third-party

content revealed that many were adult sites, some were government domains and some were

basic landing / holding pages with little content. It is fair to say that the vast majority of pages

have at least one third-party.

The chart below shows the distribution of pages by third-party count. The 10th percentile page

has two third-party requests while the median page has 24. Over 10% of pages have more than

100 third-party requests.

Figure 6.1. Pages with third-party content

270. https://almanac.httparchive.org/en/2019/third-parties

Part I Chapter 6 : Third Parties

190 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/pages-with-thirdparties.png
https://almanac.httparchive.org/static/images/2020/third-parties/pages-with-thirdparties.png
https://almanac.httparchive.org/en/2019/third-parties

Content-types

We can break down third-party requests by their content type. This is the reported content-

type271 of the resources delivered from third-party domains.

Figure 6.2. Distribution of third-party requests.

271. https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 191

https://almanac.httparchive.org/static/images/2020/third-parties/distribution-of-request-count.png
https://almanac.httparchive.org/static/images/2020/third-parties/distribution-of-request-count.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type

The results show that the major contributors of third-party content are images (38%) and

JavaScript (22%), with the next largest contributor being unknown (16%). Unknown is a subset

of non-categorized groups such as text/plain as well as responses without a content-type

header.

This shows a shift when compared to 2019272: relative image content has increased from 33% to

38%, whilst JavaScript content has decreased significantly from 32% to 22%. This reduction is

likely due to increased adherence to cookie and data protection regulations, reducing third-

party execution until after explicit user opt-in which is out of scope for HTTP Archive test runs.

Third-party domains

When we dig further into domains serving third-party content we see that Google Fonts is by

far the most common. It is present on more than 7.5% of mobile pages tested. While fonts only

account for around 3% of third-party content, almost all of these are delivered by the Google

Fonts service. If your page uses Google Fonts, make sure to follow best practices273 to ensure the

best possible user experience.

Figure 6.3. Third-party content by type

272. https://almanac.httparchive.org/en/2019/third-parties#resource-types
273. https://csswizardry.com/2020/05/the-fastest-google-fonts/

Part I Chapter 6 : Third Parties

192 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/thirdparty-by-content-types.png
https://almanac.httparchive.org/static/images/2020/third-parties/thirdparty-by-content-types.png
https://almanac.httparchive.org/en/2019/third-parties#resource-types
https://csswizardry.com/2020/05/the-fastest-google-fonts/

The next four most common domains are all advertising providers. They may not be requested

directly by the page but through a complex chain of redirects initiated by another advertising

network.

The sixth most common domain is digicert.com . Calls to digicert.com are generally

OCSP revocation checks due to TLS certificates not having OCSP stapling enabled, or the use of

Extended Validation (EV) certificates which prevent pinning of intermediate certificates. This

number is exaggerated in HTTP Archive due to all page loads being effectively first-time visitors

- OCSP responses are generally cached and valid for seven days in real-world browsing. See this

blog post274 to read more on this issue.

Further down the list at 2.43% is ajax.googleapis.com , Google’s Hosted Libraries project275.

Whilst loading a library such as jQuery from a hosted service is easy, the additional cost of a

connection to a third-party domain may have a negative impact on performance. It is best to

host all critical JavaScript and CSS on the root domain, if possible. There is also now no cache

benefit to using a shared CDN resource, as all major browsers partition caches by page276. Harry

Roberts has written a detailed blog post on how to host your own static assets277.

Figure 6.4. Top domains by prevalence.

274. https://simonhearne.com/2020/drop-ev-certs/
275. https://developers.google.com/speed/libraries
276. https://developers.google.com/web/updates/2020/10/http-cache-partitioning
277. https://csswizardry.com/2019/05/self-host-your-static-assets/

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 193

https://almanac.httparchive.org/static/images/2020/third-parties/top-domains-by-prevalence.png
https://almanac.httparchive.org/static/images/2020/third-parties/top-domains-by-prevalence.png
https://simonhearne.com/2020/drop-ev-certs/
https://simonhearne.com/2020/drop-ev-certs/
https://developers.google.com/speed/libraries
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://csswizardry.com/2019/05/self-host-your-static-assets/

Page weight impact

Third-parties can have a significant impact on the weight of a page, measured as the number of

bytes downloaded by the browser. The Page Weight chapter explores this in more detail, here

we focus on the third-parties that have the greatest impact on page weight.

Heaviest third-parties

We can extract the largest third-parties by the median page weight impact, i.e. how many bytes

they bring to the pages they are on. The results are interesting as this does not take into

account how popular the third-parties are, just their impact in bytes.

The top contributors of page weight are generally media content providers, such as image and

video hosting. Vidazoo, for example, results in a median page weight impact of about 2.5MB.

The inventory.vidazoo.com domain provides video hosting, so a median page with this

third-party has an extra 2.5MB of media content!

A simple method to reduce this impact is to defer video loading until a user interacts with the

page, so that the impact is reduced for those visitors that never consume the video.

We can take this analysis further to produce a distribution of total page size (in bytes

downloaded for all resources) by third-party category presence. This chart shows that the

presence of most third-party categories does not have a noticeable impact on total page size:

Figure 6.5. Third-party size contribution by host.

Part I Chapter 6 : Third Parties

194 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-host.png
https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-host.png

this would be visible as a divergence in the plots. A notable exception to this is Advertising (in

black) which shows a very small relationship with page size, indicating that advertisement

requests do not add significant weight to pages. This is likely because many of these requests

are small redirects, the median is only 420 bytes. We see similar low impact for tag managers,

and analytics.

On the other end of the spectrum, the categories CDN, Content and Hosting all represent

strong relationship with total page weight. This indicates that sites using hosted services are

generally larger in page weight.

Cacheability

Some third-party responses should always be cached. Media such as images and videos served

by a third-party, or JavaScript libraries are good candidates. On the other hand, tracking pixels

and analytics beacons should never be cached. The results show that overall two-thirds of

third-party requests are served with a valid caching header such as Cache-Control .

Figure 6.6. Page size distributions by third-party category.

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 195

https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-category.png
https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-category.png

Breaking down by response type confirms our assumptions: xml and text responses (as

commonly delivered by tracking pixels / analytics beacons) are less likely to be cacheable.

Surprisingly, less than two-thirds of images served by third-parties are cacheable. On further

inspection, this is due to the use of tracking ’pixels’ which are returned as non-cacheable zero-

size gif image responses.

Large redirects

Many third-parties result in redirect responses, i.e. HTTP status codes 3XX. These occur due to

the use of vanity domains or to share information across domains through request headers.

This is especially true for advertising networks. Large redirect responses are an indication of a

misconfiguration, as the response should be around 340B for a valid Location response

header plus overheads. The chart below shows the distribution of body size for all third-party

redirects in the HTTP Archive.

Figure 6.7. Third-party requests cached by content type.

Part I Chapter 6 : Third Parties

196 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/requests-cached-by-content-type.png
https://almanac.httparchive.org/static/images/2020/third-parties/requests-cached-by-content-type.png

The results show that the majority of 3XX responses are small: the 90th percentile is 420 bytes,

i.e. 90% of 3XX responses are 420 bytes or smaller. The 95th percentile is 6.5 kB, the 99th is 36

kB and the 99.9th is over 100 kB! Whilst redirects may seem innocuous, 100kB is an

unreasonable amount of bytes over the wire for a response that simply leads to another

response.

Early-loaders

Scripts that load late in the page will have an impact on total page load duration and page

weight but might have no impact on the user experience. Scripts that load early in the page,

however, will potentially cannibalize bandwidth for critical first-party resources and are more

likely to interfere with the page load. This can have a detrimental impact on performance

metrics and user experience.

The chart below shows the percentage of requests that load early, by device type and third-

party category. The three stand-out categories are CDN, Hosting and Tag Managers: all of

which tend to deliver JavaScript that is requested in the head of a document. Advertising

resources are least likely to load early in the page, due to advertisement network requests

generally being asynchronous scripts run after page load.

Figure 6.8. Distribution of third-party 3XX body size

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 197

https://almanac.httparchive.org/static/images/2020/third-parties/redirects-body-size.png
https://almanac.httparchive.org/static/images/2020/third-parties/redirects-body-size.png

CPU impact

Not all bytes on the web are equal: a 500 KB image may be far easier for a browser to process

than a 500 KB compressed JavaScript bundle, which inflates to 1.8MB of client-side code! The

impact of third-party scripts on CPU time can be far more critical than the additional bytes or

time spent on the network.

We can correlate the presence of third-party categories with the total CPU time on the page,

this allows us to estimate the impact of each third-party category on CPU time.

Figure 6.9. Early third-party requests by category.

Part I Chapter 6 : Third Parties

198 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/requests-before-dom-by-category.png
https://almanac.httparchive.org/static/images/2020/third-parties/requests-before-dom-by-category.png

This chart shows the probability density function of total page CPU time by the third-party

categories present on each page. The median page is at 50 on the percentile axis. The data

shows that all third-party categories follow a similar pattern, with the median page between

400 - 1,000 ms CPU time. The outlier here is advertising (in black): if a page has advertising tags

it is much more likely to have high CPU usage during page load. The median page with

advertising tags has a CPU load time of 1,500 ms, compared to 500 ms for pages without

advertising. The high CPU load time at the lower percentiles indicates that even the fastest

sites are impacted significantly by the presence of third-parties categorized as advertising.

timing-allow-origin prevalence

The Resource Timing API278 allows website owners to measure the performance of individual

resources via JavaScript. This data is, by default, extremely limited for cross-origin resources

like third-party content. There are legitimate reasons for not providing this timing information

such as responses that vary by authentication state: e.g. a website owner may be able to

determine if a visitor is logged into a Facebook by measuring the response size of a widget

request. For most third-party content, though, setting the timing-allow-origin header is

an act of transparency to allow the hosting website to track performance and size of their third-

party content.

Figure 6.10. Distribution of CPU time by categories.

278. https://developer.mozilla.org/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 199

https://almanac.httparchive.org/static/images/2020/third-parties/cpu-time-by-category.png
https://almanac.httparchive.org/static/images/2020/third-parties/cpu-time-by-category.png
https://developer.mozilla.org/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API

The results in HTTP Archive show that only one third of third-party responses expose detailed

size and timing information to the hosting website.

Repercussions

We know that adding arbitrary JavaScript to our sites introduces risks to both site speed and

security. Site owners must be diligent to balance the value of the third-party scripts they

include with the speed penalty they may bring, and use modern features such as subresource

integrity279 and content security policy280 to maintain a strong security posture. See the Security

chapter for more detail on these and other browser security features.

Conclusion

One of the surprises in the data from 2020 is the drop in relative JavaScript requests: from 32%

of the total to just 22%. It is unlikely that the actual amount of JavaScript on the web has

decreased this significantly, it is more likely that websites are implementing consent

management - so that most dynamic third-party content is only loaded on user opt-in. This opt-

in process could be managed by a Consent Management Platform (CMP) in some cases. The

Figure 6.11. Requests with timing-allow-origin header.

279. https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
280. https://developer.mozilla.org/docs/Web/HTTP/CSP

Part I Chapter 6 : Third Parties

200 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/requests-with-tao.png
https://almanac.httparchive.org/static/images/2020/third-parties/requests-with-tao.png
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/docs/Web/HTTP/CSP

third-party database does not yet have a category for CMPs, but this would be a good analysis

for the 2021 Web Almanac and is covered through a different methodology in the Privacy

chapter.

Advertising requests appear to have an increased impact on CPU time. The median page with

advertising scripts consume three times as much CPU as those without. Interestingly though,

advertising scripts are not correlated with increased page weight. This makes it even more

important to evaluate the total impact of third-party scripts on the browser, not just request

count and size.

While third-party content is critical to many websites, auditing the impact of each provider is

critical to ensure that they do not significantly impact user experience, page weight or CPU

utilization. There are often self-hosting options for the top contributors to third-party weight,

this is especially worth considering as there is now no caching benefit to using shared assets:

• Google Fonts allows self-hosting281 the assets

• JavaScript CDNs can be replaced with self-hosted assets

• Experimentation scripts can be self-hosted, e.g. Optimizely282

In this chapter we have discussed the benefits and costs of third-party content on the web. We

have seen that third-parties are integral to almost all websites, and that the impact varies by

third-party provider. Before adding a new third-party to your pages, consider the impact that

they will have!

Author

Simon Hearne

@simonhearne simonhearne https://simonhearne.com

Simon is a web performance architect. He is passionate about helping deliver a

faster and more accessible web. You can find him tweeting @SimonHearne and

blogging at simonhearne.com283.

281. https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
282. https://help.optimizely.com/Set_Up_Optimizely/Optimizely_self-hosting_for_Akamai_users
283. https://simonhearne.com

Part I Chapter 6 : Third Parties

2020 Web Almanac by HTTP Archive 201

https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
https://help.optimizely.com/Set_Up_Optimizely/Optimizely_self-hosting_for_Akamai_users
https://twitter.com/simonhearne
https://github.com/simonhearne
https://simonhearne.com/
https://twitter.com/simonhearne
https://simonhearne.com/

202 2020 Web Almanac by HTTP Archive

Part II Chapter 7

SEO

Written by Aleyda Solis, Michael King, and Jamie Indigo
Reviewed by Nate Dame, Catalin Rosu, Dave Sottimano, Dave Smart, Dustin Montgomery, Sawood
Alam, and Barry Pollard
Analyzed by Tony McCreath and Antoine Eripret
Edited by Rick Viscomi

Introduction

Search Engine Optimization (SEO) is the practice of optimizing websites’ technical

configuration, content relevance, and link popularity to make their information easily findable

and more relevant to fulfill users’ search needs. As a consequence, websites improve their

visibility in search engines’ results for relevant user queries regarding their content and

business, growing their traffic, conversions, and profits.

Despite its complex multidisciplinary nature, in recent years SEO has evolved to become one of

the most popular digital marketing strategies and channels.

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 203

The goal of the Web Almanac’s SEO chapter is to identify and assess main elements and

configurations that play a role in a website’s organic search optimization. By identifying these

elements, we hope that websites can leverage our findings to improve their ability to be

crawled, indexed, and ranked by search engines. In this chapter, we provide a snapshot of their

status in 2020 and a summary of what has changed since 2019284.

It is important to note that this chapter is based on analysis from Lighthouse285 on mobile sites,

the Chrome UX Report286 on mobile and desktop, as well as raw and rendered HTML elements

from the HTTP Archive287 on mobile and desktop. In the case of the HTTP Archive and

Lighthouse, it is limited to the data identified from websites’ home pages only, not site-wide

crawls. We have taken this into consideration when doing assessments. Keeping this distinction

in mind is important when drawing conclusions from our results. You can learn more about it on

our Methodology page.

Let’s go through this year’s organic search optimization main findings.

Fundamentals

This section features the optimization-related findings of the web configurations and elements

that make up the foundation for search engines to correctly crawl, index, and rank websites to

provide users the best results for their queries.

Figure 7.1. Google Trends comparison of SEO versus pay-per-click and social media marketing.

284. https://almanac.httparchive.org/en/2019/seo
285. https://developers.google.com/web/tools/lighthouse/
286. https://developers.google.com/web/tools/chrome-user-experience-report
287. https://httparchive.org/

Part II Chapter 7 : SEO

204 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-google-trends.png
https://almanac.httparchive.org/static/images/2020/seo/seo-google-trends.png
https://almanac.httparchive.org/en/2019/seo
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/chrome-user-experience-report
https://httparchive.org/

Crawlability and indexability

Search engines use web crawlers (also called spiders) to discover new or updated content from

websites, browsing the web by following links between pages. Crawling is the process of

looking for new or updated web content (whether web pages, images, videos, etc.).

Search crawlers discover content by following links between URLs, as well as using additional

sources that website owners can provide, like the generation of XML sitemaps, which are lists

of URLs that a website’s owner wants search engines to index, or through direct crawl requests

via search engines tools, like Google’s Search Console.

Once search engines access web content they need to render—similar to what web browsers

do—and index it. Search engines will then analyze and catalog the identified information, trying

to understand it as users do, to ultimately store it in its index, or web database.

When users enter a query, search engines search their index to find the best content to display

on the search results pages to answer their queries, using a variety of factors to determine

which pages are shown before others.

For websites looking to optimize their visibility in search results, it is important to follow

certain crawlability and indexability best practices: correctly configuring robots.txt , robots

meta tags, X-Robots-Tag HTTP headers, and canonical tags, among others. These best

practices help search engines in accessing web content more easily and indexing them more

accurately. A thorough analysis of these configurations is provided in the following sections.

robots.txt

Located at the root of a site, a robots.txt file is an effective tool in controlling which pages a

search engine crawler should interact with, how quickly to crawl them, and what to do with the

discovered content.

Google formally proposed making robots.txt an official internet standard in 2019. The June

2020 draft288 includes clear documentation on technical requirements for the robots.txt file.

This has prompted more detailed information about how search engine crawlers should

respond to non-standard content.

A robots.txt file must be plain text, encoded in UTF-8, and respond to requests with a 200

HTTP status code. A malformed robots.txt , a 4XX (client error) response, or more than five

redirects are interpreted by search engine crawlers as a full allow, meaning all content may be

crawled. A 5XX (server error) response is understood as a full disallow, meaning no content may

288. https://tools.ietf.org/html/draft-koster-rep-02

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 205

https://tools.ietf.org/html/draft-koster-rep-02
https://tools.ietf.org/html/draft-koster-rep-02

be crawled. If the robots.txt is unreachable for more than 30 days, Google will use the last

cached copy of it, as described in their specifications289.

Overall, 80.46% of mobile pages responded to robots.txt with a 2XX response. Of these,

25.09% were not recognized as valid. This has slightly improved over 2019, when it was found

that 27.84% of mobile sites had a valid robots.txt .

Lighthouse, the data source for testing robots.txt validity, introduced a robots.txt audit

as part of the v6 update. This inclusion highlights that a successfully resolved request does not

mean that the cornerstone file will be able to provide the necessary directives to web crawlers.

In addition to similar status code behavior, Disallow statement use was consistent between

mobile and desktop versions of robots.txt files.

The most prevalent User-agent declaration statement was the wildcard, User-agent: * ,

appearing on 74.40% of mobile and 73.16% of desktop robots.txt requests. The second

most prevalent declaration was adsbot-google , appearing in 5.63% of mobile and 5.68% of

desktop robots.txt requests. Google AdsBot disregards wildcard statements and must be

specifically named as the bot checks web page and app ad quality across devices.

The most frequently used directives focused on search engines and their paid marketing

counterparts. SEO tools Ahref and Majestic were in the top five Disallow statements for

both devices.

Figure 7.2. robots.txt response codes.

Response Code Mobile Desktop

2XX 80.46% 79.59%

3XX 0.01% 0.01%

4XX 17.67% 18.64%

5XX 0.15% 0.12%

6XX 0.00% 0.00%

7XX 0.15% 0.12%

289. https://developers.google.com/search/reference/robots_txt#handling-http-result-codes

Part II Chapter 7 : SEO

206 2020 Web Almanac by HTTP Archive

https://developers.google.com/search/reference/robots_txt#handling-http-result-codes
https://almanac.httparchive.org/en/2019/seo#robotstxt
https://almanac.httparchive.org/en/2019/seo#robotstxt
https://web.dev/robots-txt/
https://web.dev/robots-txt/

When analyzing the usage of the Disallow statement in robots.txt by using Lighthouse-

powered data of over 6 million sites, it was found that 97.84% of them were completely

crawlable, with only 1.05% using a Disallow statement.

An analysis of the robots.txt Disallow statement usage along the meta robots290

indexability directives was also done, finding 1.02% of the sites including a Disallow
statement along indexable pages featuring a meta robots index directive, with only 0.03% of

sites using the Disallow statement in robots.txt along noindexed pages via the meta

robots noindex directive.

The higher usage of the Disallow statement on indexable pages than noindexed ones is

notable as Google documentation291 states that site owners should not use robots.txt as a

means to hide web pages from Google Search, as internal linking with descriptive text could

result in the page being indexed without a crawler visiting the page. Instead, site owners should

use other methods, like a noindex directive via meta robots.

Meta robots

The robots meta tag and X-Robots-Tag HTTP header are an extension of the proposed

Robots Exclusion Protocol292 (REP), which allows directives to be configured at a more granular

level. Directive support varies by search engine as REP is not yet an official internet standard.

Meta tags were the dominant method of granular execution with 27.70% of desktop and

27.96% of mobile pages using the tag. X-Robots-Tag directives were found on 0.27% and

Figure 7.3. robots.txt User-agent directives.

% of robots.txt

User-agent Mobile Desktop

* 74.40% 73.16%

adsbot-google 5.63% 5.68%

mediapartners-google 5.55% 3.83%

mj12bot 5.49% 5.30%

ahrefsbot 4.80% 4.66%

290. https://developers.google.com/search/reference/robots_meta_tag
291. https://developers.google.com/search/docs/advanced/robots/intro
292. https://webmasters.googleblog.com/2019/07/rep-id.html

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 207

https://developers.google.com/search/reference/robots_meta_tag
https://developers.google.com/search/docs/advanced/robots/intro
https://webmasters.googleblog.com/2019/07/rep-id.html

0.40% of desktop and mobile, respectively.

When analyzing the usage of the meta robots tag in Lighthouse tests, 0.47% of crawlable pages

were found to be noindexed. 0.44% of these pages used a noindex directive and did not

disallow crawling of the page in the robots.txt .

The combination of Disallow within robots.txt and noindex directive in meta robots

were found on only 0.03% of pages. While this method offers belt and suspenders redundancy, a

page must not be blocked by a robots.txt file in order for an on-page noindex directive to

be effective.

Interestingly, rendering changed the meta robots tag in 0.16% of pages. While there is no

inherent issue with using JavaScript to add a meta robots tag to a page or change its content,

SEOs should be judicious in execution. If a page loads with a noindex directive in the meta

robots tag before rendering, search engines won’t run the JavaScript293 that changes the tag

value or index the page.

Canonicalization

Canonical tags294, as described by Google, are used to specify to search engines which is the

preferred canonical URL version to index and rank for a page—the one that is considered to be

Figure 7.4. Usage of meta robots and X-Robots-Tag directives.

293. https://developers.google.com/search/docs/guides/javascript-seo-basics#use-meta-robots-tags-carefully
294. https://developers.google.com/search/docs/advanced/crawling/consolidate-duplicate-urls

Part II Chapter 7 : SEO

208 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-robots-directive-use.png
https://almanac.httparchive.org/static/images/2020/seo/seo-robots-directive-use.png
https://developers.google.com/search/docs/guides/javascript-seo-basics#use-meta-robots-tags-carefully
https://developers.google.com/search/docs/advanced/crawling/consolidate-duplicate-urls

better representative of it—when there are many URLs featuring the same or very similar

content. It is important to note that:

• The canonical tag configuration is used along with other signals to select the

canonical URL of a page; it is not the only one.

• Although self-referencing canonical tags are sometimes used, these aren’t a

requirement.

In last year’s chapter295, it was identified that 48.34% of mobile pages were using a canonical tag.

This year the number of mobile pages featuring a canonical tag has grown to 53.61%.

When analyzing this year’s mobile pages canonical tag configuration, it was detected that

45.31% of them were self-referential and 8.45% were pointing to different URLs as the

canonical ones.

On the other hand, 51.85% of the desktop pages were found to be featuring a canonical tag this

year, with 47.88% being self-referential and 4.10% pointing to a different URL.

Not only do mobile pages include more canonical tags than desktop ones (53.61% versus

51.85%), there are relatively more mobile homes pages canonicalizing to other URLs than their

desktop counterparts (8.45% vs. 4.10%). This could be explained by the usage of an

Figure 7.5. Usage of canonical tags.

295. https://almanac.httparchive.org/en/2019/seo#canonicalization

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 209

https://almanac.httparchive.org/en/2019/seo#canonicalization
https://almanac.httparchive.org/static/images/2020/seo/seo-presence-of-canonical-tag.png
https://almanac.httparchive.org/static/images/2020/seo/seo-presence-of-canonical-tag.png

independent (or separate) mobile web version by some sites that need to canonicalize to their

desktop URLs alternates.

Canonical URLs can be specified through different methods: by using the canonical link via the

HTTP headers or the HTML head of a page, or by submitting them in XML sitemaps. When

analyzing which is the most popular canonical link implementation method, it was found that

only 1.03% of desktop pages and 0.88% of mobile ones are relying on the HTTP headers for

their implementation, meaning that canonical tags are prominently implemented via the HTML

head of a page.

When analyzing the canonical tag implemented in the raw HTML versus those relying on client-

side JavaScript rendering, we identified that 0.68% of the mobile pages and 0.54% of the

desktop ones include a canonical tag in the rendered but not the raw HTML. This means that

there’s only a very small number of pages that are relying on JavaScript to implement canonical

tags.

On the other hand, in 0.93% of the mobile pages and 0.76% of the desktop ones, we saw

canonical tags implemented via both the raw and the rendered HTML with a conflict happening

between the URL specified in the raw versus the rendered HTML of the same pages. This can

generate indexability issues as mixed information is sent to search engines about which is the

canonical URL for the same page.

A similar conflict can be found with the different implementation methods, with 0.15% of the

Figure 7.6. Usage of HTTP header and HTML head canonicalization methods.

Part II Chapter 7 : SEO

210 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-canonical-implementation-method.png
https://almanac.httparchive.org/static/images/2020/seo/seo-canonical-implementation-method.png

mobile pages and 0.17% of the desktop ones showing conflicts between the canonical tags

implemented via their HTTP headers and HTML head .

Content

The primary purpose that both search engines and Search Engine Optimization serve is to give

visibility to content that users need. Search engines extract features from pages to determine

what the content is about. In that way, the two are symbiotic. The features extracted align with

signals that indicate relevance and inform ranking.

To understand what search engines are able to effectively extract, we have broken out the

components of that content and examined the incidence rate of those features between the

mobile and desktop contexts. We also reviewed the disparity between mobile and desktop

content. The mobile and desktop disparity is especially valuable because Google has moved to

mobile-first indexing (MFI) for all new sites and, as of March of 2021, will move to a mobile-only

index wherein content that does not appear within the mobile context will not be evaluated for

ranking.

Rendered versus non-rendered text content

The usage of Single Page Application (SPA) JavaScript technologies has exploded with the

growth of the web. This design pattern introduces difficulties for search engine spiders because

both the execution of JavaScript transformations at runtime and user interactions with the

page after load can cause additional content to appear or be rendered.

Search engines encounter pages through its crawling activity, but may or may not choose to

implement a second step of rendering a page. As a result, there may be disparities between the

content that a user sees and the content that a search engine indexes and considers for

rankings.

We assessed word count as a heuristic of that disparity.

Figure 7.7. Comparison of the median number of raw and rendered words per desktop and mobile
page.

Values Desktop Mobile Difference

Raw 360 312 -13.33%

Rendered 402 348 -13.43%

Difference 11.67% 11.54%

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 211

https://developers.google.com/search/blog/2020/03/announcing-mobile-first-indexing-for

This year, the median desktop page was found to have 402 words and the mobile page had 348

words. While last year296, the median desktop page had 346 words, and the median mobile page

had a slightly lower word count at 306 words. This represents 16.2% and 13.7% growth

respectively.

We found that the median desktop site features 11.67% more words when rendered than it

does on an initial crawl of its raw HTML. We also found that the median mobile site displays

13.33% less text content than its desktop counterpart. The median mobile site also displays

11.54% more words when rendered than its raw HTML counterpart.

Across our sample set, there are disparities across the combination of mobile/desktop and

rendered/non-rendered. This suggests that although search engines are continually improving

in this area, most sites across the web are missing out on opportunities to improve their organic

search visibility through a stronger focus on ensuring their content is available and indexable.

This is also a concern because the lion’s share of available SEO tools do not crawl in the above

combination of contexts and automatically identify this as an issue.

Headings

Heading elements (H1 - H6) act as a mechanism to visually indicate structure in a page’s

content. Although these HTML elements don’t carry the weight they used to in search rankings,

they still act as a valuable way to structure pages and signal other elements in the search engine

results pages (SERPs) like featured snippets or other extraction methods that align with Google’s

new passage indexing297.

296. https://almanac.httparchive.org/en/2019/seo#word-count
297. https://www.blog.google/products/search/search-on/

Part II Chapter 7 : SEO

212 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/seo#word-count
https://www.blog.google/products/search/search-on/
https://www.blog.google/products/search/search-on/

Over 60% of pages feature H1 elements (including empty ones) in both the mobile and desktop

contexts.

These numbers hover around 60%+ through H2 and H3 . The incidence rate of H4 elements is

lower than 4%, suggesting that the level of specificity is not required for most pages or the

developers style other headings elements differently to support the visual structure of the

content.

The prevalence of more H2 elements than H1 s suggests that fewer pages are using multiple

H1 s.

Figure 7.8. Usage of heading levels 1 through 4, including empty headings.

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 213

https://almanac.httparchive.org/static/images/2020/seo/seo-presence-of-h-elements.png
https://almanac.httparchive.org/static/images/2020/seo/seo-presence-of-h-elements.png

In reviewing the adoption of non-empty heading elements, we found that 7.55% of H1 , 1.4% of

H2 , 1.5% of H3 , and 1.1% of H4 elements feature no text. One possible explanation for these

low results is that those portions are used for styling the page or are the result of coding

mistakes.

You can learn more about the usage of headings in the Markup chapter, including the misuse of

non-standard H7 and H8 elements.

Structured data

Over the course of the past decade, search engines, particularly Google, have continued to push

towards becoming the presentation layer of the web. These advancements are partially driven

by their improved ability to extract information from unstructured content (e.g., passage

indexing298) and the adoption of semantic markup in the form of structured data. Search engines

have encouraged content creators and developers to implement structured data to give more

visibility to their content within components of search results.

In a move from “strings to things”299, search engines have agreed upon a broad vocabulary of

objects in support of marking up a variety of people, places, and things within web content.

However, only a subset of that vocabulary triggers inclusion within search results components.

Figure 7.9. Usage of heading levels 1 through 4, excluding empty headings.

298. https://blog.google/products/search/search-on/
299. https://blog.google/products/search/introducing-knowledge-graph-things-not/

Part II Chapter 7 : SEO

214 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-presence-of-non-empty-h-elements.png
https://almanac.httparchive.org/static/images/2020/seo/seo-presence-of-non-empty-h-elements.png
https://blog.google/products/search/search-on/
https://blog.google/products/search/search-on/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

Google specifies those that they support and how they’re displayed in their search gallery300, and

provides a tool301 to validate their support and implementation.

As search engines evolve to reflect more of these elements in search results, the incidence rates

of the different vocabularies change across the web.

As part of our examination, we took a look at the incidence rates of different types of

structured markup. The available vocabularies include RDFa302 and schema.org303, which come in

both the microformats and JSON-LD304 flavors. Google has recently dropped the support for

data-vocabulary305, which was primarily used to implement breadcrumbs.

JSON-LD is generally considered to be the more portable and easier to manage implementation

and so it has become the preferred format. As a result, we see that JSON-LD appears on

29.78% of mobile pages and 30.60% of desktop pages.

We find that the disparity between mobile and desktop continues with this type of data.

Microdata appeared on 19.55% of mobile pages and 17.94% of desktop pages. RDFa appeared

on 1.42% of mobile pages and 1.63% of desktop pages.

Rendered versus non-rendered structured data

We found that 38.61% of desktop pages and 39.26% of mobile pages feature JSON-LD or

microformat structured data in the raw HTML, while 40.09% of desktop pages and 40.97% of

mobile pages feature structured data in the rendered DOM.

When reviewing this in more detail, we found that 1.49% of desktop pages and 1.77% of mobile

pages only featured this type of structured data in the rendered DOM due to JavaScript

Figure 7.10. Usage of each structured data format.

Format Mobile Desktop

JSON-LD 29.78% 30.60%

Microdata 19.55% 17.94%

RDFa 1.42% 1.63%

Microformats2 0.10% 0.10%

300. https://developers.google.com/search/docs/guides/search-gallery
301. https://search.google.com/test/rich-results
302. https://www.w3.org/TR/rdfa-primer/
303. https://schema.org/
304. https://www.w3.org/TR/json-ld11/
305. https://developers.google.com/search/blog/2020/01/data-vocabulary

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 215

https://developers.google.com/search/docs/guides/search-gallery
https://search.google.com/test/rich-results
https://www.w3.org/TR/rdfa-primer/
https://schema.org/
https://www.w3.org/TR/json-ld11/
https://developers.google.com/search/blog/2020/01/data-vocabulary
https://developers.google.com/search/blog/2020/01/data-vocabulary

transformations, relying in search engines JavaScript execution capabilities.

Finally, we found that 4.46% of desktop pages and 4.62% of mobile pages feature structured

data that appears in the raw HTML and is subsequently changed by JavaScript transformations

in the rendered DOM. Depending on the type of changes applied to the structured data

configuration, this could generate mixed signals for search engines when rendering them.

Most prevalent structured data objects

As seen last year306, the most prevalent structured data objects remain to be WebSite ,

SearchAction , WebPage , Organization , and ImageObject , and their usage has

continued to grow:

• WebSite has grown 9.37% on desktop and 10.5% on mobile

• SearchAction has grown 7.64% on both desktop and mobile

• WebPage has grown on desktop 6.83% and 7.09% on mobile

• Organization has grown on desktop 4.75% and 4.98% on mobile

• ImageObject has grown 6.39% on desktop and 6.13% on mobile

It should be noted that WebSite , SearchAction and Organization are all typically

associated with home pages, so this highlights the bias of the dataset and does not reflect the

bulk of structured data implemented on the web.

In contrast, despite the fact that reviews are not supposed to be associated with home pages,

the data indicates that AggregateRating is used on 23.9% on mobile and 23.7% on desktop.

It’s also interesting to see the growth of the VideoObject to annotate videos. Although

YouTube videos dominate video search results in Google307, the usage of VideoObject grew

30.11% on desktop and 27.7% on mobile.

The growth of these objects is a general indication of increased adoption of structured data.

There’s also an indication of what Google gives visibility within search features increases the

incidence rates of lesser used objects. Google announced the FAQPage , HowTo , and QAPage
objects as visibility opportunities in 2019 and they sustained significant year-over-year growth:

• FAQPage markup grew 3,261% on desktop and 3,000% on mobile.

306. https://almanac.httparchive.org/en/2019/seo#structured-data
307. https://moz.com/blog/youtube-dominates-google-video-results-in-2020

Part II Chapter 7 : SEO

216 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/seo#structured-data
https://developers.google.com/search/docs/data-types/video
https://developers.google.com/search/docs/data-types/video
https://moz.com/blog/youtube-dominates-google-video-results-in-2020
https://developers.google.com/search/docs/data-types/faqpage
https://developers.google.com/search/docs/data-types/faqpage
https://developers.google.com/search/docs/data-types/how-to
https://developers.google.com/search/docs/data-types/how-to
https://developers.google.com/search/docs/data-types/qapage
https://developers.google.com/search/docs/data-types/qapage

• HowTo markup grew 605% on desktop and 623% on mobile.

• QAPage markup grew 166.7% on desktop and 192.1% on mobile.

Again, it’s important to note that this data might not be representative of their actual level of growth,

since these objects are usually placed on internal pages.

The adoption of structured data is a boon for the web as extracting data is valuable to a wealth

of use cases. We expect this to continue to grow as search engines expand their usage and as it

begins to power applications beyond web search.

Metadata

Metadata is an opportunity to describe and explain the value of the content on the other side of

the click. While page titles are believed to be weighed directly in search rankings, meta

descriptions are not. Both elements can encourage or discourage a user to click or not click

based on their contents.

We examined these features to see how pages are quantitatively aligning with best practices to

drive traffic from organic search.

Titles

The page title is shown as the anchor text in search engine results and is generally considered

one of the most valuable on-page elements that impacts a page’s ability to rank.

When analyzing the usage of the title tag, we found that 99% of desktop and mobile pages

have one. This represents a slight improvement since last year308, when 97% of mobile pages had

a title tag.

The median page features a page title that is six words long. There is no difference in the word

count between the mobile and desktop contexts within our dataset. This suggests that the page

title element is an element that is not modified between different page template types.

308. https://almanac.httparchive.org/en/2019/seo#page-titles

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 217

https://almanac.httparchive.org/en/2019/seo#page-titles

The median page title character count is 38 characters on both mobile and desktop.

Interestingly, this is up from 20 characters on desktop and 21 characters on mobile from last

year’s analysis309. The disparity between the contexts has disappeared year-over-year except

within the 90th percentile wherein there is a one character difference.

Figure 7.11. Distribution of the number of words per page title.

309. https://almanac.httparchive.org/en/2019/seo#page-titles

Part II Chapter 7 : SEO

218 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-title-word-count.png
https://almanac.httparchive.org/static/images/2020/seo/seo-title-word-count.png
https://almanac.httparchive.org/en/2019/seo#page-titles
https://almanac.httparchive.org/en/2019/seo#page-titles

Meta descriptions

The meta description acts as the advertising tagline for a web page. Although a recent study310

suggests that this tag is ignored and rewritten by Google 70% of the time, it is an element that is

prepared with the goal of enticing a user to click through.

When analyzing the usage of meta descriptions, we found that 68.62% of desktop pages and

68.22% of mobile pages have one. Although this may be surprisingly low, it is a slight

improvement from last year311, when only 64.02% of mobile pages had a meta description.

Figure 7.12. Distribution of the number of characters per page title.

310. https://www.searchenginejournal.com/google-rewrites-meta-descriptions-over-70-of-the-time/382140/
311. https://almanac.httparchive.org/en/2019/seo#meta-descriptions

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 219

https://almanac.httparchive.org/static/images/2020/seo/seo-title-character-count.png
https://almanac.httparchive.org/static/images/2020/seo/seo-title-character-count.png
https://www.searchenginejournal.com/google-rewrites-meta-descriptions-over-70-of-the-time/382140/
https://almanac.httparchive.org/en/2019/seo#meta-descriptions

The median length of the meta description is 19 words. The only disparity in word count takes

place in the 90th percentile where the desktop content has one more word than mobile.

The median character count for the meta description is 138 characters on desktop pages and

Figure 7.13. Distribution of the number of words per meta description.

Figure 7.14. Distribution of the number of characters per meta description.

Part II Chapter 7 : SEO

220 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-meta-description-word-length.png
https://almanac.httparchive.org/static/images/2020/seo/seo-meta-description-word-length.png
https://almanac.httparchive.org/static/images/2020/seo/seo-meta-description-character-length.png
https://almanac.httparchive.org/static/images/2020/seo/seo-meta-description-character-length.png

136 characters on mobile pages. Aside from the 75th percentile, there is a small disparity

between mobile and desktop meta description lengths distributed across the dataset. SEO best

practices suggest limiting the specified meta description to up to 160 characters, but Google,

inconsistently, may display upwards of 300 characters in its snippets.

With meta descriptions continuing to power other snippets such as social and news feed

snippets, and given that Google continually rewrites them and does not consider them a direct

ranking factor, it is reasonable to expect that meta descriptions will continue to grow beyond

the 160 character limitation.

Images

The usage of images, particularly using img tags, within a page often suggests a focus on visual

presentation of content. Although search engine capabilities regarding computer vision have

continued to improve, we have no indication that this technology is being used in the ranking of

pages. alt attributes remain the primary way to explain an image in lieu of a search engine’s

ability to “see” it. alt attributes also support accessibility and clarify the elements on the page

for users that are visually impaired.

The median desktop page includes 21 img tags and the median mobile page has 19 img tags.

The web continues to trend toward image-heaviness with the growth of bandwidth and the

ubiquity of smartphones. However, this comes at a cost of performance.

Figure 7.15. Distribution of the number of elements per page.

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 221

https://almanac.httparchive.org/static/images/2020/seo/seo-img-elements-per-page.png
https://almanac.httparchive.org/static/images/2020/seo/seo-img-elements-per-page.png

The median web page is missing 2.99% of alt attributes on desktop and 2.44% of alt
attributes on mobile. For more information on the importance of alt attributes, see the

Accessibility chapter.

We found that the median page contains alt attributes on only 51.22% of their images.

Figure 7.16. Distribution of the percent of elements missing image alt attributes per

page.

Part II Chapter 7 : SEO

222 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-missing-img-alt-attribute.png
https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-missing-img-alt-attribute.png

The median web page has 10.00% of images with blank alt attributes on desktop and 11.11%

on mobile.

Figure 7.17. Distribution of the percent of images having alt attributes per page.

Figure 7.18. Distribution of the percent of images having blank alt attributes per page.

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 223

https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-img-alt-attributes-present.png
https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-img-alt-attributes-present.png
https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-blank-img-alt-attributes.png
https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-blank-img-alt-attributes.png

Links

Modern search engines use hyperlinks between pages for the discovery of new content for

indexing and as an indication of authority for ranking. The link graph is something that search

engines actively police both algorithmically and through manual review. Web pages pass link

equity through their sites and to other sites through these hyperlinks, therefore it is important

to ensure that there is a wealth of links throughout any given page, but also, as Google

mentions in its SEO Starter Guide312 to link wisely.

Outgoing links

As part of this analysis we are able to assess the outgoing links from each page, whether to

internal pages from the same domain, as well as external ones, however, have not analyzed

incoming links.

The median desktop page includes 76 links while the median mobile page has 67. Historically,

the direction from Google suggested that links be limited to 100 per page. While that

recommendation is outdated on the modern web and Google has since then mentioned that

there are no limits313, the median page in our dataset adheres to it.

The median page has 61 internal links (going to pages within the same site) on desktop and 54

Figure 7.19. Distribution of the number of links per page.

312. https://developers.google.com/search/docs/beginner/seo-starter-guide#use-links-wisely
313. https://www.seroundtable.com/google-link-unlimited-18468.html

Part II Chapter 7 : SEO

224 2020 Web Almanac by HTTP Archive

https://developers.google.com/search/docs/beginner/seo-starter-guide#use-links-wisely
https://www.seroundtable.com/google-link-unlimited-18468.html
https://almanac.httparchive.org/static/images/2020/seo/seo-outgoing-links.png
https://almanac.httparchive.org/static/images/2020/seo/seo-outgoing-links.png

on mobile. This is down 12.8% and 10% respectively from last year’s analysis314. This suggests

that sites are not maximizing the ability to improve the crawlability and link equity flow through

their pages in the way they did the year before.

The median page is linking to external sites 7 times on desktop and 6 times on mobile. This is a

decrease from last year, when it was found that the median number of external links per page

were 10 in desktop and 8 on mobile. This decrease in external links could suggest that websites

are now being more careful when linking to other sites, whether to avoid passing link popularity

or referring users to them.

Figure 7.20. Distribution of the number of internal links per page.

314. https://almanac.httparchive.org/en/2019/seo#linking

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 225

https://almanac.httparchive.org/en/2019/seo#linking
https://almanac.httparchive.org/static/images/2020/seo/seo-outgoing-links-internal.png
https://almanac.httparchive.org/static/images/2020/seo/seo-outgoing-links-internal.png

Text versus image links

The median web page uses an image as anchor text to link in 9.80% of desktop and 9.82% of

mobile pages. These links represent lost opportunities to implement keyword-relevant anchor

text. This only becomes a significant issue at the 90th percentile of pages.

Figure 7.21. Distribution of the number of outgoing external links per page.

Part II Chapter 7 : SEO

226 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-outgoing-links-external.png
https://almanac.httparchive.org/static/images/2020/seo/seo-outgoing-links-external.png

Mobile versus desktop links

There is a disparity in the links between mobile and desktop that will negatively impact sites as

Google becomes more committed to mobile-only indexing rather than just mobile-first

indexing. This is illustrated in the 62 links on mobile versus the 68 links on desktop for the

median web page.

Figure 7.22. Distribution of the percent of links containing images per page.

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 227

https://almanac.httparchive.org/static/images/2020/seo/seo-image-links.png
https://almanac.httparchive.org/static/images/2020/seo/seo-image-links.png

rel=nofollow , ugc , and sponsored attributes usage

In September of 2019, Google introduced attributes315 that allow publishers to classify links as

being sponsored or user generated content. These attributes are in addition to

rel=nofollow which was previously introduced in 2005316. The new attributes, rel=ugc
and rel=sponsored , are meant to clarify or qualify the reason as to why these links are

appearing on a given web page.

Our review of pages indicates that 28.58% of pages include rel=nofollow attributes on

desktop and 30.74% on mobile. However, rel=ugc and rel=sponsored adoption is quite

low with less than 0.3% of pages (about 20,000) having either. Since these attributes don’t add

any more value to a publisher than rel=nofollow , it is reasonable to expect that the rate of

adoption will continue to be slow.

Figure 7.23. Distribution of the number of text links per page.

315. https://webmasters.googleblog.com/2019/09/evolving-nofollow-new-ways-to-identify.html
316. https://googleblog.blogspot.com/2005/01/preventing-comment-spam.html

Part II Chapter 7 : SEO

228 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-text-links.png
https://almanac.httparchive.org/static/images/2020/seo/seo-text-links.png
https://webmasters.googleblog.com/2019/09/evolving-nofollow-new-ways-to-identify.html
https://googleblog.blogspot.com/2005/01/preventing-comment-spam.html

Advanced

This section explores the opportunities for optimization related to web configurations and

elements that may not directly affect a site’s crawlability or indexability, but have either been

confirmed by search engines to be used as ranking signals or will affect the capacity of websites

to leverage search features.

Mobile friendliness

With the increasing popularity of mobile devices to browse and search across the web, search

engines have been taking mobile friendliness into consideration as a ranking factor for several

years317.

Also, as mentioned before, since 2016318 Google has been moving to a mobile-first index,

meaning that the content that is crawled, indexed, and ranked is the one accessible to mobile

users and the Smartphone Googlebot319.

Figure 7.24. Percent of pages having rel=nofollow , rel=ugc , and rel=sponsored
attributes.

317. https://developers.google.com/search/blog/2015/02/finding-more-mobile-friendly-search
318. https://developers.google.com/search/blog/2016/11/mobile-first-indexing
319. https://developers.google.com/search/docs/advanced/crawling/googlebot?hl=en

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 229

https://almanac.httparchive.org/static/images/2020/seo/seo-nofollow-ugc-sponsored-attributes.png
https://almanac.httparchive.org/static/images/2020/seo/seo-nofollow-ugc-sponsored-attributes.png
https://developers.google.com/search/blog/2015/02/finding-more-mobile-friendly-search
https://developers.google.com/search/blog/2015/02/finding-more-mobile-friendly-search
https://developers.google.com/search/blog/2016/11/mobile-first-indexing
https://developers.google.com/search/docs/advanced/crawling/googlebot?hl=en

Additionally, since July 2019320 Google is using the mobile-first index for all new websites and

earlier in March, it announced that 70% of pages shown in their search results have already

shifted over321. It is now expected that Google fully switches to a mobile-first index in March

2021322.

Mobile friendliness should be fundamental for any website looking to provide a good search

experience, and as a consequence, grow in search results.

A mobile-friendly website can be implemented through different configurations: by using a

responsive web design, with dynamic serving, or via a separate mobile web version. However,

maintaining a separate mobile web version is not recommended anymore by Google, who

endorse responsive web design instead.

Viewport meta tag

The browser’s viewport is the visible area of a page content, which changes depending on the

used device. The <meta name="viewport"> tag (or viewport meta tag) allows you to specify

to browsers the width and scaling of the viewport, so that it is correctly sized across different

devices. Responsive websites use the viewport meta tag as well as CSS media queries to deliver

a mobile friendly experience.

42.98% of mobile pages and 43.2% desktop ones have a viewport meta tag with the

content=initial-scale=1,width=device-width attribute. However, 10.84% of mobile

pages and 16.18% of desktop ones are not including the tag at all, suggesting that they are not

yet mobile friendly.

320. https://developers.google.com/search/blog/2019/05/mobile-first-indexing-by-default-for
321. https://webmasters.googleblog.com/2020/03/announcing-mobile-first-indexing-for.html
322. https://webmasters.googleblog.com/2020/07/prepare-for-mobile-first-indexing-with.html

Part II Chapter 7 : SEO

230 2020 Web Almanac by HTTP Archive

https://developers.google.com/search/blog/2019/05/mobile-first-indexing-by-default-for
https://webmasters.googleblog.com/2020/03/announcing-mobile-first-indexing-for.html
https://webmasters.googleblog.com/2020/03/announcing-mobile-first-indexing-for.html
https://webmasters.googleblog.com/2020/07/prepare-for-mobile-first-indexing-with.html
https://webmasters.googleblog.com/2020/07/prepare-for-mobile-first-indexing-with.html

CSS media queries

Media queries are a CSS3 feature that play a fundamental role in responsive web design, as

they allow you to specify conditions to apply styling only when the browser and device match

certain rules. This allows you to create different layouts for the same HTML depending on the

viewport size.

We found that 80.29% of desktop pages and 82.92% of the mobile ones are using either a

height , width , or aspect-ratio CSS feature, meaning that a high percentage of pages

have responsive features. The most popularly used features can be seen in the table below.

Figure 7.25. Percent of pages having each viewport meta tag content attribute value.

Viewport Mobile Desktop

initial-scale=1,width=device-width 42.98% 43.20%

not-set 10.84% 16.18%

initial-scale=1,maximum-scale=1,width=device-width 5.88% 5.72%

initial-scale=1,maximum-scale=1,user-
scalable=no,width=device-width

5.56% 4.81%

initial-scale=1,maximum-scale=1,user-
scalable=0,width=device-width

3.93% 3.73%

Figure 7.26. Percent of pages that include each media query feature.

Feature Mobile Desktop

max-width 78.98% 78.33%

min-width 75.04% 73.75%

-webkit-min-device-pixel-ratio 44.63% 38.78%

orientation 33.48% 33.49%

max-device-width 26.23% 28.15%

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 231

Vary: User-Agent

When implementing a mobile friendly website with a dynamic serving configuration—one in

which you show different HTMLs of the same page based on the used device—it is

recommended to add a Vary: User-Agent HTTP header to help search engines discover the

mobile content when crawling the website, as it informs that the response varies depending on

the user agent.

Only 13.48% of the mobile pages and 12.6% of the desktop pages were found to specify a

Vary: User-Agent header.

<link rel="alternate" media="only screen and (max-width: 640px)">

Desktop websites that have separate mobile versions are recommended to link to them using

this tag in the head of their HTML. Only 0.64% of the analyzed desktop pages were found to

be including the tag with the specified media attribute value.

Web performance

Having a fast-loading website is fundamental to provide a great user search experience.

Because of its importance, it has been taken into consideration as a ranking factor by search

engines for years. Google initially announced using site speed as a ranking factor in 2010323, and

then in 2018 did the same for mobile searches324.

As announced in November 2020, three performance metrics known as Core Web Vitals325 are

on track to be a ranking factor as part of the “page experience” signals in May 2021. Core Web

Vitals consist of:

Largest Contentful Paint326 (LCP)

• Represents: user-perceived loading experience

• Measurement: the point in the page load timeline when the page’s largest image or

text block is visible within the viewport

• Goal: <2.5 seconds

323. https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html
324. https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html
325. https://webmasters.googleblog.com/2020/05/evaluating-page-experience.html
326. https://web.dev/articles/lcp

Part II Chapter 7 : SEO

232 2020 Web Almanac by HTTP Archive

https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html
https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html
https://webmasters.googleblog.com/2020/05/evaluating-page-experience.html
https://web.dev/articles/lcp

First Input Delay327 (FID)

• Represents: responsiveness to user input

• Measurement: the time from when a user first interacts with a page to the time

when the browser is actually able to begin processing event handlers in response to

that interaction

• Goal: <300 milliseconds

Cumulative Layout Shift328 (CLS)

• Represents: visual stability

• Measurement: the sum of the number of layout shift scores approximating the

percent of the viewport that shifted

• Goal: <0.10

Core Web Vitals experiences per device

Desktop continues to be the more performant platform for users despite more users on mobile

devices. 33.13% of websites scored Good Core Web Vitals for desktop while only 19.96% of

their mobile counterparts passed the Core Web Vitals assessment.

327. https://web.dev/articles/fid
328. https://web.dev/articles/cls

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 233

https://web.dev/articles/fid
https://web.dev/articles/cls

Core Web Vitals experiences per country

A user’s physical location impacts performance perception as their locally available telecom

infrastructure, network bandwidth capacity, and the cost of data create unique loading

conditions.

Users located in the United States recorded the largest absolute number of websites with Good

Core Web Vitals experiences despite only 32% of sites earning the passing grade. Republic of

Korea recorded the highest percentage of Good Core Web Vital experiences at 52%. The

relative portion of total websites requested by each country is worth noting. Users in United

States generated 8X the total origin requests as generated by Republic of Korea users.

Figure 7.27. Percent of websites passing the Core Web Vitals assessment per device.

Part II Chapter 7 : SEO

234 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/seo/seo-good-core-web-vitals-score-per-device.png
https://almanac.httparchive.org/static/images/2020/seo/seo-good-core-web-vitals-score-per-device.png

Additional analyses of Core Web Vitals performance by dimensions by effective connection

type and specific metrics are available in the Performance chapter.

Internationalization

Internationalization covers the configurations that multilingual or multi-country websites can

use to inform search engines about their different language and/or country versions, specify

Figure 7.28. Percent of websites passing the Core Web Vitals assessment per country.

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 235

https://almanac.httparchive.org/static/images/2020/seo/seo-aggregate-cwv-performance-by-country.png
https://almanac.httparchive.org/static/images/2020/seo/seo-aggregate-cwv-performance-by-country.png

which are the relevant pages to show users in each case, and avoid targeting issues.

The two international configurations that we analyzed are the content-language meta tag

and the hreflang attributes, that can be used to specify the language and the content of each

page. Additionally, hreflang annotations allow you to specify the alternate language or

country versions of each page.

Search engines like Google329 and Yandex330 use hreflang attributes as a signal to determine

the page’s language and country target, and although Google doesn’t use the HTML lang or the

content-language meta tag, the latter last tag is used by Bing.

hreflang

8.1% of desktop pages and 7.48% of mobile pages use the hreflang attribute, which might

seem low, but this is natural because these are only used by multilingual or multi-country

websites.

We found that only 0.09% of the desktop pages and 0.07% of the mobile pages implement

hreflang via their HTTP headers, and that most rely on the HTML head implementation.

We also identified that there are some pages that rely on JavaScript to render hreflang

annotations. 0.12% of desktop and mobile pages are showing hreflang in the rendered but

not in the raw HTML.

From a language and country value perspective, when analyzing the implementation via the

HTML head, we found that English (en) is the most popular used value, with 4.11% of the

mobile and 4.64% of the desktop pages including it. After English, the second most popular

value is x-default (used when defining a default or fallback version for users of non-targeted

languages or countries), with 2.07% of mobile and 2.2% of the desktop pages including it.

The third, fourth and fifth most popular are German (de), French (fr) and Spanish (es),

followed by Italian (it) and English for the US (en-us), as can be seen in the table below with

the rest of the values implemented via the HTML head .

329. https://support.google.com/webmasters/answer/189077?hl=en
330. https://yandex.com/support/webmaster/yandex-indexing/locale-pages.html

Part II Chapter 7 : SEO

236 2020 Web Almanac by HTTP Archive

https://support.google.com/webmasters/answer/189077?hl=en
https://yandex.com/support/webmaster/yandex-indexing/locale-pages.html

Something slightly different was found in top hreflang language and country values

implemented via the HTTP headers, with English (en) being again the most popular one,

although in this case followed by French (fr), German (de), Spanish (es) and Dutch (nl) as

the top values.

Figure 7.29. Percent of pages that include the top hreflang values in the HTML head .

Value Mobile Desktop

en 4.11% 4.64%

x-default 2.07% 2.20%

de 1.76% 1.88%

fr 1.74% 1.87%

es 1.74% 1.84%

it 1.27% 1.33%

en-us 1.15% 1.31%

ru 1.12% 1.13%

en-gb 0.87% 0.98%

pt 0.87% 0.87%

nl 0.83% 0.94%

ja 0.73% 0.81%

pl 0.72% 0.75%

de-de 0.69% 0.78%

tr 0.69% 0.66%

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 237

Content-Language

When analyzing the content-language usage and values, whether by implementing it as a

meta tag in the HTML head or in the HTTP headers, we found that only 8.5% of mobile pages

and 9.05% of desktop pages were specifying it in the HTTP headers. Even fewer websites were

specifying their language or country with the content-language tag in the HTML head ,

with only 3.63% of mobile pages and 3.59% of desktop pages featuring the meta tag.

From a language and country value perspective, we found that the most popular values

specified in the content-language meta-tag and HTTP headers are English (en) and

English for the US (en-us).

In the case of English (en) we identified that 4.34% of desktop and 3.69% of mobile pages

specified it in the HTTP headers and 0.55% of the desktop and 0.48% of the mobile pages were

doing so via the content-language meta tag in the HTML head .

For English for the US (en-us), the second most popular value, it was found that only 1.77% of

mobile pages and 1.7% of desktop ones were specifying it in the HTTP headers, and 0.3% of the

mobile pages and 0.36% desktop ones were doing it so in the HTML.

The rest of the most popular language and country values can be seen in the tables below.

Figure 7.30. Percent of pages that include the top hreflang values in HTTP headers.

Values Mobile Desktop

en 0.05% 0.06%

fr 0.02% 0.02%

de 0.01% 0.02%

es 0.01% 0.01%

nl 0.01% 0.01%

Part II Chapter 7 : SEO

238 2020 Web Almanac by HTTP Archive

Figure 7.31. Percent of pages using the top content-language values in HTTP headers.

Value Mobile Desktop

en 3.69% 4.34%

en-us 1.77% 1.70%

de 0.50% 0.44%

es 0.34% 0.33%

fr 0.31% 0.34%

ru 0.18% 0.16%

pt-br 0.15% 0.16%

nl 0.13% 0.15%

it 0.13% 0.13%

ja 0.08% 0.10%

Figure 7.32. Percent of pages using the top content-language values in HTML meta tags.

Value Mobile Desktop

en 0.48% 0.55%

en-us 0.30% 0.36%

pt-br 0.24% 0.24%

ja 0.19% 0.26%

fr 0.18% 0.19%

tr 0.17% 0.13%

es 0.16% 0.15%

de 0.15% 0.11%

cs 0.12% 0.12%

pl 0.11% 0.09%

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 239

Security

Google places a specific focus on security in all respects. The search engine maintains lists of

sites that have shown suspicious activity or have been hacked. Search Console surfaces these

issues and Chrome users are presented with warnings before visiting sites with these problems.

Additionally, Google provides an algorithmic boost331 to pages that are served over HTTPS332

(Hypertext Transfer Protocol Secure). For a more in-depth analysis on this topic, see the

Security chapter.

HTTPS usage

We found that 77.44% of desktop pages and 73.22% of mobile pages have adopted HTTPS. This

is up 10.38% from last year. It is important to note that browsers have become more aggressive

in pushing HTTPS by signaling that pages are insecure when you visit them without HTTPS.

Also, HTTPS is currently a requirement to capitalize on higher performing protocols such as

HTTP/2 and HTTP/3 (also known as HTTP over QUIC). You can learn more about the state of

these protocols in the HTTP/2 chapter.

All of these things have likely contributed to the higher adoption rate year over year.

Figure 7.33. Percent of pages served with HTTPS.

331. https://developers.google.com/search/blog/2014/08/https-as-ranking-signal
332. https://developers.google.com/search/docs/advanced/security/https

Part II Chapter 7 : SEO

240 2020 Web Almanac by HTTP Archive

https://developers.google.com/search/blog/2014/08/https-as-ranking-signal
https://developers.google.com/search/docs/advanced/security/https
https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-https.png
https://almanac.httparchive.org/static/images/2020/seo/seo-percentage-of-https.png

AMP

AMP333 (previously called Accelerated Mobile Pages) is an open source HTML framework that

was launched by Google in 2015 as a way to help pages load more quickly, especially on mobile

devices. AMP can be implemented as an alternate version of existing web pages or developed

from scratch using the AMP framework.

When there’s an AMP version available for a page, it will be shown by Google in mobile search

results, along with the AMP logo.

It is also important to note that while AMP usage is not a ranking factor for Google (or any

other search engine), web speed is a ranking factor.

Additionally, as of this writing, AMP is a requirement to be featured in Google’s Top Stories

carousel in mobile search results, which is an important feature for news-related publications.

However, this will change in May 2021, when non-AMP content will become eligible as long as

it meets the Google News content policies334 and provides a great page experience335 as

announced by Google in November this year336.

When checking the usage of AMP as an alternate version of a non-AMP based page, we found

that 0.69% of mobile web pages and 0.81% of desktop ones were including an amphtml tag

pointing to an AMP version. Although the adoption is still very low, this is a slight improvement

from last year’s findings337, in which only 0.62% of mobile pages contained a link to an AMP

version.

On the other hand, when assessing the usage of AMP as a framework to develop websites, we

found that only 0.18% of mobile pages and 0.07% of desktop ones were specifying the <html
amp> or <html ⚡> emoji attribute, which are used to indicate AMP-based pages.

Single-page applications

Single-page applications (SPAs) enable browsers to retain and update a single page load even as

the on-page content updates to match a user request. Multiple technologies such as JavaScript

frameworks, AJAX, and WebSockets are used to accomplish lightweight subsequent page loads.

These frameworks required special SEO considerations, although Google has worked to

mitigate the issues caused by client-side rendering with aggressive caching strategies. In a

video from Google Webmaster’s 2019 conference338, Software Engineer Erik Hendriks shared

333. https://amp.dev/
334. https://support.google.com/news/publisher-center/answer/6204050
335. https://developers.google.com/search/docs/guides/page-experience
336. https://developers.google.com/search/blog/2020/11/timing-for-page-experience
337. https://almanac.httparchive.org/en/2019/seo#amp
338. https://youtu.be/rq8sFkl0KnI

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 241

https://amp.dev/
https://support.google.com/news/publisher-center/answer/6204050
https://developers.google.com/search/docs/guides/page-experience
https://developers.google.com/search/blog/2020/11/timing-for-page-experience
https://almanac.httparchive.org/en/2019/seo#amp
https://youtu.be/rq8sFkl0KnI

that Google no longer relies on Cache-Control headers and instead looks for ETag or

Last-Modified headers to see if the content of the file has changed.

SPAs should utilize the Fetch API339 for granular control of caching. The API allows for the

passing of Request objects with specific cache overrides set and can be used to set the

necessary If-Modified and ETag headers.

Undiscoverable resources are still the primary concern of search engines and their web

crawlers. Search crawlers look for the href attributes in <a> tags to find linked pages.

Without these, the page is seen as isolated without internal linking. 5.59% of desktop pages

studied contained no internal links as well as 6.04% of mobile-rendered pages. This is a marker

that the page is part of a JavaScript framework SPA and missing the necessary <a> tag with

valid href attributes required for their internal linking to be discovered.

The discoverability of links in popular JavaScript frameworks used for SPAs increased

dramatically in 2020 over the previous year340. In 2019, 13.08% of mobile navigation links on

React sites used deprecated hash URLs. For 2020, only 6.12% of the tested React links were

hashed.

Similarly, Vue.js saw a drop to 3.45% from the previous year’s 8.15%. Angular was the least

likely to use uncrawlable hashed mobile navigation links in 2019 with only 2.37% of mobile

pages using them. For 2020, that number plummeted to 0.21%.

Conclusion

Consistent with what was found and concluded last year341, most sites have crawlable and

indexable desktop and mobile pages, and are making use of the fundamental SEO-related

configurations.

It is important to highlight how the link discoverability for major JavaScript frameworks used

for SPAs increased dramatically compared to 2019. By testing mobile navigation links for

hashed URLs, we saw -53% instances of uncrawlable links from sites using React, -58% fewer

from Vue.js powered sites, and a -91% reduction from Angular SPAs.

Additionally, we also identified that there has been a slight improvement from last year’s

findings across many of the analyzed areas:

• robots.txt : Last year 72.16% of mobile sites had a valid robots.txt versus

339. https://developer.mozilla.org/docs/Web/API/Fetch_API
340. https://almanac.httparchive.org/en/2019/seo#spa-crawlability
341. https://almanac.httparchive.org/en/2019/seo#conclusion

Part II Chapter 7 : SEO

242 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Fetch_API
https://almanac.httparchive.org/en/2019/seo#spa-crawlability
https://almanac.httparchive.org/en/2019/seo#conclusion

74.91% this year.

• canonical tag: Last year we identified that 48.34% of mobile pages were using a

canonical tag versus 53.61% this year.

• title tag: This year we found that 98.75% of the desktop pages are featuring one,

while 98.7% of mobile pages are also including it. Last year’s chapter found that

97.1% of mobile pages were featuring a title tag.

• meta description: This year, we found 68.62% of desktop pages and 68.22% of

mobile ones had a meta description, an improvement from last year when 64.02%

of mobile pages had one.

• structured data: Despite the fact that reviews are not supposed to be associated

with home pages, the data indicates that AggregateRating is up 23.9% on

mobile and 23.7% on desktop.

• HTTPS usage: 77.44% of desktop pages and 73.22% of mobile pages have adopted

HTTPS. This is up 10.38% from last year.

However, not everything has improved over the last year. The median desktop page includes 61

internal links while the median mobile page has 54. This is down 12.8% and 10% respectively

from last year342, suggesting that sites are not maximizing the ability to improve the crawlability

and link equity flow through their pages.

It is also important to note how there’s still an important opportunity for improvement across

many critical SEO related areas and configurations. Despite the growing use of mobile devices

and Google’s move to a mobile-first index:

• 10.84% of mobile pages and 16.18% of desktop ones are not including the

viewport tag at all, suggesting that they are not yet mobile friendly.

• Non-trivial disparities were found across mobile and desktop pages, like the one

between mobile and desktop links, illustrated in the 62 links on mobile versus the

68 links on desktop for the median web page.

• 33.13% of websites scored Good Core Web Vitals for desktop while only 19.96% of

their mobile counterparts passed the Core Web Vitals assessment, suggesting that

desktop continues to be the more performant platform for users.

These findings could negatively impact sites as Google completes its migration to a mobile-first

342. https://almanac.httparchive.org/en/2019/seo#linking

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 243

https://almanac.httparchive.org/en/2019/seo#linking
https://webmasters.googleblog.com/2020/07/prepare-for-mobile-first-indexing-with.html

index in March 2021343.

Disparities were also found across rendered and non-rendered HTML. For example, the median

mobile page displays 11.5% more words when rendered than its raw HTML, indicating a

reliance on client-side JavaScript to show content.

Search crawlers look for the <a href> tags to find linked pages. Without these, the page is

seen as isolated without internal linking. 5.59% of desktop pages contained no internal links as

well as 6.04% of mobile-rendered pages.

These findings suggest that search engines are continually evolving in their capacity to

effectively crawl, index, and rank websites, and some of the most important SEO configurations

are now also better taken into consideration.

However, many sites across the web are still missing out on important search visibility and

growth opportunities, which also shows the persisting need of SEO evangelization and best

practices adoption across organizations.

Authors

Aleyda Solis

@aleyda aleyda https://www.aleydasolis.com/en/

SEO consultant, author, speaker and entrepreneur. Founder of Orainti344 (a

boutique SEO consultancy working with some of the top Web properties and

brands, from SaaS to marketplaces) and co-founder of Remoters.net345 (a free

remote work hub, featuring remote jobs, tools, events, guides, and more to

facilitate remote work). Aleyda enjoys sharing about SEO through her blog346, the

#SEOFOMO newsletter347, the Crawling Mondays348 video and podcast series and

over Twitter349.

343. https://webmasters.googleblog.com/2020/07/prepare-for-mobile-first-indexing-with.html
344. https://www.orainti.com/
345. https://remoters.net/
346. https://www.aleydasolis.com/en/blog/
347. https://www.aleydasolis.com/en/seo-tips/
348. https://www.aleydasolis.com/en/crawling-mondays-videos/
349. https://twitter.com/aleyda

Part II Chapter 7 : SEO

244 2020 Web Almanac by HTTP Archive

https://webmasters.googleblog.com/2020/07/prepare-for-mobile-first-indexing-with.html
https://twitter.com/aleyda
https://github.com/aleyda
https://www.aleydasolis.com/en/
https://www.orainti.com/
https://remoters.net/
https://www.aleydasolis.com/en/blog/
https://www.aleydasolis.com/en/seo-tips/
https://www.aleydasolis.com/en/crawling-mondays-videos/
https://twitter.com/aleyda

Michael King

@IPullRank ipullrank

An artist and a technologist, all rolled into one, Michael King is the founder of

enterprise digital marketing agency, iPullRank350 and founder of Natural Language

Generation app CopyScience351. Effortlessly leaning on his background as an

independent hip-hop musician, Mr. King is a compelling content creator and an

award-winning dynamic speaker who is called upon to contribute to technology

and marketing conferences and blogs all over the world. You can find Mike talking

trash on Twitter352

Jamie Indigo

@Jammer_Volts fellowhuman1101 https://not-a-robot.com

100% human & totally not a robot, Jamie Indigo untangles technologies to help

humans access useful information and businesses provide valuable digital

experiences. She founded Not a Robot353 to consult with a focus on the human

aspects of technical SEO including ethics & inclusion in technology and the search

industry. She can be found learning in public on Twitter354.

350. https://ipullrank.com
351. https://www.copyscience.io
352. https://twitter.com/ipullrank
353. https://not-a-robot.com
354. https://twitter.com/Jammer_Volts

Part II Chapter 7 : SEO

2020 Web Almanac by HTTP Archive 245

https://twitter.com/IPullRank
https://github.com/ipullrank
https://ipullrank.com/
https://www.copyscience.io/
https://twitter.com/ipullrank
https://twitter.com/Jammer_Volts
https://github.com/fellowhuman1101
https://not-a-robot.com/
https://not-a-robot.com/
https://twitter.com/Jammer_Volts

246 2020 Web Almanac by HTTP Archive

Part II Chapter 8

Accessibility

Written by Olu Niyi-Awosusi and Alex Tait
Reviewed by Adrian Roselli, Eric Bailey, and David Fox
Analyzed by David Fox
Edited by Barry Pollard

Introduction

In 2020, more than ever before, it is becoming increasingly urgent for digital spaces to be

inclusive and accessible to all. With the ongoing pandemic making it even more difficult for folks

to access services in-person and entire industries moving online, disabled people are

disproportionately impacted. Additionally, the number of disabled people is rising due to the

long-term effects355 of the pandemic.

Web accessibility is about achieving feature and information parity and giving complete access

to all aspects of an interface to disabled people. A digital product or website is simply not

complete if it is not usable by everyone. If it excludes certain disabled populations, this is

discrimination and potentially grounds for fines and/or lawsuits.

The Web Content Accessibility Guidelines356, or WCAG, is an internationally recognized set of

355. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects.html
356. https://www.w3.org/WAI/standards-guidelines/wcag/

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 247

https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects.html
https://www.w3.org/WAI/standards-guidelines/wcag/

standards that needs to be met in all websites and applications that utilize the Internet. They

are not laws, but many laws point to WCAG as their basis357.

These guidelines have had multiple releases over the years and the current standard is WCAG

2.1, with WCAG 2.2 currently being vetted as a working draft358. Some regional laws point to

WCAG 2.0 as the requirement, but as Adrian Roselli359 covers in his article WCAG 2.1 is the

Current Standard, Not WCAG 2.0 - and WCAG 2.2 is Coming360 we need to be meeting WCAG

2.1 standards and considering the new criteria coming in WCAG 2.2 as well.

A dangerous trend that has seen more exposure than ever in 2020 is the use of “accessibility

overlays”. These widgets promise one step accessibility compliance and more often than not

introduce new barriers and make the experience for a disabled user quite challenging. It is

important that digital practitioners take ownership over designing and implementing usable

interfaces and not try to subvert this process with a quick fix. For more information see Lainey

Feingold’s article, Honor the ADA: Avoid Web Accessibility Quick Fix Overlays361.

Sadly, year over year, we and other teams conducting analysis such as the WebAIM Million362 are

finding little–and in some cases no–improvement in these metrics. The median overall site

score for all Lighthouse Accessibility363 audit data rose from 73% in 2019 to 80% in 2020. We

hope that this 7% increase represents a shift in the right direction. However, these are

automated checks and could mean that developers are doing a better job of subverting the rule

engine, so we are cautiously optimistic.

Our analysis is based on automated metrics only. It is important to remember that automated

testing captures only a fraction of the accessibility barriers that can be present in an interface.

Qualitative analysis, including manual testing and usability testing with disabled people are

needed in order to achieve an accessible site or application.

We’ve split up our most interesting insights into five categories:

1. Ease of reading,

2. Media on the web,

3. Ease of page navigation,

4. Assistive technologies on the web,

5. Accessibility of form controls.

We hope that this chapter full of sobering metrics and demonstrable accessibility negligence on

the Web will inspire readers to prioritize this work and change their practices, shifting towards

357. https://www.w3.org/WAI/policies/
358. https://www.w3.org/WAI/standards-guidelines/wcag/new-in-22/
359. https://twitter.com/aardrian
360. https://adrianroselli.com/2020/09/wcag-2-1-is-the-current-standard-not-wcag-2-0-and-wcag-2-2-is-coming.html
361. https://www.lflegal.com/2020/08/quick-fix/
362. https://webaim.org/projects/million/
363. https://web.dev/lighthouse-accessibility/

Part II Chapter 8 : Accessibility

248 2020 Web Almanac by HTTP Archive

https://www.w3.org/WAI/policies/
https://www.w3.org/WAI/standards-guidelines/wcag/new-in-22/
https://twitter.com/aardrian
https://adrianroselli.com/2020/09/wcag-2-1-is-the-current-standard-not-wcag-2-0-and-wcag-2-2-is-coming.html
https://adrianroselli.com/2020/09/wcag-2-1-is-the-current-standard-not-wcag-2-0-and-wcag-2-2-is-coming.html
https://www.lflegal.com/2020/08/quick-fix/
https://webaim.org/projects/million/
https://web.dev/lighthouse-accessibility/

a more inclusive and fair Internet.

Ease of reading

Making content as simple and clear to read as possible is an important aspect of web

accessibility. Being unable to read the content of a page prevents a user from being able to

complete tasks on websites. There are many aspects of a web page that make it easier or harder

to read, including color contrast, zooming and scaling of pages, and language identification.

Color contrast

The higher the page contrast, the easier it is for people to view text-based content. People who

may have difficulties viewing low contrast content include those with color vision deficiency,

people with mild to moderate vision loss, and those with contextual difficulties viewing the

content, such as glare on screens in bright light.

Unfortunately, only 21.06% of sites were found to have sufficient color contrast. Which is a

decrease from last year’s already abysmal 22%.

Figure 8.1. Sites with sufficient color contrast.

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 249

https://almanac.httparchive.org/static/images/2020/accessibility/sites-with-sufficient-color-contrast-2019-2020.png
https://almanac.httparchive.org/static/images/2020/accessibility/sites-with-sufficient-color-contrast-2019-2020.png

Zooming and scaling

It is essential that we allow users to zoom the page or content. There are techniques that can be

used to try to disable the ability to scale or zoom the browser. Some operating systems subvert

this harmful pattern, but many do not, and it is an anti-pattern that needs to be avoided.

Zooming is particularly useful for users with low vision. According to the World Health

Organization364, “Globally, 1 billion people have a vision impairment”.

We found that 29.34% of desktop pages and 30.66% of mobile pages attempt to disable scaling

by setting either maximum-scale to a value less than 1, or user-scalable 0 or none .

Some operating systems no longer comply with disabled zoom and scale set in HTML. For

systems that do respect it, this can render the page effectively unusable for some. For more

information about why to avoid disabling browser zoom see Adrian Roselli’s article, Don’t

Disable Zoom365.

Figure 8.2. Sites with zooming and scaling disabled.

364. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
365. https://adrianroselli.com/2015/10/dont-disable-zoom.html

Part II Chapter 8 : Accessibility

250 2020 Web Almanac by HTTP Archive

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://almanac.httparchive.org/static/images/2020/accessibility/sites-with-zooming-and-scaling-disabled.png
https://almanac.httparchive.org/static/images/2020/accessibility/sites-with-zooming-and-scaling-disabled.png
https://adrianroselli.com/2015/10/dont-disable-zoom.html
https://adrianroselli.com/2015/10/dont-disable-zoom.html

Language identification

Setting an HTML lang attribute allows easy translation of a page and better screen reader

support. The percentage of sites with a valid HTML lang attribute on mobile this year was

77.67%, with only 77.7% having a lang attribute at all.

Media on the web

Media is an essential part of the web experience. It can add an enriched context to the

surrounding textual information, and not just for sighted users.

Images and their text alternatives

In 1995, HTML 2.0366 introduced the alt attribute, enabling web authors to provide a text

alternative for the visual information communicated in an image. A screen reader can convey its

visual meaning aurally by announcing the image’s alternative text. Additionally if images are

unable to load, the alternative text for a description will be displayed.

The 2020 Lighthouse audit data shows that only 54% of sites pass the test for images with alt
text. This test looks for the presence of at least one of the alt , aria-label and aria-
labelledby attributes on img elements. In most cases using the alt attribute is the best

choice.

Figure 8.3. Mobile sites have a valid lang attribute.

77.67%

Figure 8.4. Mobiles sites passing the “images with alt text” Lighthouse audit.

54%

366. https://www.w3.org/MarkUp/html-spec/html-spec_5.html#SEC5.10

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 251

https://www.w3.org/MarkUp/html-spec/html-spec_5.html#SEC5.10
https://dequeuniversity.com/rules/axe/3.5/image-alt
https://dequeuniversity.com/rules/axe/3.5/image-alt
https://dequeuniversity.com/rules/axe/3.5/image-alt

Even though the alt attributes have been around for 25 years, we also found that 21.24% of

desktop images and 21.38% of mobile images are lacking alternative text. This is one of the

easiest automated checks to test for using your accessibility tool of choice and should be low

hanging fruit and a relatively straightforward problem to solve.

Screen reader users listen to the “aural UI” as described by Steve Faulker367, an aural or sonic

experience of the interface wherein the structure, semantics and relationships of the content

are announced. This means that screen reader users consume a lot of textual information. For

this reason it is important to assess whether or not an image might not need to be described.

This is a helpful decision tree from the W3C368 for deciding how and whether to describe an

image. If an image is truly decorative and adds nothing meaningful to the surrounding context,

you can assign the alt attribute a null value, alt="" . It is important to do this explicitly

rather than omitting the alt attribute altogether, as omitting it could lead to assistive

technology announcing the image path, which is a very confusing user experience.

We found that 26.20% of desktop pages and 26.23% of mobile pages contain alt attributes

with a null/empty value. We hope this indicates that over a quarter of websites are being

developed with consideration for which images are truly meaningful and not as a means of side-

stepping automated checks.

When describing an image it is imperative to consider what information the user needs and

Figure 8.5. Alt attribute lengths.

367. https://developer.paciellogroup.com/blog/2015/10/thus-spoke-html/
368. https://www.w3.org/WAI/tutorials/images/decision-tree/

Part II Chapter 8 : Accessibility

252 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/accessibility/alt-attribute-lengths.png
https://almanac.httparchive.org/static/images/2020/accessibility/alt-attribute-lengths.png
https://developer.paciellogroup.com/blog/2015/10/thus-spoke-html/
https://www.w3.org/WAI/tutorials/images/decision-tree/

omit additional information to reduce verbosity. For example, a red arrow icon button that has

the action of moving to a new step in the interface could be described as “continue to step 3 of

5” rather than “red arrow png”. The first description tells the user what to expect if they activate

the control, whereas the second just describes its appearance and has an unnecessary file

extension, both of which are irrelevant to the meaning of the image.

Automated checks for the presence of alternative text do not assess the quality of this text. As

described in the previous section, the meaning of an image needs to be considered when

writing this text. One common unhelpful pattern is describing the image with the file extension

name. For the previous “red arrow png” example, a screen reader user likely does not get

helpful information from the image format. We found that 6.8% of desktop sites (with at least

one instance of the alt attribute) had a file extension in its value.

The top 5 file extensions explicitly included in the alt text value (for sites with images that

have non-empty alt values) are jpg , png , ico , gif , and jpeg . This likely comes from a

CMS or another auto-generated alternative text mechanism. It is imperative that these alt

attribute values be meaningful, regardless of how they are implemented.

Images with title attributes

The title attribute which generates a tooltip that displays text is often mistaken as another

reliable way to describe images to assistive technology. However according the HTML

Standard:

Figure 8.6. Alt attributes ending in a file extension.

File extension Desktop Mobile

jpg 4.08% 3.83%

png 2.99% 2.82%

ico 1.35% 1.26%

gif 0.34% 0.33%

jpeg 0.35% 0.31%

“Relying on the title attribute is currently discouraged as many user agents

do not expose the attribute in an accessible manner as required by this

specification” "

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 253

Tooltips also introduce a host of other accessibility barriers such as information only being

revealed on hover/mouseover, information not being properly communicated to assistive

technology, lack of keyboard support, and general poor usability. The history of tooltips and

their barriers are well described by Sarah Higley369 in her blog post Tooltips in the time of WCAG

2.1370.

We found that 16.95% of all alt attributes also contain a title attribute. Of these

instances 73.56% of desktop sites and 72.80% of mobile sites had matching values for both the

alt and title attributes.

Other facts about alt text

The median length for both desktop and mobile alt text is 18 characters. With the average

English word length being 4.7 characters, this means the median alt attribute value is 3-4 words

long. Depending on the image, being terse can be beneficial. However it is hard to imagine 4

words being sufficient for an accurate description of an image with any complexity.

The longest alt text length found for desktop sites was 15,357,625 characters. That’s enough

to fill 5 and a half “War and Peace” sized books (assuming “War and Peace” has an average word

length of 4.7 characters).

Video on the web

Video and other multi-media content can enrich a Web experience, but often is not robustly

supported for all users and can pose major accessibility barriers if it is not implemented with

support. For more information see the W3C’s Making Audio and Video Accessible371.

Captions

Captions or transcripts are needed to communicate aural information for people who are deaf

or hard of hearing and are very also helpful for users who have cognitive disabilities such as

Figure 8.7. The longest known alt text length.

15,357,625

369. https://twitter.com/codingchaos
370. https://sarahmhigley.com/writing/tooltips-in-wcag-21/
371. https://www.w3.org/WAI/media/av/

Part II Chapter 8 : Accessibility

254 2020 Web Almanac by HTTP Archive

https://twitter.com/codingchaos
https://sarahmhigley.com/writing/tooltips-in-wcag-21/
https://sarahmhigley.com/writing/tooltips-in-wcag-21/
https://www.w3.org/WAI/media/av/

audio processing difficulty. Transcripts also help low-vision and blind users by describing

visuals. Video content on the web is not accessible if it does not have accompanying captions.

Similar to the importance of having meaningful alternative text for images, the quality of

captions is also very important.

Of sites using <video> elements, only 0.79% provide closed captions, which we assume based

on the presence of the <track> element (and which are different from open / burned-in

captions). Note that some websites have custom solutions for providing video and audio

captions to users, and we were unable to detect these custom solutions, so the percentage of

sites utilizing captions could be higher, but this figure is indicative of how under-supported

captions are on web video content. We also cannot assess the quality of the captions detected

and whether or not they accurately convey the full meaning of the video they describe.

Autoplaying video

It is arguably a disruptive and undesirable user experience to autoplay and loop video on a

website for all users. Video can be a resource drain for device batteries as well as data. In some

cases, video can contain content that is distressing for users, whether by showing disturbing

imagery or being used as an attack vector against people prone to seizures.

For disabled users there are significant barriers caused by autoplaying and looping video. For

screen reader users, a video that contains audio will likely disrupt the announcements and lead

to confusion. For folks with cognitive disabilities such as ADHD, video can be very distracting

and interrupt the user’s ability to use and understand the interface. People with vestibular

conditions can be dangerously triggered by video as well.

The Web Content Accessibility Guidelines has a criteria 2.2.2 Pause, Stop, Hide372 that requires

that any moving, blinking or scrolling content (including video) that plays for longer than 5

seconds have a mechanism to pause, stop, or hide it.

“Captions not only include dialogue, but identify who is speaking and include

non-speech information conveyed through sound, including meaningful sound

effects” -WCAG, Understanding Success Criterion 1.2.2: Captions "
Figure 8.8. Videos providing closed captions.

0.79%

372. https://www.w3.org/WAI/WCAG21/Understanding/pause-stop-hide.html

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 255

https://www.w3.org/WAI/WCAG21/Understanding/pause-stop-hide.html

Of the pages with video present, we found that 56.98% of desktop pages and 53.64% of mobile

pages have the autoplay attribute, meaning that videos play by default. We also found that

58.42% of desktop pages and 52.86% of mobile pages have the loop attribute, which very

likely means the video plays indefinitely. Though there could be mechanisms to pause, stop or

hide these videos, opting into playing video rather than needing to stop autoplaying and/or

looping the video should be the default. These metrics suggest that over half of websites with

video could have significant accessibility barriers.

Ease of page navigation

Pages need to be easy to navigate so users are not left feeling lost, or unable to find the content

they need to do what brought them to our sites in the first place. Screen reader technology also

needs to be able to differentiate between different sections, so users of this software are not

left with an indecipherable wall of text.

Headings

Headings make it easier for screen readers to properly navigate a page by supplying a hierarchy

that can be jumped through like a table of contents.

Figure 8.9. Most common <video> attributes.

Part II Chapter 8 : Accessibility

256 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/accessibility/common-video-attributes.png
https://almanac.httparchive.org/static/images/2020/accessibility/common-video-attributes.png

Our audits revealed that 58.72% of the sites checked pass the test for properly ordered

headings373 that do not skip levels. These headings convey the semantic structure of the page.

Many screen reader users navigate a page through its headings, so having them in the correct

order–ascending with no jumps–means that assistive technology users will have the best

experience. It is worth noting that we only check pages where these rules are more likely to be

followed; home pages are more likely than interior pages to follow this rule.

Skip links

Skip links enable a user to skip through any interactive content such as a navigation system and

go to another destination, typically the main content of the page. They are typically the first link

on a page and can be persistent in the UI or visibly hidden until they have keyboard focus. This

prevents keyboard users from needing to potentially tab through an extraneous number of

elements to get to the content they are trying to access.

Skip links are considered a bypass for a block. The 2020 Lighthouse audit data revealed that

93.90% of sites pass the bypass block374 test, meaning they have a <header> , skip link or

landmark region to allow users to skip repetitive content.

Tables

Tables are an efficient way to display data with two axes of relationships, making them useful

for comparisons. Users of assistive technology rely on specific accessibility features designed to

navigate properly structured tables in order to have the best experience navigating and

interacting with them. Without valid semantic table markup present, these features cannot be

used.

Figure 8.10. Mobiles sites passing the Lighthouse audit for properly ordered headings.

58.72%

373. https://web.dev/heading-order/
374. https://www.w3.org/WAI/WCAG21/Understanding/bypass-blocks.html

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 257

https://web.dev/heading-order/
https://web.dev/heading-order/
https://www.w3.org/WAI/WCAG21/Understanding/bypass-blocks.html

Table captions

Table captions act as a label for the table supplying context for the table data. Only 4.98% of

desktop sites and 4.20% of mobile sites with a table used a table caption.

Presentational tables

We are fortunate in 2020 to have so many flexible CSS methodologies that allow for fluid

responsive layouts. However, many years ago before the likes of Flexbox and CSS Grid,

developers often used tables for layout. Unfortunately due to some combination of legacy

websites and legacy development techniques there are still sites out there where tables are

used for layout.

If there is an absolute need to reach for this technique, the role of presentation should be

applied to the table such that assistive technology will ignore the table semantics. We found

that 0.63% of desktop and 0.49% of mobile pages had a table with a role of presentation. It’s

hard to know if this is good or bad. It could indicate that there are not many tables used for

presentational purposes, but it is very likely that tables used for layout are just lacking this

needed role.

Document titles

Descriptive page titles are helpful for context when moving between pages, tabs and windows

with assistive technology because the change in context will be announced. Our data shows

98.98% of sites have a title which is a hopeful statistic. However it stands to reason that home

pages may have a higher rate of page titles than less important routes.

Tabindex

Tabindex dictates the order in which focus moves throughout the page. Interactive content

such buttons, links and form controls have a natural tabindex value of 0 . Similarly, custom

elements and widgets that are intended to be interactive and in the keyboard focus order need

Figure 8.11. Accessibility data for tables.

Measurement Desktop Mobile

Tables with captions 4.98% 4.20%

Presentational tables 0.64% 0.49%

Part II Chapter 8 : Accessibility

258 2020 Web Almanac by HTTP Archive

an explicitly assigned tabindex="0" . If a non-interactive element should be focusable but

not in the keyboard tab order a tabindex value of -1 can be used allowing for focus to be

programmatically set with JavaScript.

The focus order of the page should always be determined by the document flow. Setting the

tabindex to a positive integer value overrides the natural order of the page and is considered

bad practice. Respecting the natural order of the page generally leads to a more accessible

experience. We found that 5% of desktop sites and 4.34% of mobile sites used positive integers

as tab index values.

Assistive technologies on the web

People with varying disabilities use different assistive technologies to help them experience the

web. The Tools and Techniques375 article from the Web Accessibility Initiative (WAI) of the W3C

covers how users can perceive, understand and interact with the web using different assistive

technologies.

Some assistive technologies for the web include:

• Screen readers

• Voice control

• Screen magnifiers

• Input devices (such as pointers and switch devices)

Screen readers present content audibly, usually by the computer speaking or announcing the

content in the interface as the user navigates and interacts. This enables blind, low vision, and

other disabled and non-disabled users to consume the content without needing to rely on the

visual cues displayed on the screen.

Introduction to ARIA

In 2014 the WAI published Accessible Rich Internet Applications, or ARIA. They describe ARIA

as376:

“WAI-ARIA, the Accessible Rich Internet Applications Suite, defines a way to

make web content and web applications more accessible to people with " 375. https://www.w3.org/WAI/people-use-web/tools-techniques/
376. https://www.w3.org/WAI/standards-guidelines/aria/

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 259

https://www.w3.org/WAI/people-use-web/tools-techniques/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/

Most developers think of ARIA as attributes we can add to HTML to make it more usable for

screen reader users, but it was never intended to make up for improper markup and native

HTML solutions. ARIA has a lot of nuances which, when misunderstood, can introduce new

accessibility barriers. Furthermore different screen readers have varying limitations with

respect to ARIA support.

The five rules of ARIA

There are five rules of ARIA377 that we need to understand before making use of this powerful

toolset. This is not an official specification with required conformance, but a guide for

understanding and implementing ARIA correctly.

1. If you can use a native HTML element HTML 5.1378 or attribute with the semantics

and behavior you require already built in, instead of repurposing an element and

adding an ARIA role, state or property to make it accessible, then do so.

2. Do not change native semantics, unless you really have to.

3. All interactive ARIA controls must be usable with the keyboard.

4. Do not use role="presentation" or aria-hidden="true" on a focusable

element.

5. All interactive elements must have an accessible name.

ARIA roles

One of the most common ways that ARIA is used is by explicitly defining the role for an

element, which communicates its purpose to assistive technology.

HTML5 introduced many new native elements, all which have implicit semantics379, including

roles. For example the <nav> element has an implicit role="navigation" and does not

need to have this role added explicitly in order to convey its purpose information to assistive

technology. Currently 64.54% of desktop pages have at least one instance of an ARIA role
attribute. The median site has 2 instances of the role attribute.

disabilities. It especially helps with dynamic content and advanced user

interface controls developed with Ajax, HTML, JavaScript, and related

technologies.”

377. https://www.w3.org/TR/using-aria/
378. https://www.w3.org/TR/html51/
379. https://www.w3.org/TR/wai-aria-1.1/#implicit_semantics

Part II Chapter 8 : Accessibility

260 2020 Web Almanac by HTTP Archive

https://www.w3.org/TR/using-aria/
https://www.w3.org/TR/html51/
https://www.w3.org/TR/wai-aria-1.1/#implicit_semantics

Just use a button!

We found that 25.20% of desktop sites and 24.50% of mobile sites had homepages with at least

one element with an explicitly assigned role="button" . This suggests that about a quarter of

websites are using the button role on elements in order to change their semantics, with the

exception of buttons that have been explicitly assigned the button role, which is redundant but

harmless.

If non-interactive elements such as <div> s and s have been given this role, there is a

significant chance one or more of the 5 rules of ARIA have been broken.

It is fairly likely that a native <button> element would be a better choice, per the first rule of

ARIA. It is also possible that the role has been added but the expected keyboard support has

not been supplied, which would break the third rule of ARIA and would violate WCAG 2.1.1,

Keyboard380.

Figure 8.12. Top ten most common ARIA roles.

Figure 8.13. Mobiles sites assigning role="button" to <div> or a

8.28%
380. https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 261

https://almanac.httparchive.org/static/images/2020/accessibility/common-aria-roles.png
https://almanac.httparchive.org/static/images/2020/accessibility/common-aria-roles.png
https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html

We found that 8.27% of desktop pages and 8.28% of mobile pages had at least one occurrence

of a <div> or a element with role="button" explicitly defined. This act of adding

ARIA roles, or a “role-up381”, is less ideal than using the correct native HTML element.

We found that 15.50% of desktop pages and 14.62% of mobile pages contained at least one

anchor element with role="button" . If a role has been applied to an element that should

have its implicit role respected, such as giving a role="button" to a link (which has an

implicit role="link"), this would break the second rule of ARIA. It would also violate WCAG

2.1.1, Keyboard382 if the correct keyboard behavior has not been implemented (links are not

activated with the space key, whereas buttons are).

Again, in the vast majority of these cases, a better pattern than explicitly defining

role="button" on the element in question would be to leverage the native HTML

<button> element as it comes with the expected semantics and behavior.

Navigation

We found that 22.06% of desktop pages and 21.76% of mobile pages have at least one element

with role="navigation" , which is a landmark role. Per the first rule of ARIA, rather than

adding this role to an element, developers should be leveraging the HTML5 <nav> element

which comes with the correct semantics implicitly. It is possible that this role has been added

explicitly to the <nav> element, which would not be an accessibility issue, though it is

redundant.

Dialog modals

There are many potential accessibility barriers associated with dialog modals. We recommend

reading Scott O’Hara383’s article Having an Open Dialog384 for more context.

We are pleased to report that 19.01% of desktop pages and 18.21% of mobile pages have at

least one occurrence of role="dialog" which is up from about 8% in 2019. It is worth noting

some of the increase is probably due to changes in how this metric was measured. This could

also suggest that more developers are considering accessibility when building dialogs and

potentially that frameworks and associated packages may be implementing more accessible

dialog patterns as well. However, making a dialog modal accessible requires a lot more than

using the dialog role. Focus management, proper keyboard support, and screen reader

exposure all need to be addressed.

381. https://adrianroselli.com/2020/02/role-up.html
382. https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
383. https://twitter.com/scottohara
384. https://www.scottohara.me/blog/2019/03/05/open-dialog.html

Part II Chapter 8 : Accessibility

262 2020 Web Almanac by HTTP Archive

https://adrianroselli.com/2020/02/role-up.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
https://twitter.com/scottohara
https://www.scottohara.me/blog/2019/03/05/open-dialog.html

Tabs

Tabs are a common interface widget but present a challenge for many developers to make

accessible. A common pattern for accessible implementation comes from the WAI-ARIA

Authoring Practices Design Patterns385. Please note that the ARIA Authoring Practices

document is not a specification and is meant to show idealized ARIA constructs. They should

not be used in production without testing with your users.

In this pattern, a parent container has a role="tablist" with children elements that have a

role="tab" . These tabs are associated with elements that have a role="tabpanel" , and

contain the content for that tab.

Figure 8.14. Element with the tablist role (Source: W3C386)

385. https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel
386. https://www.w3.org/TR/wai-aria-practices-1.1/examples/tabs/tabs-1/tabs.html

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 263

https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel
https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel
https://almanac.httparchive.org/static/images/2020/accessibility/role-tab-list.png
https://almanac.httparchive.org/static/images/2020/accessibility/role-tab-list.png
https://www.w3.org/TR/wai-aria-practices-1.1/examples/tabs/tabs-1/tabs.html

Figure 8.15. Element with the tab role. (Source: W3C387)

387. https://www.w3.org/TR/wai-aria-practices-1.1/examples/tabs/tabs-1/tabs.html

Part II Chapter 8 : Accessibility

264 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/accessibility/role-tab.png
https://almanac.httparchive.org/static/images/2020/accessibility/role-tab.png
https://www.w3.org/TR/wai-aria-practices-1.1/examples/tabs/tabs-1/tabs.html

For desktop pages, 7.00% have at least one element with a role="tablist" whereas there

only 5.79% of pages have elements with a role="tab" and 5.46% of pages have elements

with a role="tabpanel" . This suggests that the pattern may only be partially implemented.

Even if there is dynamic rendering at play for some of the tab/tabpanel elements, the currently

visible or first tab/tabpanel would theoretically be in the DOM on page load.

Presentation

When an element has been given a role="presentation" its semantics are stripped away,

for both the element it is assigned to and its required children. For example, tables and lists

both have required children, so if the parent has a role="presentation" this essentially

cascades to the child elements, which will also have their semantics stripped. Removing an

element’s semantics means that it is no longer that element in any capacity except for its visual

appearance. For example, a list with a role="presentation" will no longer communicate

any information to a screen reader about the list structure.

Figure 8.16. Element with the tabpanel role. (Source: W3C388)

388. https://www.w3.org/TR/wai-aria-practices-1.1/examples/tabs/tabs-1/tabs.html

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 265

https://almanac.httparchive.org/static/images/2020/accessibility/role-tab-panel.png
https://almanac.httparchive.org/static/images/2020/accessibility/role-tab-panel.png
https://www.w3.org/TR/wai-aria-practices-1.1/examples/tabs/tabs-1/tabs.html

A common usage of this attribute is for <table> elements that have been used for layout

rather than for tabular data. We do not recommend using tables in this way. For layout, we have

powerful CSS tools today such as Flexbox and CSS Grid. In general there are very few use cases

where role="presentation" is particularly helpful for assistive technology users, use this

role sparingly and thoughtfully.

ARIA attributes

ARIA attributes can be assigned to HTML elements to enhance the accessibility of the

interface. Respecting the first rule of ARIA, they should not be used to achieve something that

can be done with native HTML.

Labeling and describing elements with ARIA

The browser’s accessibility tree has a computation system that assigns the accessible name (if

there is one) to a control, widget, group, or landmark such that it can be announced by assistive

technology. There is a specificity ranking that happens to determine which value is assigned to

the accessible name.

The accessible name can be derived from an element’s content (such as button text), an

attribute (such as an image alt text value), or an associated element (such as a

programmatically associated label for a form control). For more information about accessible

Figure 8.17. Top 10 most used aria attributes.

Part II Chapter 8 : Accessibility

266 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/accessibility/most-used-aria-attributes.png
https://almanac.httparchive.org/static/images/2020/accessibility/most-used-aria-attributes.png

names see Léonie Watson’s article, What is an accessible name?389

We can also use ARIA to provide accessible names for elements. There are two ARIA attributes

that accomplish this, aria-label , aria-labelledby . Either of these attributes will “win”

the accessible name computation and override the natively derived accessible name, so use

them with caution and be sure to test with a screen reader or look at the accessibility tree to

confirm that the accessible name is what was expected. When using ARIA to name an element,

it is important to ensure that the WCAG 2.5.3, Label in Name390 criterion has not been violated,

which expects visible labels to be at least a part of its accessible name.

The aria-label element allows a developer to provide a string value and this will be used for

the accessible name for the element. We found that 40.44% of desktop pages and 38.72% of

mobile home pages had at least one element with the aria-label attribute, making it the

most popular ARIA attribute for providing accessible names.

The aria-labelledby attribute accepts an id reference as its value, which associates it

with another element in the interface to provide its accessible name. The element becomes

“labelled by” this other element which supplies its accessible name. We found that 17.73% of

desktop pages and 16.21% of mobile pages had at least one element with the aria-
labelledby attribute.

Again, the first rule of ARIA should be respected. If the element can derive its accessible name

without needing ARIA, this is preferable. For example a <button> , which is not a graphical

element, should get its accessible name from its text content rather than an ARIA attribute.

Form elements should derive their accessible names from properly associated <label>
elements whenever possible.

The aria-describedby attribute can be used in cases where a more robust description is

needed for an element. It also accepts an id reference as its value to connect with descriptive

text that exists elsewhere in the interface. It does not supply the accessible name, it should be

used in conjunction with an accessible name as a supplement, not a replacement. We found that

11.31% of desktop pages and 10.56% of mobile pages had at least one element with the aria-
describedby attribute.

Fun fact! We found 3,200 websites with the attribute aria-labeledby , which is a

misspelling of the aria-labelledby attribute! Be sure to run those automated checks to

pick up these easily avoidable errors.

389. https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
390. https://www.w3.org/WAI/WCAG21/Understanding/label-in-name.html

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 267

https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA14.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA14.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA16.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA16.html
https://www.w3.org/WAI/WCAG21/Understanding/label-in-name.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA1.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA1.html

Hiding content

There are several ways to ensure that assistive technology will not discover content. We can

leverage CSS display:none or visibility:hidden to omit the elements from the

accessibility tree. If an author wishes to hide content from screen readers specifically they can

use aria-hidden="true" . We found that 48.09% of desktop pages and 48.23% of mobile

pages had at least one instance of an element with the aria-hidden attribute.

These techniques are particularly helpful when something in the visual interface is redundant

or unhelpful to assistive technology users. It should be used thoughtfully as it is essential to

deliver feature parity for all users. Avoid using it to skip over content that is challenging to make

accessible.

Hiding and showing content is a prevalent pattern in modern interfaces, and it can be helpful to

declutter the UI for everyone. There are two ARIA attributes that are helpful additions to this

disclosure pattern. The aria-expanded attribute should have a true / false value that

toggles depending on whether the disclosed content is shown or not. Additionally the aria-
controls attribute can be associated with an id on the disclosed content creating a

programmatic relationship between the triggering control (which should be a button) and the

content that gets displayed.

We found that 20.98% of desktop pages and 21.00% of mobile pages had at least one element

with the aria-expanded attribute and 17.38% of desktop pages and 16.94% of mobile pages

had at least one element with the aria-controls attribute. This suggests that around one

fifth of websites might be implementing at least partially accessible disclosure widgets. Note

that the aria-controls attribute is considered a best practice, rather than essential, for the

disclosure pattern because screen reader support is not yet ideal.

Screen reader only text

A common technique that developers often employ to supply additional information for screen

reader users is to use CSS to visually hide a passage of text such that it will be announced by a

screen reader, but not visually present in the interface. Since display:none and

visibility:hidden both prevent content from being present in the accessibility tree, there

is a common “hack” involving a chunk of CSS code that will accomplish this. The most common

CSS class names for this code snippet (both by convention and throughout libraries like

bootstrap) are sr-only and visually-hidden . We found that 13.31% of desktop pages

and 12.37% of mobile pages had one or both of these CSS class names.

Part II Chapter 8 : Accessibility

268 2020 Web Almanac by HTTP Archive

Announcing dynamically rendered content

One of the biggest accessibility challenges in modern web development is handling dynamically

rendered content which is everywhere in interfaces. The presence of new or updated things in

the DOM often needs to be communicated to screen readers. Some thought needs to be put

into which updates need to be conveyed. For example, form validation errors need to be

conveyed whereas a lazy-loaded image may not. There also needs to be done in a way that is not

disruptive to a task in progress.

One tool we have to help with this is ARIA live regions. Live regions allow us to listen for

changes in the DOM, such that the updated content can be announced by a screen reader.

Typically the aria-live attribute is placed on its own container element that is already

present in the DOM rather than an element that is dynamically rendered. It is important to

determine a dedicated node in the DOM that has no chance of being dynamically manipulated

by other factors for the live region, ensuring that the announcements are reliable. When

elements within this container dynamically render or update (for example, status updates or

notification that a form was not successfully submitted) the changes will be announced.

We found that 16.84% of desktop pages and 15.67% of mobile pages have live regions. This

attribute has three potential values: polite , assertive , and off . Typically the polite
value is used, partly because it is the default value, but also because the announcement of the

dynamic content will only happen once the user stops interacting with the page. In many cases

this is the desired user experience, rather than interrupting their input. If a status update is

critical enough, use assertive and it will disrupt the screen reader’s current speech queue. If

it is set to off the announcement will not happen. It is important that the natural screen

reader experience and flow be respected and that the assertive announcements be

reserved for extreme cases, and not used for things like marketing announcements.

Accessibility of form controls

Forms are one of the most important things to get right in terms of accessibility. Successful

submission of form input means users can perform core operations of websites and

applications. For example if a registration flow is inaccessible, a disabled user might never be

able to access the site at all.

It is important to remember that digital accessibility is a civil right and that all people have an

equal right to access information and perform the same functions on the web. If a disabled user

is prevented from executing core web tasks or accessing information, especially for tasks like

submitting forms for government services and other essential activities, there is a clear-cut

case for discrimination in both private and public sectors.

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 269

Form validation

It is very important that any form error handling be communicated to assistive technology.

There are a variety of techniques for handling this depending on the validation implementation.

Web AIM’s Usable and Accessible Form Validation and Error Recovery391 article is a great

resource for learning more about various accessible form validation strategies.

If a form element is required this also needs to be communicated to assistive technology. For

native HTML form elements the required attribute can be used and for customized elements

the aria-required attribute may be needed. If there is an issue with a form submission, this

needs to be conveyed to assistive technology.

Form labels

Form labels should be visible and persistent in the UI and descriptive of the input they are

asking for. It’s a good idea to put unique requirements such as formatting or special characters

in the visible label so that errors can be prevented whenever possible.

It is important to ensure that form labels have a programmatic association with their respective

inputs. It is not sufficient to just display the label visually. We found that only 26.51% of sites

have all of their labels properly associated with their respective inputs (achieved with a

for / id relationship or inputs nested inside labels).

Groups of form controls such as a set of radio inputs or checkboxes should be nested within a

<fieldset> element and given a group label via the <legend> element within the

<fieldset> . The individual controls still need to be programmatically associated with their

respective visible labels as well.

Placeholder text

Do not rely on placeholder text to act as the label for an input. While some screen readers now

have the capability of determining the accessible name from placeholder text, users with

cognitive disabilities can be negatively impacted by a reliance on placeholder text because as

Figure 8.18. Sites having all their labels properly associated

26.51%

391. https://webaim.org/techniques/formvalidation/

Part II Chapter 8 : Accessibility

270 2020 Web Almanac by HTTP Archive

https://webaim.org/techniques/formvalidation/
https://developer.mozilla.org/docs/Web/HTML/Attributes/required
https://developer.mozilla.org/docs/Web/HTML/Attributes/required
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-required_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-required_attribute

soon as a user begins to type in the input the placeholder disappears, and the context is gone.

Voice control users need more than a placeholder value in order to reliably target an element in

the DOM. Additionally placeholder text often fails color contrast requirements, which

negatively impacts users with low vision.

Of the sites that have form controls with placeholder text, 73.89% of them have at least one

instance where there is no <label> element programmatically associated with the control for

desktop and 74.52% for mobile.

Conclusion

This chapter is fittingly included in the User Experience section of this Almanac. As accessibility

advocate Billy Gregory once said392, “when UX doesn’t consider ALL users, shouldn’t it be known

as SOME User Experience, or SUX”. Too often accessibility work is seen as an addition, an edge

case, or even comparable to technical debt and not core to the success of a website or product

as it should be.

Accessibility is not the sole responsibility of developers to implement. The entire product team

and organization have to have it as part of their accountabilities in order to succeed.

Accessibility work needs to shift left in the product cycle, meaning it needs to be baked into the

research, ideation and design stages before it is developed.

Potential accessibility responsibilities by role

This list is not exhaustive and is intended to encourage thought about how all of the roles can

work together to achieve accessible websites and applications, like a relay race of

accountability.

Human Resources/People Operations

• Recruiting and hiring people with accessibility skills including disabled

practitioners.

• Creating an inclusive work environment where people’s disabilities are

accommodated.

UX /Product designers

392. https://twitter.com/thebillygregory/status/552466012713783297?s=20

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 271

https://twitter.com/thebillygregory/status/552466012713783297?s=20

• Considering and talking to people with a range of disabilities in the research and

ideation stages.

• Annotating wireframes with accessibility information such as intended heading

hierarchy, skip links, alternative text suggestions (which could also come from

copywriters/content folks) and screen reader only text.

UI designers

• Color contrast choices, font selections, spacing and line height considerations.

• Animation considerations (determining if they are necessary, supplying static assets

for prefers-reduced-motion scenarios, designing pause/stop mechanisms).

Product managers

• Prioritizing accessibility work in the roadmap, ensuring it does not become

technical debt at the end of a backlog.

• Creating processes for teams to validate their work such as including accessibility in

the definition of done and acceptance criteria.

Developers

• Preferring native HTML solutions whenever possible, understanding ARIA and

when to use it.

• Validating all work with automated and manual testing, evaluating colleagues’ pull

requests with the same criteria.

Quality Assurance

• Including accessibility testing in their workflow.

• Advocating for accessibility considerations when contributing to the team’s quality

strategy and acceptance criteria.

Leadership/C-Suite

• Giving employees bandwidth to learn and grow their accessibility skillset and hiring

practitioners with expertise and lived experiences.

• Considering accessibility core to the product outcomes and viewing accessibility

Part II Chapter 8 : Accessibility

272 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/@media/prefers-reduced-motion
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-reduced-motion

excellence as promotable work.

The tech industry needs to move towards inclusion-driven development. Although this requires

some up-front investment, it is much easier and likely less expensive over time to build

accessibility into the entire cycle such that it can be baked into the product rather than trying to

retrofit sites and apps that were constructed without it in mind.

The largest investment should come in the form of education and process improvements. Once

a UI designer understands the nuances of color contrast requirements, selecting an accessible

color palette should be the same effort as an inaccessible palette. Once a developer deeply

understands native HTML and ARIA and when to reach for certain techniques and tools, the

amount of code they write should be comparable.

As an industry it is time that we acknowledge the story told by the numbers in this chapter; we

are failing disabled people. We need to do better, and this has to come from a combination of

top-down leadership and investment and bottom-up effort to push our practices forward and

advocate for the needs, safety and inclusion of disabled people using the web.

Authors

Olu Niyi-Awosusi

@oluoluoxenfree oluoluoxenfree https://olu.online/

Olu Niyi-Awosusi is a software engineer at the FT who loves lists, learning new

things, Bee and Puppycat, social justice, accessibility393 and trying harder every day.

Alex Tait

@at_fresh_dev alextait1 https://atfreshsolutions.com

Alex Tait is a developer, consultant and educator whose passion lies in the

intersection of accessibility and modern JavaScript within interface architecture

and design systems. As a developer, she believes that inclusion driven

development practices with accessibility at the forefront lead to better products

for everyone. As a consultant and strategist, she believes that less is more, and

that new feature scope creep cannot be prioritized over core feature parity for

disabled users. As an educator, she believes in removing barriers to information so

that tech can become a more diverse, equitable and inclusive industry.

393. https://alistapart.com/article/building-the-woke-web/

Part II Chapter 8 : Accessibility

2020 Web Almanac by HTTP Archive 273

https://twitter.com/oluoluoxenfree
https://github.com/oluoluoxenfree
https://olu.online/
https://alistapart.com/article/building-the-woke-web/
https://twitter.com/at_fresh_dev
https://github.com/alextait1
https://atfreshsolutions.com/

274 2020 Web Almanac by HTTP Archive

Part II Chapter 9

Performance

Written by Karolina Szczur
Reviewed by Boris Schapira, Rick Viscomi, David Fox, Noam Rosenthal, Leonardo Zizzamia, and Shane
Exterkamp
Analyzed by Max Ostapenko and Pokidov N. Dmitry
Edited by Barry Pollard

Introduction

There is an unquestionable, detrimental effect that slow speed has on overall user experience,

and consequently, conversions. But poor performance doesn’t just cause frustration or

negatively affects business goals—it creates real-life barriers to entry. This year’s global

pandemic made those existing barriers even more apparent394. With the shift to remote learning,

work and socializing, suddenly our entire lives were moved online. Poor connectivity and lack of

access to capable devices made this change painful at best, if not impossible, to many. It has

been a real test, highlighting connectivity, device and speed inequalities worldwide.

Performance tooling continues to evolve to portray those diverse aspects of user experience

and make it easier to find underlying issues. Since last year’s Performance chapter395, there have

been numerous significant developments in the space that have already transformed how we

394. https://www.weforum.org/agenda/2020/04/coronavirus-covid-19-pandemic-digital-divide-internet-data-broadband-mobbile/
395. https://almanac.httparchive.org/en/2019/performance

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 275

https://www.weforum.org/agenda/2020/04/coronavirus-covid-19-pandemic-digital-divide-internet-data-broadband-mobbile/
https://almanac.httparchive.org/en/2019/performance

approach speed monitoring.

With a significant release of the popular quality auditing tool, Lighthouse 6, the algorithm

behind the famous Performance Score has changed significantly396, and so did the scores. Core

Web Vitals397, a set of new metrics portraying different aspects of user experience, has been

released. It will be one of the factors for search ranking in the future, shifting the eyes of the

development community onto the new speed signals.

In this chapter, we will be looking at real-world performance data provided by the Chrome User

Experience Report (CrUX)398 through the lens of those new developments as well as analyzing a

handful of other relevant metrics. It is important to note that due to the limitations of iOS,

CrUX mobile results don’t include devices running Apple’s mobile operating system. This fact

will undeniably affect our analysis, especially when examining metric performance on a per-

country basis.

Let’s dive in.

Lighthouse Performance Score

In May 2020, Lighthouse 6 was released399. The new major version of the popular performance

auditing suite introduced notable changes to its Performance Score algorithm. The

Performance Score is a high-level portrayal of site speed. In Lighthouse 6, the score is measured

with six—not five—metrics: First Meaningful Paint and First CPU Idle were removed and

replaced with Largest Contentful Paint (LCP), Total Blocking Time (TBT, the lab equivalent of

First Input Delay) and Cumulative Layout Shift (CLS).

The new scoring algorithm is prioritizing the new generation of performance metrics: Core

Web Vitals and deprioritizing First Contentful Paint (FCP), Time to Interactive (TTI) and Speed

Index, as their score weight decreases. The algorithm also now distinctly emphasizes three

aspects of user experience: interactivity (Total Blocking Time and Time to Interactive), visual

stability (Cumulative Layout Shift) and perceived loading (First Contentful Paint, Speed Index,

Largest Contentful Paint).

Additionally, the score is now calculated using different reference points for desktop and

mobile. What this means in practice is that it will be less forgiving on desktop (expecting fast

websites) and more relaxed on mobile (since benchmark performance on mobile is less quick

than desktop). You can compare your Lighthouse 5 and 6 score difference in the Lighthouse

Score calculator400. So, how did the scores really change?

396. https://calibreapp.com/blog/how-performance-score-works
397. https://calibreapp.com/blog/core-web-vitals
398. https://developers.google.com/web/tools/chrome-user-experience-report
399. https://github.com/GoogleChrome/lighthouse/releases/tag/v6.0.0
400. https://googlechrome.github.io/lighthouse/scorecalc/

Part II Chapter 9 : Performance

276 2020 Web Almanac by HTTP Archive

https://calibreapp.com/blog/how-performance-score-works
https://calibreapp.com/blog/how-performance-score-works
https://calibreapp.com/blog/core-web-vitals
https://calibreapp.com/blog/core-web-vitals
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://github.com/GoogleChrome/lighthouse/releases/tag/v6.0.0
https://googlechrome.github.io/lighthouse/scorecalc/
https://googlechrome.github.io/lighthouse/scorecalc/

Above, we observe that 4% of websites recorded no Performance Score change, but the

number of sites with negative changes outweighs the ones with score improvements. The

Performance Score grades have gotten worse (with the most prominent decrease curve in the

10-25 points area), which is portrayed even more directly below:

Figure 9.1. Difference in Lighthouse Performance Score between versions 5 and 6.

Figure 9.2. Lighthouse Performance Score distribution for Lighthouse 5 and 6.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 277

https://almanac.httparchive.org/static/images/2020/performance/performance-change-in-lighthouse-score.png
https://almanac.httparchive.org/static/images/2020/performance/performance-change-in-lighthouse-score.png
https://almanac.httparchive.org/static/images/2020/performance/performance-lighthouse-score-distributions-yoy.png
https://almanac.httparchive.org/static/images/2020/performance/performance-lighthouse-score-distributions-yoy.png

In the comparison of Lighthouse 5 and Lighthouse 6, we can directly observe how the

distribution of score has changed. With the Lighthouse 6 algorithm, we observe a rise in the

percentage of pages receiving scores between 0 to 25 and a decline between 50 and a 100.

While in Lighthouse 5, we saw 3% of pages receiving 100 scores, on Lighthouse 6, that number

fell to only 1%.

These overall changes are not unexpected considering a multitude of amendments to the

algorithm itself.

Core Web Vitals: Largest Contentful Paint

Largest Contentful Paint (LCP) is a landmark timing-based metric that reports the time at which

the largest above-the-fold element401 was rendered.

LCP by device

In the chart above, we can observe that between 43% and 53% of websites have good LCP

performance (below 2.5s): the majority of websites manage to prioritize and load their critical,

above-the-fold media fast. For a relatively new metric, this is an optimistic signal. The slight

Figure 9.3. Aggregate LCP performance split by device type.

401. https://web.dev/articles/lcp#what-elements-are-considered

Part II Chapter 9 : Performance

278 2020 Web Almanac by HTTP Archive

https://web.dev/articles/lcp#what-elements-are-considered
https://almanac.httparchive.org/static/images/2020/performance/performance-lcp-by-device.png
https://almanac.httparchive.org/static/images/2020/performance/performance-lcp-by-device.png

variance between desktop and mobile is likely to be caused by varying network speeds, device

capabilities and image sizing (large, desktop-specific images will take longer to be downloaded

and rendered).

LCP by geographic location

The highest percentage of good LCP readings is mostly distributed amongst European and

Figure 9.4. Aggregate LCP performance split by country.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 279

https://almanac.httparchive.org/static/images/2020/performance/performance-lcp-by-geo.png
https://almanac.httparchive.org/static/images/2020/performance/performance-lcp-by-geo.png

Asian countries with the Republic of Korea (South Korea) leading at 76% of good metric

readings. South Korea is a consistent leader in mobile speeds, with an impressive 145 Mbps

download reported by Speedtest Global Index402 for October. Japan, Czechia, Taiwan, Germany

and Belgium are also a handful of countries with reliably high mobile speeds. Australia, while

leading in mobile network speeds, is let down by slow desktop connections and latency which

places it at the bottom section of the ranking above.

India remains the last one in our set of data, with only 16% of good experiences. While the

population of people connecting to the internet for the first time is continually growing, the

mobile and desktop network speeds are still an issue403, with average downloads of 10Mbps for

4G, 3Mbps for 3G and below 50Mbps for desktop.

LCP by connection type

Since LCP is a timing showcasing when the largest above-the-fold element has been rendered

(including imagery, videos or block-level elements containing text), it is not surprising that the

slower the network, the more significant portion of measurements are poor.

There’s a clear correlation of network speed and better LCP performance, but even on 4G, only

48% of results are categorized as good, leaving half of the readings in need of an improvement.

Figure 9.5. Aggregate LCP performance split by connection type.

402. https://www.speedtest.net/global-index
403. https://www.opensignal.com/reports/2020/04/india/mobile-network-experience

Part II Chapter 9 : Performance

280 2020 Web Almanac by HTTP Archive

https://www.speedtest.net/global-index
https://www.opensignal.com/reports/2020/04/india/mobile-network-experience
https://almanac.httparchive.org/static/images/2020/performance/performance-lcp-by-connection-type.png
https://almanac.httparchive.org/static/images/2020/performance/performance-lcp-by-connection-type.png

Automating media optimization, serving the right dimensions and formats, as well as optimizing

for Low Data Mode, could help move the needle. Learn more about optimizing LCP in this

guide404.

Core Web Vitals: Cumulative Layout Shift

Cumulative Layout Shift (CLS) quantifies how much elements within the viewport move around

during the page visit. It helps pinpoint the degree to which unexpected movement occurs on

your websites to grade the user experience, rather than attempting to measure a specific part

of interaction with the help of a unit like seconds or milliseconds.

In that way, CLS is a different, new type of a UX holistic metric in comparison to others

mentioned in this chapter.

CLS by device

According to CrUX data, both in cases of desktop and mobile devices, more than half of the

websites have a good CLS score. There’s a slight difference (6 percentage points) between the

number of good-rated websites between desktop and mobile, favoring the latter. We could

Figure 9.6. Aggregate CLS performance split by device type.

404. https://web.dev/articles/optimize-lcp

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 281

https://web.dev/articles/optimize-lcp
https://web.dev/articles/optimize-lcp
https://almanac.httparchive.org/static/images/2020/performance/performance-cls-by-device.png
https://almanac.httparchive.org/static/images/2020/performance/performance-cls-by-device.png

speculate that phones lead in good CLS ratings due to mobile-optimized experiences that tend

to be less feature and visuals-rich.

CLS by geographic location

The CLS performance in different geographical regions is primarily good, with at least 56% of

sites with a good rating. This is excellent news for perceived visual stability. We can observe

Figure 9.7. Aggregate CLS performance split by country.

Part II Chapter 9 : Performance

282 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/performance/performance-cls-by-geo.png
https://almanac.httparchive.org/static/images/2020/performance/performance-cls-by-geo.png

similar countries leading as we’ve seen in the LCP geo-distribution—Republic of Korea, Japan,

Czechia, Germany, Poland.

Visual stability is less affected by geography and latency to other metrics, like LCP. The

difference in the percentage of good scores between the top and the bottom country is 61% for

LCP and only 13% for CLS. The percentage of moderate-rating websites is relatively low across

the board, giving way to 19%-29% of poor experiences across the board. There are numerous

factors that can contribute to poor CLS—learn how to address them in the Optimize

Cumulative Layout Shift guide405.

CLS by connection type

There’s a reasonably even distribution of CLS scoring across most connection types except for

offline and 4G. In the offline scenario, we can speculate that Service Workers serve websites.

Consequently, there’s no delay in download caused by connection type, resulting in the most

significant portion of good grades.

It is challenging to draw definite conclusions about 4G, but we can speculate that perhaps 4G+

connections are used as a method of internet access on desktop devices. If that assumption was

valid, web fonts and imagery could be heavily cached, which positively affects CLS

measurements.

Figure 9.8. Aggregate CLS performance split by connection type.

405. https://web.dev/articles/optimize-cls

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 283

https://web.dev/articles/optimize-cls
https://web.dev/articles/optimize-cls
https://almanac.httparchive.org/static/images/2020/performance/performance-cls-by-connection-type.png
https://almanac.httparchive.org/static/images/2020/performance/performance-cls-by-connection-type.png

Core Web Vitals: First Input Delay

First Input Delay (FID) measures the time between first user interaction and when the browser

is able to respond to that interaction. FID is a good indicator of how interactive your websites

are.

FID by device

It is relatively uncommon to see good scores distributed across such a high percentage of

websites. On desktop, based on the 75th percentile of sites’ distributions, 100% of sites report

fast timings for FID, meaning the number of people experiencing interaction delays is very low.

On mobile, 80% of sites are graded as good. A likely explanation is the reduced CPU capabilities

in comparison to desktop, network latency on mobile (causing a delay in script download and

execution) as well as battery efficiency and temperature limitations, capping the CPU potential

of mobile devices. All of which directly affect interactivity metrics like FID.

Figure 9.9. Aggregate FID performance split by device type.

Part II Chapter 9 : Performance

284 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/performance/performance-fid-by-device.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fid-by-device.png

FID by geographic location

The geographic distribution of FID scoring confirms the findings in the aggregate device chart

shared earlier on. At worst, 79% of websites have good FID, with an impressive 97% on the top

position with the Republic of Korea leading again. Interestingly, some top contenders from the

CLS and LCP ranking, such as Czechia, Poland, Ukraine and Russian Federation here fall to the

bottom of the hierarchy.

Figure 9.10. Aggregate FID performance split by country.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 285

https://almanac.httparchive.org/static/images/2020/performance/performance-fid-by-geo.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fid-by-geo.png

Again, we can speculate why that might be, but would need further analysis to really be sure.

Assuming FID correlates to JavaScript execution capabilities, countries where more capable

devices are more expensive and treated as luxury items, might report lower FID ranking. Poland

is a good example—with one of the highest iPhone prices406 compared to the US market,

combined with relatively lower wages407, a single salary isn’t sufficient to purchase Apple’s

flagship product. To contrast, Australians with average salaries408 would be able to buy an iPhone

with a weeks’ worth of pay. Luckily, the percentage of websites with a low rating is mostly at 0,

with a few exceptions of 1-2% readings, pointing towards a relatively speedy response to the

interaction.

FID by connection type

We can observe a direct correlation between network speed and fast FID, ranging from 73% on

2G to 87% on 4G networks. Faster networks will aid in speedier script download, which

consequently speeds up the beginning of the parsing and fewer tasks blocking the main thread.

It is optimistic to see such results, especially when the ratio of poorly rated site experiences

doesn’t exceed 5%.

Figure 9.11. Aggregate FID performance split by connection type.

406. https://qz.com/1106603/where-the-iphone-x-is-cheapest-and-most-expensive-in-dollars-pounds-and-yuan/
407. https://en.wikipedia.org/wiki/List_of_European_countries_by_average_wage#Net_average_monthly_salary
408. https://www.news.com.au/finance/average-australian-salary-how-much-you-have-to-earn-to-be-better-off-than-most/news-story/

6fcdde092e87872b9957d2ab8eda1cbd

Part II Chapter 9 : Performance

286 2020 Web Almanac by HTTP Archive

https://qz.com/1106603/where-the-iphone-x-is-cheapest-and-most-expensive-in-dollars-pounds-and-yuan/
https://en.wikipedia.org/wiki/List_of_European_countries_by_average_wage#Net_average_monthly_salary
https://www.news.com.au/finance/average-australian-salary-how-much-you-have-to-earn-to-be-better-off-than-most/news-story/6fcdde092e87872b9957d2ab8eda1cbd
https://almanac.httparchive.org/static/images/2020/performance/performance-fid-by-connection-type.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fid-by-connection-type.png

First Contentful Paint

First Contentful Paint (FCP) measures the first time at which the browser rendered any text,

image, non-white canvas or SVG content. FCP is a good indicator of perceived speed as it

portrays how long people wait to see the first signs of a site loading.

FCP by device

Figure 9.12. Distribution of websites labeled as having fast, average and slow FCP performance on
desktop.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 287

https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-desktop-distribution.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-desktop-distribution.png

In the charts above, the FCP distributions are broken down by desktop and mobile. Comparing

to last year409, there are noticeably less average FCP readings, while the percentage of fast and

slow user experiences has risen no matter the device type. We can still observe the same trend,

where mobile users will experience slower FCP more frequently than desktop users. Overall,

users are more likely to have a good or poor experience, rather than a mediocre experience.

Figure 9.13. Distribution of websites labeled as having fast, average and slow FCP performance on
mobile.

409. https://almanac.httparchive.org/en/2019/performance#fcp-by-device

Part II Chapter 9 : Performance

288 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-mobile-distribution.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-mobile-distribution.png
https://almanac.httparchive.org/en/2019/performance#fcp-by-device
https://almanac.httparchive.org/en/2019/performance#fcp-by-device

Comparing FCP on mobile devices on a year-over-year basis, we observe fewer good

experiences and more moderate and poor experiences. 75% of websites have sub-par FCP. We

can speculate this high percentage of less than ideal FCP readings is a source of frustration and

degraded user experience.

Numerous factors can delay paints, such as server latency (measured by a handful of metrics,

such as Time to First Byte (TTFB) and RTT), blocking JavaScript requests, or inappropriate

handling of custom fonts to name a few.

Figure 9.14. A comparison of distribution of websites labeled as having good, needs improvement
and poor FCP mobile performance between 2019 and 2020.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 289

https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-mobile-year-on-year.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-mobile-year-on-year.png

FCP by geographic location

Before we dig into the analysis, it is noteworthy to mention that in the 2019 Performance

chapter, the thresholds for “good” and “poor” classification were different from 2020. In 2019,

sites with FCP below 1s were considered good, while those with FCP above 3s were

categorized as poor. In 2020, those ranges shifted to 1.5s for good and 2.5s for poor.

Figure 9.15. Aggregate FCP performance split by country.

Part II Chapter 9 : Performance

290 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-by-geo.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-by-geo.png

This change means that the distribution would shift towards more “good” and “poor” rated

websites. We can observe that trend compared to last year’s results410, as the percentage of

good and poor websites rise. The top ten geographies with the highest rate of fast websites

remain relatively unchanged from 2019, with the addition of Czechia and Belgium and the fall

of the United States and the United Kingdom. The Republic of Korea leads with 62% of

websites reporting fast FCP, nearly doubling since last year (which, again, is likely due to re-

categorization of results). Other countries in the top of the ranking also double the number of

good experiences.

While the mediocre (“needs improvement”) percentage becomes smaller, the number of poorly

performing FCP sites rises, which is especially pronounced at the bottom of the ranking with

Latin American and South Asian regions.

Again, there are several reasons negatively affecting FCP, such as poor TTFB readings, but it is

difficult to prove them without the necessary context. For example, if we were to analyze

specific country performance, such as Australia, we surprisingly find it at the lower end.

Australia has one of the highest global smartphone penetration levels, one of the fastest mobile

networks and relatively high average income levels. We’d easily assume it should be higher up.

However, taking into account slow fixed connections, latency and lack of iOS representation in

CrUX, its positioning starts making more sense. With an example like this (touched only on the

surface), we can see how difficult understanding context for each of the countries would be.

410. https://almanac.httparchive.org/en/2019/performance#fcp-by-geography

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 291

https://almanac.httparchive.org/en/2019/performance#fcp-by-geography

FCP by connection type

Similarly to other metrics, FCP is affected by connection speeds. On 3G, only 2% of experiences

rate good, while on 4G, 31%. It is not an ideal state of FCP performance, but it has improved

since 2019411 in some areas, which again might be driven by the change in categorization of good

and poor categorization. We see the same rise in the percentage of good websites and poor

websites, narrowing the number of moderate (“needs improvement”) site experiences.

This trend illustrates the furthering digital divide, where experiences on slower networks and

potentially less capable devices are consistently worse. Improving FCP on slow connections

directly correlates to enhancing TTFB, which we observe in Aggregate TTFB performance by

connection type chart—poor TTFB = poor FCP.

The choice of hosting provider412 or CDN413 will have a cascading effect on speed. Making these

decisions based on the fastest possible delivery will help in improving FCP and TTFB, especially

on slower networks. FCP is also significantly affected by font load time, so ensuring text is

visible while web fonts are downloaded414 is also a worthwhile strategy (especially where on

slower connections these resources will be costly to fetch).

Looking at the “offline” statistics, we can deduce that a substantial number of FCP issues are

Figure 9.16. Aggregate FCP performance split by connection type.

411. https://almanac.httparchive.org/en/2019/performance#fcp-by-effective-connection-type
412. https://ismyhostfastyet.com/
413. https://www.cdnperf.com/
414. https://web.dev/font-display/

Part II Chapter 9 : Performance

292 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-by-connection-type.png
https://almanac.httparchive.org/static/images/2020/performance/performance-fcp-by-connection-type.png
https://almanac.httparchive.org/en/2019/performance#fcp-by-effective-connection-type
https://almanac.httparchive.org/en/2019/performance#fcp-by-effective-connection-type
https://ismyhostfastyet.com/
https://www.cdnperf.com/
https://web.dev/font-display/
https://web.dev/font-display/

also not correlated to the network type. We don’t observe significant gains in this category,

which we would if that statement was true. It appears would seem rendering is not so much

delayed by fetching JavaScript, but it is affected by parsing and execution.

Time to First Byte

Time to First Byte (TTFB) is the time taken from the initial HTML request being made until the

first byte arrives back to the browser. Issues with swiftly processing requests can quickly

cascade into affecting other performance metrics as they will delay not only paints but also any

resource fetching.

TTFB by device

On desktop, 76% of websites have a “not good” TTFB, while on mobile, that percentage rises to

83%. We might assume that the data portrays how TTFB is often an overlooked metric when it

is assumed that most performance measurements and work is concentrated within front-end

and visual rendering, not asset delivery and server-side work. High TTFB will have a direct,

negative impact on a plethora of other performance signals, which is an area that still needs

addressing.

Figure 9.17. Aggregate TTFB performance split by device type.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 293

https://almanac.httparchive.org/static/images/2020/performance/performance-ttfb-by-device.png
https://almanac.httparchive.org/static/images/2020/performance/performance-ttfb-by-device.png

TTFB by geographic location

Likening this years’ TTFB geo readings to 2019 results415 again points to more fast websites, but

similarly to FCP, the thresholds have changed. Previously, we considered TTFB below 200ms

fast, and above 1000ms slow. In 2020, TTFB below 500ms is good and above 1500ms poor.

Figure 9.18. Aggregate TTFB performance split by country.

415. https://almanac.httparchive.org/en/2019/performance#ttfb-by-geo

Part II Chapter 9 : Performance

294 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/performance/performance-ttfb-by-geo.png
https://almanac.httparchive.org/static/images/2020/performance/performance-ttfb-by-geo.png
https://almanac.httparchive.org/en/2019/performance#ttfb-by-geo

Such generous changes in categorization can explain that we observe significant changes, such

as a 36% rise in good website experiences in The Republic of Korea or 22% rise in Taiwan.

Overall, we still observe similar regions, such as Asia-Pacific and selected European locales

leading.

TTFB by connection type

TTFB is affected by network latency and connection type. The higher the latency and the

slower the connection, the worse TTFB measurements, as we can observe above. Even on

mobile connections considered as fast (4G), only 21% of websites have a fast TTFB. There are

nearly no sites categorized as quick below 4G speeds.

Looking at the mobile speeds worldwide for December 2018-November 2019416, we can see

that globally, mobile connections aren’t high-speed. Those network speeds and technology

standards for cellular networks (such as 5G) are not evenly distributed and affect TTFB. As an

example, see this map of networks in Nigeria417—most of the country area has 2G and 3G

coverage, with little 4G range.

What’s surprising is the relatively the same number of good TTFB results between offline and

4G origins. With service workers, we could expect some of the TTFB issues to be mitigated, but

Figure 9.19. Aggregate TTFB performance split by connection type.

416. https://www.speedtest.net/insights/blog/content/images/2020/02/Ookla_Mobile-Speeds-Poster_2020.png
417. https://www.mobilecoveragemaps.com/map_ng#7/8.744/7.670

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 295

https://almanac.httparchive.org/static/images/2020/performance/performance-ttfb-by-connection-type.png
https://almanac.httparchive.org/static/images/2020/performance/performance-ttfb-by-connection-type.png
https://www.speedtest.net/insights/blog/content/images/2020/02/Ookla_Mobile-Speeds-Poster_2020.png
https://www.mobilecoveragemaps.com/map_ng#7/8.744/7.670

that trend is not reflected in the chart above.

Performance Observer usage

There are dozens of different user-centric metrics that can be used to assess websites and

applications. However, sometimes the predefined metrics don’t quite fit our specific scenarios

and needs. The PerformanceObserver API418 allows us to obtain custom metric data obtained

with User Timing API419, Long Task API420, Event Timing API421 and a handful of other low-level

APIs422. For example, with their help, we could record the timing transitions between pages or

quantify server-side-rendered (SSR) application hydration.

The chart above showcases that Performance Observer is used by 6-7% of tracked sites,

depending on device type. Those websites will be leveraging the low-level APIs to create

custom metrics, and the PerformanceObserver API to collate them, and then potentially use it

with other performance reporting tooling. Such adoption rates might indicate the tendency to

lean on predefined metrics (for example, coming from Lighthouse), but also are impressive for a

relatively niche API.

Figure 9.20. Performance Observer usage by device type.

418. https://developer.mozilla.org/docs/Web/API/PerformanceObserver
419. https://developer.mozilla.org/docs/Web/API/User_Timing_API
420. https://developer.mozilla.org/docs/Web/API/Long_Tasks_API
421. https://web.dev/custom-metrics/#event-timing-api
422. https://web.dev/custom-metrics/

Part II Chapter 9 : Performance

296 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/PerformanceObserver
https://developer.mozilla.org/docs/Web/API/User_Timing_API
https://developer.mozilla.org/docs/Web/API/Long_Tasks_API
https://web.dev/custom-metrics/#event-timing-api
https://web.dev/custom-metrics/
https://web.dev/custom-metrics/
https://almanac.httparchive.org/static/images/2020/performance/performance-performance-observer-usage.png
https://almanac.httparchive.org/static/images/2020/performance/performance-performance-observer-usage.png

Conclusion

User experience is not only a spectrum but also depends on a wide variety of factors. To

attempt understanding the state of performance without excluding the sub-par,

underprivileged experiences, we must approach it intersectionally. Each website visit tells a

story. Our personal and country-level socioeconomic status dictates the type of device and

internet provider we can afford. The geopositioning of where we live affects latency (we

Australians feel this pain regularly), and the economy dictates available cellular network

coverage. What websites do we visit? What do we visit them for? Context is critical to not only

analyzing data but also developing necessary empathy and care in building accessible, fast

experiences for all.

On the surface, we have seen optimistic signals about the new Core Web Vitals performance

metrics. At least half of the experiences are good across both desktop and mobile devices, if we

don’t narrow down to consistently poor experiences on slower networks for Largest Contentful

Paint. While the newer metrics might suggest that there’s an ongoing uptake in addressing

performance issues, the lack of significant improvements in First Contentful Paint and Time to

First Byte is sobering. Here the same network types are most disadvantaged as with Largest

Contentful Paint, as well as fast connections and desktop devices. The Performance Score also

portrays a decline in speed (or perhaps, a more accurate portrayal than what we measured in

the past).

What the data shows us, is that we must keep investing in improving performance for scenarios

(such as slower connectivity) that we often don’t experience due to multiple aspects of our

privilege (middle to high-income countries, high pay and new, capable devices). It also highlights

that there’s still plenty of work to be done in the areas of speeding up initial paints (LCP and

FCP) and asset delivery (TTFB). Often, performance feels like an inherently front-end issue,

while numerous significant improvements can be achieved on the back-end and through

appropriate infrastructure choices. Again, user experience is a spectrum that depends on a

variety of factors, and we need to treat it holistically.

New metrics bring new lenses to analyze user experience through, but we must not forget

existing signals. Let’s focus on moving the needle in the areas that need the most improvement

and will result in positive shifts in experience for most underserved. Fast and accessible

internet is a human right.

Part II Chapter 9 : Performance

2020 Web Almanac by HTTP Archive 297

Author

Karolina Szczur

@fox thefoxis

Karolina is a Product Design Lead at Calibre423, working on creating the most

comprehensive speed monitoring platform. She curates Performance

Newsletter424, your source of performance news and resources. Karolina also

frequently writes425 about how performance affects user experience.

423. https://calibreapp.com/
424. https://perf.email/
425. https://calibreapp.com/blog/category/web-platform

Part II Chapter 9 : Performance

298 2020 Web Almanac by HTTP Archive

https://twitter.com/fox
https://github.com/thefoxis
https://calibreapp.com/
https://perf.email/
https://perf.email/
https://calibreapp.com/blog/category/web-platform

Part II Chapter 10

Privacy

Written by Yana Dimova
Reviewed by Laurent Devernay
Analyzed by Yana Dimova and Max Ostapenko
Edited by Barry Pollard

Introduction

This chapter of the Web Almanac gives an overview of the current state of privacy on the web.

This topic has been increasing in popularity recently and has raised awareness on the users’

side. The need for guidelines has been met with various regulations (such as GDPR426 in Europe,

LGPD427 in Brazil, CCPA428 in California to name but a few). These aim to increase the

accountability of data processors and their transparency towards users. In this chapter, we

discuss the prevalence of online tracking with different techniques and the adoption rate of

cookie consent banners and privacy policies by websites.

426. https://gdpr-info.eu/
427. https://lgpd-brazil.info/
428. https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5

Part II Chapter 10 : Privacy

2020 Web Almanac by HTTP Archive 299

https://gdpr-info.eu/
https://lgpd-brazil.info/
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5

Online tracking

Third-party trackers collect user data to build up profiles of the user’s behavior to be monetized

for advertising purposes. This raises privacy concerns with users on the web, which resulted in

the emergence of various tracking protections. However, as we will see in this section, online

tracking is still widely used. Not only does it have a negative impact on privacy, online tracking

has a huge impact on the environment429 and avoiding it can lead to better performance430.

We examine the prominence of the most common types of third-party tracking, namely by

means of third-party cookies and the use of fingerprinting. Online tracking is not limited to just

these two techniques, new ones keep arising to circumvent existing countermeasures.

Third-party trackers

We use WhoTracksMe431’s tracker list to determine the percentage of websites that issue a

request to a potential tracker. As shown in the following figure, we have found that at least one

potential tracker is present on roughly 93% of websites.

We examined the most widely used trackers and plot the prevalence of the 10 most popular

ones.

Figure 10.1. Websites including at least one potential tracker

429. https://gerrymcgovern.com/calculating-the-pollution-cost-of-website-analytics-part-1/
430. https://twitter.com/fr3ino/status/1000166112615714816
431. https://whotracks.me/

Part II Chapter 10 : Privacy

300 2020 Web Almanac by HTTP Archive

https://gerrymcgovern.com/calculating-the-pollution-cost-of-website-analytics-part-1/
https://twitter.com/fr3ino/status/1000166112615714816
https://whotracks.me/
https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-that-load-trackers.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-that-load-trackers.png

The largest player on the online tracking market is without doubt Google, with eight of its

domains present in the top 10 potential trackers and prevalent on at least 70% of websites.

They are followed by Facebook and Cloudflare–though the latter is probably more reflective of

the popularity of them as a hosting site.

WhoTracksMe’s tracker list also defines categories that the trackers belong to. If we remove

CDNs and Hosting sites from our statistics, under the assumption they may not track—or at

least that that is not their primary function—then you get a slightly different view of the top 10.

Figure 10.2. Top 10 Potential Trackers

Part II Chapter 10 : Privacy

2020 Web Almanac by HTTP Archive 301

https://almanac.httparchive.org/static/images/2020/privacy/privacy-biggest-third-party-potential-trackers.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-biggest-third-party-potential-trackers.png

Here Google still makes up seven out of the top 10 domains. The following figure shows the

distribution of the different categories for the 100 largest potential trackers by category.

Nearly 60% of the most popular trackers are advertising-related. This could be due to the

Figure 10.3. Top 10 Trackers

Figure 10.4. Categories of the 100 most popular potential trackers

Part II Chapter 10 : Privacy

302 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/privacy/privacy-biggest-third-party-trackers.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-biggest-third-party-trackers.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-tracker-categories.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-tracker-categories.png

profitability of the online advertising market being perceived to be related to the amount of

tracking.

Cookies

We looked into the most popular cookies being set on websites in HTTP’s response header,

according to their name and domain.

Figure 10.5. Top cookies on desktop sites

Domain Cookie Name Websites

doubleclick.net test_cookie 24%

facebook.com fr 10%

youtube.com VISITOR_INFO1_LIVE 10%

youtube.com YSC 10%

doubleclick.net IDE 9%

doubleclick.net unknown 9%

youtube.com GPS 9%

doubleclick.net unknown 8%

google.com NID 6%

doubleclick.net unknown 6%

Part II Chapter 10 : Privacy

2020 Web Almanac by HTTP Archive 303

As you can see, Google’s tracking domain “doubleclick.net” sets cookies on roughly a quarter of

websites on a mobile client and a third of all websites on a desktop client. Again, nine out of the

ten most popular cookies on desktop client and seven out of ten on mobile are set by a Google

domain. This is a lower bound for the number of websites the cookie is set on, since we are only

counting cookies set via an HTTP header–a large number of tracking cookies are set by using

third-party scripts.

Fingerprinting

Another widely-used tracking technique is fingerprinting. This consists of collecting different

kinds of information about the user with the goal of building a unique “fingerprint” for them.

Different types of fingerprinting are used on the web by trackers. Browser fingerprinting use

characteristics specific to the browser of the user, relying on the fact that the chance of another

user having the exact same browser set-up is fairly small if there are a large enough number of

variables to track. In our crawl, we examined the presence of the FingerprintJS432 library, which

provides browser fingerprinting as a service.

Figure 10.6. Top cookies on mobile sites

Domain Cookie Name Websites

doubleclick.net test_cookie 32%

doubleclick.net IDE 21%

facebook.com fr 10%

youtube.com VISITOR_INFO1_LIVE 10%

youtube.com YSC 10%

google.com NID 10%

youtube.com GPS 8%

doubleclick.net DSID 7%

yandex.ru yandexuid 6%

yandex.ru i 6%

432. https://fingerprintjs.com/

Part II Chapter 10 : Privacy

304 2020 Web Almanac by HTTP Archive

https://fingerprintjs.com/

Although the library is present on only a small percentage of websites, the persistent nature of

fingerprinting means even small usage can have a big impact. Furthermore, FingerprintJS is not

the only attempt at fingerprinting. Other libraries, tools and native code can also serve this

purpose, so this is just one example.

Consent Management Platforms

Cookie consent banners have become common now. They increase transparency towards

cookies and often allowing users to specify their cookie choices. While a lot of websites opt for

using their own implementation of cookie banners, third-party solutions called Consent

Management Platforms have recently emerged. The platforms provide an easy way for websites

to collect user’s consent for different types of cookies. We see that 4.4% of websites use a

consent management platform to manage cookie choices on desktop clients, and 4.0% on

mobile clients.

Figure 10.7. Websites using FingerprintJS

Part II Chapter 10 : Privacy

2020 Web Almanac by HTTP Archive 305

https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-with-fingerprintjs-library.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-with-fingerprintjs-library.png

When looking at the popularity of the different consent management solutions, we can see that

Osano and Quantcast Choice are the leading platforms.

Figure 10.8. Websites using a consent management platform

Figure 10.9. Popularity of consent management platform

Part II Chapter 10 : Privacy

306 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-with-consent-management-platform.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-with-consent-management-platform.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-consent-management-platform-popularity.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-consent-management-platform-popularity.png

IAB Europe’s Transparency Consent Framework

IAB Europe, the Interactive Advertising Bureau, is a European association for digital marketing

and advertising. They proposed a Transparency Consent Framework433 (TCF) as a GDPR-

compliant solution to obtain users’ consent about their digital advertising preferences. The

implementation provides an industry standard for communication between publishers and

advertisers about consumer consent.

While our results show that the TCF banner is not yet the “industry standard”, it is a step in the

right direction. Considering the main target group of IAB Europe is in fact European publishers,

and our crawl is global, having an adoption rate on 1.5% of websites on desktop client and 1.4%

on mobile is not too bad.

Privacy Policies

Privacy policies are widely used by websites to meet legal obligations and increase

transparency towards users about data collection practices. In our crawl, we searched for

keywords indicating the presence of a privacy policy text on each visited website.

Figure 10.10. Adoption rate of TCF banner

433. https://iabeurope.eu/transparency-consent-framework/

Part II Chapter 10 : Privacy

2020 Web Almanac by HTTP Archive 307

https://iabeurope.eu/transparency-consent-framework/
https://almanac.httparchive.org/static/images/2020/privacy/privacy-adoption-of-the-tcf-banner.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-adoption-of-the-tcf-banner.png

The results show that almost half of the websites in the dataset have included a privacy policy,

which is positive. However, studies have shown that the majority of internet users do not

bother reading privacy policies and when they do, they lack understanding due to the length

and complexity of most privacy policy texts. Still having a policy at all is a step in the right

direction!

Conclusion

This chapter has shown that third-party tracking remains prominent on both desktop and

mobile clients, with Google tracking the largest percentage of websites. Consent Management

Platforms are used on a small percentage of websites; however a lot of websites implement

their own cookie consent banners.

Lastly, roughly half of the websites include a privacy policy, which benefits greatly transparency

towards users about data processing practices. This is undoubtedly a step forward but there is

a lot still to be done. Outside of this analysis we know that privacy policies are hard to read and

understand and cookie consent banners manipulate users into consent.

For the web to truly respect users, privacy has to be a part of conception, not an afterthought.

Regulation is a good thing in this regards, and it is reassuring to see an increase in privacy

Figure 10.11. Websites that have a privacy policy

Part II Chapter 10 : Privacy

308 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-with-privacy-link.png
https://almanac.httparchive.org/static/images/2020/privacy/privacy-websites-with-privacy-link.png

regulation worldwide. Privacy by design434 should be the norm, rather than deploying policies

and tools in order to meet minimum legal requirements and avoid financial penalties.

Author

Yana Dimova

ydimova

Yana Dimova is a PhD student at KU Leuven university in Belgium, working on

privacy and web security.

434. https://en.wikipedia.org/wiki/Privacy_by_design

Part II Chapter 10 : Privacy

2020 Web Almanac by HTTP Archive 309

https://en.wikipedia.org/wiki/Privacy_by_design
https://github.com/ydimova

310 2020 Web Almanac by HTTP Archive

Part II Chapter 11

Security

Written by Tom Van Goethem, Nurullah Demir, and Barry Pollard
Reviewed by Caleb Queern and Edmond W. W. Chan
Analyzed by Tom Van Goethem and Nurullah Demir
Edited by Barry Pollard

Introduction

In many ways, 2020 has been an extraordinary year. As a result of the global pandemic, our day-

to-day lives have changed drastically. Instead of meeting in person with friends and family,

many have to rely on social media to keep in touch. This has led to a significant increase in traffic

volumes435 for many different applications436, as a result of the increased amount of time that

users spend online. This also means that security has never been more important to ensure that

the information we share online on various platforms remains secure.

Many of the platforms and services that we use on a daily basis strongly rely on web resources,

ranging from cloud-based APIs, microservices, and most importantly, web applications. Keeping

these systems secure is a non-trivial task. Fortunately, throughout the past decade, web

security research has been continuously advancing. On the one hand researchers are

discovering new types of attacks and sharing the results with the wider community to raise

435. https://dl.acm.org/doi/pdf/10.1145/3419394.3423621
436. https://arxiv.org/pdf/2008.10959.pdf

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 311

https://dl.acm.org/doi/pdf/10.1145/3419394.3423621
https://dl.acm.org/doi/pdf/10.1145/3419394.3423621
https://arxiv.org/pdf/2008.10959.pdf

awareness. On the other hand, many engineers and developers have been tirelessly working to

provide website operators with the right set of tools and mechanisms that can be used to

prevent or minimize the consequences of attacks.

In this chapter, we explore the current state-of-practice for security on the Web. By analyzing

the adoption of various security features in depth and at a large scale we gather insights on the

different ways that website owners apply these security mechanisms, driven by the incentive to

protect their users.

We not only look at the adoption of security mechanisms in individual websites. We analyze

how different factors, such as the technology stack that is used to build a website, affect the

prevalence of security headers, and thus improve overall security. Furthermore, it is safe to say

that ensuring a website is secure requires a holistic approach covering many different facets.

Therefore we also evaluate other aspects, such as the patching practices for various widely

used web technologies.

Methodology

Throughout this chapter, we report on the adoption of various security mechanisms on the

web. This analysis is based on data that was collected for the homepage of 5.6 million desktop

domains and 6.3 million mobile domains. Unless explicitly stated otherwise, the reported

numbers are based on the mobile dataset, as it is larger in size. Because most websites are

included in both datasets, the resulting measurements are mostly similar. Any significant

difference between the two datasets are reported throughout the text or is apparent from the

figures. For more information on how the data has been collected, please refer to the

Methodology.

Transport security

The last year has seen a continuation of the growth of HTTPS on websites. Securing the

transport layer is one of the most core parts of web security–unless you can be confident the

resources downloaded for a website have not been altered in transit, and that you are

transporting data to and from the website you think you are, any certainties about the website

security are effectively rendered null and void.

Moving our web traffic to HTTPS, and eventually marking HTTP as non-secure437 is being driven

by web browsers restricting powerful new features to the secure context438 (the carrot) while

also increasing warnings shown to users when unencrypted connections are used (the stick).

437. https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure
438. https://developer.mozilla.org/docs/Web/Security/Secure_Contexts/features_restricted_to_secure_contexts

Part II Chapter 11 : Security

312 2020 Web Almanac by HTTP Archive

https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure
https://developer.mozilla.org/docs/Web/Security/Secure_Contexts/features_restricted_to_secure_contexts

The effort is paying off and we are now seeing 87.70% of requests on desktop and 86.90% of

requests on mobile being served over HTTPS.

One slight concern as we reach the end of this goal, is a noticeable “leveling off” of the

impressive growth of the last few years. Unfortunately the long tail of the internet means older

legacy sites are not maintained and may never be run over HTTPS, meaning they will eventually

become inaccessible to most users.

Figure 11.1. The percentage of requests that use HTTPS on mobile.

86.90%

Figure 11.2. Percentage of requests using HTTPS.
(Source: HTTP Archive439)

439. https://httparchive.org/reports/state-of-the-web#pctHttps

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 313

https://almanac.httparchive.org/static/images/2020/security/security-https-request-growth.png
https://almanac.httparchive.org/static/images/2020/security/security-https-request-growth.png
https://httparchive.org/reports/state-of-the-web#pctHttps

Whilst the high volume of requests is encouraging, these can often be dominated by third-party

requests and services like Google Analytics, fonts or advertisements. Websites themselves can

lag, but again we see encouraging use with between 73% and 77% of sites now being served

over HTTPS.

Protocol versions

As HTTPS is now well and truly the norm, the challenge moves from having any sort of HTTPS,

to ensuring that secure versions of the underlying TLS (Transport Layer Security) protocol are

being used. TLS needs maintenance as versions become older, vulnerabilities are found and

compute power increases making attacks more achievable.

Figure 11.3. HTTPS usage for sites

Part II Chapter 11 : Security

314 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/security/security-https-usage-by-site.png
https://almanac.httparchive.org/static/images/2020/security/security-https-usage-by-site.png

TLSv1.0 usage is already basically zero and whilst it may seem encouraging that the public web

has embraced more secure protocols so definitively, it should be noted that all mainstream

browsers—including Chrome that our crawl is based upon—block this by default which goes a

large way to explaining this.

These figures are a slight improvement on last year’s protocol analysis440 with an approximately

5% increase in TLSv1.3 usage, and the corresponding drop in TLSv1.2. That seems a small

increase and it would seem like the high usage of the relatively new TLSv1.3 noted last year was

likely due to the initial support from large CDNs. Therefore making more significant progress in

TLSv1.3 adoption will likely take a long time as those still using TLSv1.2 are potentially

managing this themselves or with a hosting provider that does not yet support this.

Cipher suites

Within TLS there are a number of cipher suites that can be used with varying levels of security.

The best ciphers support forward secrecy441 key exchange, meaning even if the server’s keys are

compromised, old traffic that used those keys cannot be decrypted.

In the past, newer versions of TLS added support for newer ciphers but rarely removed older

versions. This is one of the reasons TLSv1.3 is more secure as it does a large clear down of older

Figure 11.4. TLS versions usage for sites

440. https://almanac.httparchive.org/en/2019/security#protocol-versions
441. https://en.wikipedia.org/wiki/Forward_secrecy

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 315

https://almanac.httparchive.org/static/images/2020/security/security-tls-version-by-site.png
https://almanac.httparchive.org/static/images/2020/security/security-tls-version-by-site.png
https://almanac.httparchive.org/en/2019/security#protocol-versions
https://en.wikipedia.org/wiki/Forward_secrecy

ciphers currently. The popular OpenSSL library only supports five secure ciphers in this

version–all of which support forward secrecy. This prevents downgrade attacks where a less

secure cipher is forced to be used.

All sites really should be using forward secrecy ciphers and it is good to see 98.14% of desktop

sites and 98.03% of mobile sites using ciphers with forward secrecy.

Assuming forward secrecy is a given, the main choice in selecting a cipher is between the level

of encryption—higher key sizes will take longer to break, but at the cost of more compute

intensive to encrypt and decrypt the connection, particularly for initial connection. For the

block cipher mode442 GCM should be used and CBC is considered weak due to padding attacks443.

For the widely used Advanced Encryption Standard (AES) key sizes of 128-bit and 256-bit

encryption are common. 128-bit is still sufficient for most sites, though 256-bit would be

preferred.

Figure 11.5. Mobile sites using forward secrecy.

98.03%

Figure 11.6. Distribution of cipher suites

442. https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
443. https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities

Part II Chapter 11 : Security

316 2020 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities
https://almanac.httparchive.org/static/images/2020/security/security-distribution-of-cipher-suites.png
https://almanac.httparchive.org/static/images/2020/security/security-distribution-of-cipher-suites.png

We can see from the above chart that AES_128_GCM is the most common and is used by 78.4%

of desktop and mobile sites. AES_256_GCM is used by 19.1% of desktop and 18.5% of mobile

sites with the other sites likely being the ones on older protocols and cipher suites.

One important point to note is that our data is based on running Chrome to connect to a site,

and it will use a single protocol cipher to connect. Our methodology does not allow us to see the

full range of protocols and cipher suites supported, and only the one that was actually used for

that connection. For that information we would need to look at other sources like SSL Pulse

from SSL Labs444, but with most modern browsers now supporting similar TLS capabilities the

above data is what we would expect the vast majority of users to use.

Certificate Authorities

Next we will look at the Certificate Authorities (CAs) issuing the TLS certificates used by the

sites we have crawled. Last year’s chapter445, looked at the requests for this data, but that will be

dominated by popular third parties like Google (who also dominate again this year from that

metric), so this year we are going to present the CAs used by the websites themselves, rather

than all the other requests they load.

Figure 11.7. Top 10 certificate issuers for websites.

Issuer Desktop Mobile

Let’s Encrypt Authority X3 44.65% 46.42%

Cloudflare Inc ECC CA-3 8.49% 8.69%

Sectigo RSA Domain Validation Secure Server CA 8.27% 7.91%

cPanel, Inc. Certification Authority 4.71% 5.06%

Go Daddy Secure Certificate Authority - G2 4.30% 3.66%

Amazon 3.12% 2.85%

DigiCert SHA2 Secure Server CA 2.04% 1.78%

RapidSSL RSA CA 2018 2.01% 1.96%

Cloudflare Inc ECC CA-2 1.95% 1.70%

AlphaSSL CA - SHA256 - G2 1.35% 1.30%

444. https://www.ssllabs.com/ssl-pulse/
445. https://almanac.httparchive.org/en/2019/security#certificate-authorities

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 317

https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://almanac.httparchive.org/en/2019/security#certificate-authorities

It is no surprise to see Let’s Encrypt well in the lead easily taking the top spot; its combination of

free and automated certificates is proving a winner with both individual website owners and

platforms. Cloudflare similarly offers free certificates for its customers taking the number two

and number nine position. What is more interesting there is that it is the ECC Cloudflare issuer

that is being used. ECC certificates are smaller and so more efficient than RSA certificates but

can be complicated to deploy as support is not universal and managing both certificates often

requires extra effort. This is the benefit of a CDN or hosted provider if they can manage this for

you like Cloudflare does here. Browsers that support ECC (like the Chrome browser we use in

our crawl) will use that, and older browsers will use RSA.

Browser enforcement

Although having a secure TLS configuration is paramount to defend against cryptographic

attacks, additional protections are still needed to protect web users from adversaries on the

network. For instance, as soon as the user loads any website over HTTP, an attacker can inject

malicious content to, for instance, make requests to other sites.

Even when sites are using the strongest ciphers and latest protocols, an adversary can still use

SSL stripping attacks to trick the victim’s browser into believing that the connection is over

HTTP instead of HTTPS. Moreover, without adequate protections in place, a user’s cookies can

be attached in the initial plaintext HTTP request, allowing the attacker to capture them on the

network.

To overcome these issues, browsers have provided additional features that can be enabled to

prevent this.

HTTP Strict Transport Security

The first one is HTTP Strict Transport Security (HSTS), which can easily be enabled by setting a

response header consisting of several attributes. For this header we find an adoption rate of

16.88% within the mobile homepages. Of the sites that enable HSTS, 92.82% do so successfully.

That is, the max-age attribute (which determines how many seconds the browser should only

visit the website over HTTPS) has a value larger than 0.

Part II Chapter 11 : Security

318 2020 Web Almanac by HTTP Archive

Looking at the different values for this attribute, we can clearly see that the majority of

websites are confident that they will be running over HTTPS in the considerable future: more

than half request the browser to use HTTPS for at least 1 year.

One website might have been a bit too enthusiastic about how long their site will be available

over HTTPS and set a max-age attribute value that translates to 1,000,000,000,000,000

years. Ironically, some browsers do not handle such a large value well, and actually disable

HSTS for that site!

Figure 11.8. HSTS max-age values (in days).

Figure 11.9. The largest known HSTS max-age.

1,000,000,000,000,000
years

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 319

https://almanac.httparchive.org/static/images/2020/security/security-hsts-max-age-values-in-days.png
https://almanac.httparchive.org/static/images/2020/security/security-hsts-max-age-values-in-days.png

It is encouraging to see that the adoption of the other attributes is growing compared to last

year446: includeSubdomains is now at 32.14% and preload at 16.56% of HSTS policies.

Cookies

From a security point of view, the automatic inclusion of cookies in cross-site requests can be

seen as the main culprit of several classes of vulnerabilities. If a website does not have the

adequate protections is place (e.g. requiring a unique token on state-changing requests), they

may be susceptible to Cross-Site Request Forgery447 (CSRF) attacks. As an example, an attacker

may issue a POST request in the background, without the user being aware to, for instance,

change the password of an unwitting visitor. If the user is logged in, the browser would normally

automatically include the cookies in such a request.

Several other types of attacks rely on the inclusion of cookies in cross-site requests, such as

Cross-Site Script Inclusion448 (XSSI) and various techniques in the XS-Leaks449 vulnerability class.

Furthermore, because the authentication of users is often only done through cookies, an

attacker could impersonate a user by obtaining their cookies. This could be done in a man-in-

the-middle (MITM) attack, tricking the user to make an authenticated over an insecure channel.

Alternatively, by exploiting a cross-site scripting (XSS) vulnerability, the attacker could leak the

cookies by accessing document.cookie through the DOM.

To defend against the threats posed by cookies, website developers can make use of three

attributes that can be set on cookies450: HttpOnly , Secure and SameSite . The first

prevents the cookie from being accessed from JavaScript, preventing an adversary from

stealing them in an XSS attack. Cookies that have the Secure attribute set will only be sent

over a secure HTTPS connection, preventing them to be stolen in a MITM attack.

The attribute that was introduced most recently, SameSite , can be used to restrict how

Figure 11.10. Usage of HSTS directives.

HSTS Directive Desktop Mobile

Valid max-age 92.21% 92.82%

includeSubdomains 32.97% 32.14%

preload 16.02% 16.56%

446. https://almanac.httparchive.org/en/2019/security#http-strict-transport-security
447. https://owasp.org/www-community/attacks/csrf
448. https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-lekies.pdf
449. https://xsleaks.dev/
450. https://developer.mozilla.org/docs/Web/HTTP/Cookies

Part II Chapter 11 : Security

320 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/security#http-strict-transport-security
https://almanac.httparchive.org/en/2019/security#http-strict-transport-security
https://owasp.org/www-community/attacks/csrf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-lekies.pdf
https://xsleaks.dev/
https://developer.mozilla.org/docs/Web/HTTP/Cookies
https://web.dev/samesite-cookies-explained/
https://web.dev/samesite-cookies-explained/

cookies are sent in a cross-site context. The attribute has three possible values: None , Lax ,

and Strict . Cookies with SameSite=None will be sent in all cross-site requests, whereas

cookies with the attribute set to Lax will only be sent in navigational requests, e.g. when the

user clicks a link and navigates to a new page. Finally, cookies with the SameSite=Strict
attribute will only be sent in a first-party context.

Our results, which are based on 25 million first-site cookies and 115 million third-party cookies,

shows that the usage of the cookie attributes strongly depends on the context in which they are

set. We can observe a similar usage of the HttpOnly attribute on cookies for both first-party

(30.5%) and third-party (26.3%) cookies.

However, for the Secure and SameSite attributes we see a significant difference: The

Secure attribute is present on 22.2% of all cookies set in a first-party context, whereas 68.0%

of all cookies set by third-party requests on mobile homepages have this cookie attribute.

Interestingly, for desktop pages, only 35.2% of the third-party cookies had the attribute.

For the SameSite attribute, we can see a significant increase in their usage, compared to last

year451, when only 0.1% of the cookies had this attribute. As of August 2020, we observed that

13.7% of the first-party cookies and 53.2% of third-party cookies have the SameSite
attribute set.

Presumably, this significant change in adoption is related to the decision of Chrome to make

Figure 11.11. Cookie attributes.

451. https://almanac.httparchive.org/en/2019/security#samesite

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 321

https://almanac.httparchive.org/static/images/2020/security/security-httponly-secure-samesite-cookie-usage.png
https://almanac.httparchive.org/static/images/2020/security/security-httponly-secure-samesite-cookie-usage.png
https://almanac.httparchive.org/en/2019/security#samesite
https://almanac.httparchive.org/en/2019/security#samesite

SameSite=Lax the default option. This is confirmed by looking more closely at the values set

in the SameSite attribute: the majority of third-party cookies (76.5%) have the attribute value

set to None . For first-party cookies, the share is lower, at 48.0%, but still significant. It’s

important to note that because the crawler does not log in to websites, the cookies used to

authenticate users may be different.

One additional mechanism that can be used to protect cookies is to prefix the name of the

cookie with __Secure- or __Host- . Cookies with any of these two prefixes will only be

stored in the browser if they have the Secure attribute set. The latter imposes an additional

restriction, requiring the Path attribute to be set to / and preventing the use of the Domain
attribute. This prevents attackers from overriding the cookie with other values, in an attempt to

perform a session fixation attack.

The usage of these prefixes is relatively small: in total we found 4,433 (0.02%) first-party

cookies that were set with the __Secure- prefix and 1,502 (0.01%) with the __Host- prefix.

For cookies set in a third-party context, the relative number of prefixed cookies is similar.

Content inclusion

Modern web applications include a large variety of third-party components, ranging from

JavaScript libraries, to video players, to external plugins. From a security perspective, including

potentially untrusted content in your web page may pose various threats, such as cross-site

Figure 11.12. Same site cookie attributes.

Part II Chapter 11 : Security

322 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/security/security-samesite-cookie-attributes.png
https://almanac.httparchive.org/static/images/2020/security/security-samesite-cookie-attributes.png

scripting if malicious JavaScript gets included. To defend against these threats, browsers have

several mechanisms that can be used to limit which sources content can be included from, or to

impose limitations on the included content.

Content Security Policy

One of the predominant mechanisms to indicate to the browser which origins are allowed to

load content, is the Content-Security-Policy (CSP) response header. Through numerous

directives, a website administrator can have fine-grained control over how content can be

included. For instance, the script-src directive indicates from which origins scripts can be

loaded. Overall, we found that a CSP header was present on 7.23% of all pages which, while still

small, is a notable increase of 53% from last year, when CSP adoption was at 4.73% for mobile

pages.

Interestingly, when we look at the most commonly used directives in CSP policies, the most

common directive is upgrade-insecure-requests , which is used to signal to the browser

that any content that is included from an insecure scheme should instead be accessed via a

secure HTTPS connection to the same host.

For instance, would normally have the

image fetched over an insecure connection but when the upgrade-insecure-requests
directive is present, it will automatically be fetched over HTTPS (https://example.com/
foo.png).

Figure 11.13. Most common directives used in CSP policies.

Directive Desktop Mobile

upgrade-insecure-requests 61.61% 61.00%

frame-ancestors 55.64% 56.92%

block-all-mixed-content 34.19% 35.61%

default-src 18.51% 16.12%

script-src 16.99% 16.63%

style-src 14.17% 11.94%

img-src 11.85% 10.33%

font-src 9.75% 8.40%

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 323

https://developer.mozilla.org/docs/Web/HTTP/CSP
https://developer.mozilla.org/docs/Web/HTTP/CSP
https://www.w3.org/TR/upgrade-insecure-requests/
https://www.w3.org/TR/upgrade-insecure-requests/

This is particularly helpful as browsers block mixed content: for pages that are loaded over

HTTPS, content that is included from HTTP would be blocked without the upgrade-
insecure-requests directive. The adoption of this directive is likely much higher relative to

the others as it is a good starting point for a Content Security Policy as it is unlikely to break

content and is easy to implement.

The CSP directives that indicate from which sources content can be included (the *-src
directives), have a much lower adoption: only 18.51% of the CSP policies served on desktop

pages and 16.12% on mobile pages. One of the reasons for this, is that web developers are

facing many challenges in the adoption of CSP452. Although a strict CSP policy can provide

significant security benefits well beyond thwarting XSS attacks, an ill-defined one may prevent

certain valid content from loading.

To allow web developers to evaluate the correctness of their CSP policy, there also exists a non-

enforcing alternative, which can be enabled by defining the policy in the Content-Security-
Policy-Report-Only response header. The prevalence of this header is fairly small: 0.85% of

desktop and mobile pages. It should be noted however that this is often a transitionary header

and so the percentage likely indicates the sites that intend to transition to using CSP and are

only using the Report-Only header for a limited amount of time.

Overall, the length of the Content-Security-Policy response header is quite limited: the

median length for the value of the header is 75 bytes. This is mainly due to the short single-

Figure 11.14. CSP header length.

452. https://wkr.io/publication/raid-2014-content_security_policy.pdf

Part II Chapter 11 : Security

324 2020 Web Almanac by HTTP Archive

https://wkr.io/publication/raid-2014-content_security_policy.pdf
https://almanac.httparchive.org/static/images/2020/security/security-csp-header-length.png
https://almanac.httparchive.org/static/images/2020/security/security-csp-header-length.png

purpose CSP policies that are frequently used. For instance, 24.64% of the policies defined on

desktop pages only have the upgrade-insecure-requests directive.

The most common header value, making up for 29.44% of all policies defined on desktop pages,

is block-all-mixed-content; frame-ancestors 'none'; upgrade-insecure-
requests; . This policy will prevent the page from being framed, tries to upgrade requests to

the secure protocol, and blocks the content if that fails.

On the other side of the spectrum, the longest CSP policy that we observed was 22,333 bytes

long.

The external origins from which content is allowed to be loaded is, not unexpectedly, in line

with the origins from which third-party content is most frequently included. The 10 most

common origins defined in the *-src attributes in CSP policies can all be linked to Google

(analytics, fonts, ads), and Facebook.

Figure 11.15. Bytes in the longest CSP observed.

22,333

Figure 11.16. Most frequently allowed hosts in CSP policies.

Origin Desktop Mobile

https://www.google-analytics.com 1.50% 1.46%

https://www.googletagmanager.com 1.04% 1.07%

https://fonts.googleapis.com 0.99% 0.99%

https://www.youtube.com 1.02% 0.91%

https://fonts.gstatic.com 0.95% 0.95%

https://www.google.com 0.95% 0.94%

https://connect.facebook.net 0.89% 0.83%

https://stats.g.doubleclick.net 0.72% 0.70%

https://www.facebook.com 0.66% 0.65%

https://www.gstatic.com 0.54% 0.57%

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 325

https://www.google-analytics.com/
https://www.googletagmanager.com/
https://fonts.googleapis.com/
https://www.youtube.com/
https://fonts.gstatic.com/
https://www.google.com/
https://connect.facebook.net/
https://stats.g.doubleclick.net/
https://www.facebook.com/
https://www.gstatic.com/

One site went above and beyond to ensure that all of their included content would be allowed

by CSP and allowed 403 different hosts in their policy. Of course this makes the security benefit

marginal at best, as certain hosts might allow for CSP bypasses453, such as a JSONP endpoint

that allows calling arbitrary functions.

Subresource integrity

Many JavaScript libraries and stylesheets are included from CDNs. As a result, if the CDN is

compromised, or attackers would find another way to replace the often-included libraries, this

could have disastrous consequences.

To limit the consequences of a compromised CDN, web developers can use the subresource

integrity (SRI) mechanism. An integrity attribute, which consists of the hash of the

expected contents, can be defined On <script> and <link> elements. The browser will

compare the hash of the fetched script or stylesheet with the hash defined in the attribute, and

only load its contents if there is a match.

The hash can be computed with three different algorithms: SHA256, SHA384, and SHA512.

The first two are most frequently used: 50.90% and 45.92% respectively for mobile pages

(usage is similar on desktop pages). Currently, all three hashing algorithms are considered safe

to use.

Figure 11.17. Largest number of allowed hosts observed in a CSP.

403

453. https://webappsec.dev/assets/pub/csp_acm16.pdf

Part II Chapter 11 : Security

326 2020 Web Almanac by HTTP Archive

https://webappsec.dev/assets/pub/csp_acm16.pdf

On 7.79% of the desktop pages, at least one element contained the integrity attribute and for

mobile pages this is 7.24%. The attribute is mainly used on <script> elements: 72.77% of all

the elements with the integrity attribute, were on script elements.

When looking more closely at the pages that have at least one script protected with SRI, we find

that the majority of scripts on these pages do not have the integrity attribute. Less than 1 out of

20 scripts were protected with SRI on most sites.

Looking at the most popular hosts from which SRI-protected scripts are included, we can see

some driving forces that push the adoption. For instance, almost half of all the scripts that are

protected with subresource integrity originate from cdn.shopify.com , most likely because

Figure 11.18. Subresource integrity: coverage per page.

Figure 11.19. Most common hosts from which SRI-protected scripts are included.

Host Desktop Mobile

cdn.shopify.com 44.95% 45.72%

code.jquery.com 14.05% 13.38%

cdnjs.cloudflare.com 11.45% 10.47%

maxcdn.bootstrapcdn.com 5.03% 4.76%

stackpath.bootstrapcdn.com 4.96% 4.74%

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 327

https://almanac.httparchive.org/static/images/2020/security/security-subresource-integrity-coverage-per-page.png
https://almanac.httparchive.org/static/images/2020/security/security-subresource-integrity-coverage-per-page.png

the Shopify SaaS enables it by default for their customers.

The rest of the top 5 hosts from which SRI-protected scripts are included is made up of three

CDNs: jQuery454, cdnjs455, and Bootstrap456. It is probably not coincidental that all three of these

CDNs have the integrity attribute in the example HTML code.

Feature policy

Browsers provide a myriad of APIs and functionalities, some of which might be detrimental to

the user experience or privacy. Through the Feature-Policy response header, websites can

indicate which features they want to use, or perhaps more importantly, which they do not want

to use.

In a similar fashion, by defining the allow attribute on <iframe> elements, it is also possible

to determine which features the embedded frames are allowed to use. For instance, via the

autoplay directive, websites can indicate whether they want videos in frames to

automatically start playing when the page is loaded.

454. https://code.jquery.com/
455. https://cdnjs.com/
456. https://www.bootstrapcdn.com/

Part II Chapter 11 : Security

328 2020 Web Almanac by HTTP Archive

https://code.jquery.com/
https://cdnjs.com/
https://www.bootstrapcdn.com/

The Feature-Policy response header has a fairly low adoption rate, at 0.60% of the desktop

pages and 0.51% of mobile pages. On the other hand, Feature Policy was enabled on 19.5% of

the 8 million frames that were found on the desktop pages. On mobile pages, 16.4% of the 9.2

million frames contained the allow attribute.

Based on the most commonly used directives in the Feature Policy on iframes, we can see that

these are mainly used to control how the frames play videos. For instance the most prevalent

directive, encrypted-media , is used to control access to the Encrypted Media Extensions

API, which is required to play DRM-protected videos. The most common iframe origins with a

Feature Policy were https://www.facebook.com and https://www.youtube.com
(49.87% and 26.18% of the frames with a Feature Policy on desktop pages respectively).

Iframe sandbox

By including an untrusted third-party in an iframe, that third-party can try to launch a number

of attacks on the page. For instance, it could navigate the top page to a phishing page, launch

pop-ups with fake anti-virus advertisements, etc.

Figure 11.20. Prevalence of Feature Policy directives on frames.

Directive Desktop Mobile

encrypted-media 78.83% 78.06%

autoplay 47.14% 48.02%

picture-in-picture 23.12% 23.28%

accelerometer 23.10% 23.22%

gyroscope 23.05% 23.20%

microphone 8.57% 8.70%

camera 8.48% 8.62%

geolocation 8.09% 8.40%

vr 7.74% 8.02%

fullscreen 4.85% 4.82%

sync-xhr 0.00% 0.21%

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 329

The sandbox attribute on iframes can be used to restrict the capabilities, and therefore also

the opportunities for launching attacks, of the embedded web page. As embedding third-party

content such as advertisements or videos is common practice on the web, it is not surprising

that many of these are restricted via the sandbox attribute: 30.29% of the iframes on desktop

pages have a sandbox attribute while on mobile pages this is 33.16%.

When the sandbox attribute of an iframe has an empty value, this results in the most

restrictive policy: the embedded page cannot execute any JavaScript code, no forms can be

submitted and no popups can be created, to name a few restrictions.

This default policy can be relaxed in a fine-grained manner by means of different directives. The

most commonly used directive, allow-scripts , which is present in 99.97% of all sandbox

policies on desktop pages, allows the embedded page to execute JavaScript code. The other

directive that is present on virtually all sandbox policies, allow-same-origin , allows the

embedded page to retain its origin, and, for example, access cookies that were set on that

origin.

Interestingly, although Feature Policy and iframe sandbox both have a fairly high adoption rate,

they rarely occur simultaneously: only 0.04% of the iframes have both the allow and

sandbox attribute. Presumably, this is because the iframe is created by a third-party script. A

Figure 11.21. Prevalence of sandbox directives on frames.

Directive Desktop Mobile

allow-scripts 99.97% 99.98%

allow-same-origin 99.64% 99.70%

allow-popups 83.66% 89.41%

allow-forms 83.43% 89.22%

allow-popups-to-escape-sandbox 81.99% 87.22%

allow-top-navigation-by-user-activation 59.64% 69.45%

allow-pointer-lock 58.14% 67.65%

allow-top-navigation 21.38% 17.31%

allow-modals 20.95% 17.07%

allow-presentation 0.33% 0.31%

Part II Chapter 11 : Security

330 2020 Web Almanac by HTTP Archive

Feature Policy is predominantly added on iframes that contain third-party videos, whereas the

sandbox attribute is mainly used to limit the capabilities of advertisements: 56.40% of the

iframes on desktop pages with a sandbox attribute originate from

https://googleads.g.doubleclick.net .

Thwarting attacks

Modern web applications are faced with a large variety of security threats. For instance,

improperly encoding or sanitizing user input may result in a cross-site scripting (XSS)

vulnerability, a class of issues that has pestered web developers for well over a decade. As web

applications become more and more complex, and novel types of attacks are being discovered,

even more threats are looming. XS-Leaks457, for instance is a novel class of attacks that aims to

leverage the user-specific dynamic responses that web applications return.

As an example, if a webmail client provides a search functionality, an attacker can trigger

requests for various keywords, and subsequently try to determine, through various side-

channels, whether any of these keywords yielded any results. This effectively provides the

attacker with a search capability in the mailbox of an unwitting visitor on the attacker’s website.

Fortunately, web browsers also provide a large set of security mechanisms that are highly

effective against limiting the consequences of a potential attack, e.g. via the script-src
directive of CSP an XSS vulnerability may become very difficult or impossible to exploit.

Some other security mechanisms are even required to prevent certain types of attacks: to

prevent clickjacking458 attacks, either the X-Frame-Options header should be present, or

alternatively the frame-ancestors directive of CSP can be used to indicate trusted parties

that can embed the current document.

457. https://xsleaks.dev/
458. https://en.wikipedia.org/wiki/Clickjacking

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 331

https://xsleaks.dev/
https://en.wikipedia.org/wiki/Clickjacking

Security mechanism adoption

The most common security response header on the Web is X-Content-Type-Options ,

which instructs the browser to trust the advertised content type, and thus not sniff it based on

the response content. This effectively prevents MIME-type confusion attacks, for example

preventing attackers from abusing a JSONP endpoint to be interpreted as HTML code in order

to perform a cross-site scripting attack.

Next on the list is the X-Frame-Options (XFO) response header, which is enabled by

approximately 27% of the pages. This header, along with CSP’s frame-ancestors directives

are the only effective mechanisms that can be used to counter clickjacking attacks. However,

XFO is not only useful against clickjacking, but also makes exploitation significantly more

difficult for various other types of attacks459. Although XFO is currently still the only mechanism

to defend against clickjacking attacks in legacy browsers such as Internet Explorer, it is subject

to double framing attacks460. This issue is mitigated with the frame-ancestors CSP directive.

As such, it is considered best practice to employ both headers to give users the best possible

protection.

The X-XSS-Protection header, which is currently adopted by 18.39% of the websites, was

used to control the browser’s built-in detection mechanism for reflected cross-site scripting.

Figure 11.22. Adoption of security headers

459. https://cure53.de/xfo-clickjacking.pdf
460. https://www.usenix.org/system/files/sec20fall_calzavara_prepub.pdf

Part II Chapter 11 : Security

332 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/security/security-adoption-of-security-headers.png
https://almanac.httparchive.org/static/images/2020/security/security-adoption-of-security-headers.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options
https://cure53.de/xfo-clickjacking.pdf
https://www.usenix.org/system/files/sec20fall_calzavara_prepub.pdf
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-XSS-Protection

However, as of Chrome version 78, the built-in XSS detector has been deprecated and

removed461 from the browser. This was because there exist various bypasses, and the

mechanism also introduced new vulnerabilities and information leaks462 that could be abused by

attackers. As the other browser vendors never implemented a similar mechanism, the X-XSS-
Protection header effectively has no effect on modern browsers and can thus safely be

removed. Nevertheless, we do see a slight increase in the adoption of this header compared to

last year, from 15.50% to 18.39%.

The remainder of the top five most widely adopted headers is completed by two headers

related to a website’s TLS implementation. The Strict-Transport-Security header is

used to instruct the browser that the website should only be visited over an HTTPS connection

for the duration defined in the max-age attribute. We explored the configuration of this

header in more detail earlier in this chapter. The Expect-CT header will instruct the browser

to verify that any certificate that is issued for the current website needs to appear in public

Certificate Transparency463 logs.

Overall, we can see that the adoption of security headers has increased in the last year: the

most-widely used security headers show a relative increase of 15 to 35 percent. The growth in

adoption of the features that were introduced more recently, such as the Report-To and

Feature-Policy headers, is also worth noting—the latter has more than tripled compared to

last year. The strongest absolute growth can be seen for the CSP header, with an adoption rate

growing from 4.94% to 10.93%.

Preventing XSS attacks through CSP

Implementing a strict CSP that is useful in preventing XSS attacks is non-trivial: web developers

Figure 11.23. Prevalence of CSP keywords based on policies that define a default-src or script-src
directive.

Keyword Desktop Mobile

strict-dynamic 2.40% 14.68%

nonce- 8.72% 17.40%

unsafe-inline 89.83% 92.28%

unsafe-eval 84.03% 77.48%

461. https://bugs.chromium.org/p/chromium/issues/detail?id=968591
462. https://frederik-braun.com/xssauditor-bad.html
463. https://developer.mozilla.org/docs/Web/HTTP/Headers/Expect-CT

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 333

https://bugs.chromium.org/p/chromium/issues/detail?id=968591
https://bugs.chromium.org/p/chromium/issues/detail?id=968591
https://frederik-braun.com/xssauditor-bad.html
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/docs/Web/HTTP/Headers/Expect-CT

need to be aware of all the different origins from which scripts are loaded and all inline scripts

should be removed. To make adoption easier, the last version of CSP (version 3), provides new

keywords that can be used in the default-src or script-src directives. For instance, the

strict-dynamic keyword will allow any script that is dynamically added by an already-

trusted script, e.g. when that script creates a new <script> element. From the policies that

include either a default-src or script-src directive (21.17% of all CSPs), we see an

adoption of 14.68% of this relatively new keyword. Interestingly, on desktop pages the

adoption of this mechanism is significantly lower, at 2.40%.

Another mechanism to make adoption of CSP easier is the use of nonces: in the script-src
directive of CSP, a page can enter the keyword nonce- , followed by a random string. Any

script (inline or remote) that has a nonce attribute set to the same random string defined in

the header will be allowed to execute. As such, through this mechanism it is not required to

determine all the different origins from which scripts may be included in advance. We found

that the nonce mechanism was used in 17.40% of the policies that defined a script-src or

default-src directive. Again, the adoption for desktop pages was lower, at 8.72%. We have

been unable to explain this large difference but would be interested in hearing any

suggestions464!

The two other keywords, unsafe-inline and unsafe-eval , are present on the majority of

the CSPs: 97.28% and 77.79% respectively. This can be seen as a reminder of the difficulty of

implementing a policy that can thwart XSS attacks. However, when the strict-dynamic
keyword is present, this will effectively ignore the unsafe-inline and unsafe-eval
keywords. Because the strict-dynamic keyword may not be supported by older browsers,

it is considered best practice to include the two other unsafe keywords to maintain

compatibility for all browser versions.

Whereas the strict-dynamic and nonce- keywords can be used to defend against

reflected and persistent XSS attacks, a protected page could still be vulnerable to DOM-based

XSS vulnerabilities. To defend against this class of attacks, website developers can make use of

Trusted Types465, a fairly new mechanism that is currently only supported by Chromium-based

browsers. Despite the potential difficulties in adopting Trusted Types (websites would need to

create a policy and potentially adjust their JavaScript code to comply with this policy), and

given that it is a new mechanism, it is encouraging that 11 homepages already adopted Trusted

Types through the require-trusted-types-for directive in CSP.

464. https://discuss.httparchive.org/t/2047
465. https://web.dev/trusted-types/

Part II Chapter 11 : Security

334 2020 Web Almanac by HTTP Archive

https://content-security-policy.com/strict-dynamic/
https://content-security-policy.com/strict-dynamic/
https://discuss.httparchive.org/t/2047
https://discuss.httparchive.org/t/2047
https://web.dev/trusted-types/

Defending against XS-Leaks with Cross-Origin Policies

To defend against the novel class of attacks called XS-Leaks466, various new security mechanisms

have been introduced very recently (some are still under development). Generally, these

security mechanisms give website administrators more control over how other sites can

interact with their site. For instance, the Cross-Origin-Opener-Policy (COOP) response

header can be used to instruct browsers that the page should be process-isolated from other,

potentially malicious, browser contexts. As such, an adversary would not be able to obtain a

reference to the page’s global object. As a result, attacks such as frame counting467 are

prevented with this mechanism. We found 31 early-adopters of this mechanism, which was

only supported in Chrome, Edge and Firefox a few days before the data collection started.

The Cross-Origin-Resource-Policy (CORP) header, which has been supported by

Chrome, Firefox and Edge only slightly longer, has already been adopted on 1,712 pages (note

that CORP can/should be enabled on all resource types, not just documents, hence this number

may be an underestimation). The header is used to instruct the browser how the web resource

is expected to be included: same-origin, same-site, or cross-origin (going from more to less

restrictive). The browser will prevent loading resources that are included in a way that is in

violation with CORP. As such, sensitive resources protected with this response header are

safeguarded from Spectre attacks468 and various XS-Leaks attacks469. The Cross-Origin Read

Blocking470 (CORB) mechanism provides a similar protection but is enabled by default in the

browser (currently only in Chromium-based browsers) for “sensitive” resources.

Related to CORP is the Cross-Origin-Embedder-Policy (COEP) response header, which

can be used by documents to instruct the browser that any resource loaded on the page should

have a CORP header. Additionally, resources that are loaded through the Cross-Origin

Resource Sharing (CORS) mechanism (e.g. through the Access-Control-Allow-Origin
header) are also allowed. By enabling this header, along with COOP, the page can get access to

APIs that are potentially sensitive, such as high-accuracy timers and SharedArrayBuffer ,

which can also be used to construct a very accurate timer. We found 6 pages that enabled

COEP, although support for the header was only added to browsers a few days before the data

collection.

Most of the cross-origin policies aim to disable or mitigate the potentially nefarious

consequences of several browser features that have only a limited usage on the web (e.g.

retaining a reference to newly opened windows). As such, enabling security features such as

COOP and CORP can, in most cases, be done without breaking any functionality. Therefore it

can be expected that the adoption of these cross-origin policies will significantly grow in the

466. https://xsleaks.dev/
467. https://xsleaks.dev/docs/attacks/frame-counting/
468. https://spectreattack.com/spectre.pdf
469. https://xsleaks.dev/docs/defenses/opt-in/corp/
470. https://fetch.spec.whatwg.org/#corb

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 335

https://xsleaks.dev/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://xsleaks.dev/docs/attacks/frame-counting/
https://developer.mozilla.org/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://spectreattack.com/spectre.pdf
https://xsleaks.dev/docs/defenses/opt-in/corp/
https://fetch.spec.whatwg.org/#corb
https://fetch.spec.whatwg.org/#corb
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy

coming months and years.

Web Cryptography API

The Web Cryptography API471 offers great JavaScript functions for developers that can be used

to securely run cryptographic operations on the client-side with little effort—without requiring

external libraries. This JavaScript API not only provides basic cryptographic operations but can

be used to generate cryptographically strong random values, hashing, signature generation and

verification, encryption and decryption. With the help of this API, we can also implement

algorithms for authenticating users, signing documents, protecting the confidentiality and

integrity of communications securely. Consequently, this API enables more secure and data

protection-compliant use-cases in the area of end-to-end encryption. This is how the Web

Cryptography API makes its contribution to end-to-end encryption.

Our results show that the Cypto.getRandomValues function, which allows for generating a

random number (in a secure, cryptographic manner) is by far the most widely used one

(desktop: 70% and mobile: 68%). We believe Google Analytic’s use of this function has a major

effect on the usage measured. In general, we see that mobile websites perform slightly fewer

cryptographic operations, although mobile browsers fully support472 this API.

It should be noted that, since we perform passive crawling, our results in this section will be limited by

this. We’re not able to identify cases where any interaction is required before the functions are

executed.

Figure 11.24. Top used cryptography APIs

Cryptography API Desktop Mobile

CryptoGetRandomValues 70.32% 67.94%

SubtleCryptoGenerateKey 0.3% 0.2%

SubtleCryptoEncrypt 0.3% 0.2%

SubtleCryptoDigest 0.3% 0.3%

CryptoAlgorithmSha256 0.2% 0.2%

471. https://www.w3.org/TR/WebCryptoAPI/
472. https://developer.mozilla.org/docs/Web/API/Web_Crypto_API#Browser_compatibility

Part II Chapter 11 : Security

336 2020 Web Almanac by HTTP Archive

https://www.w3.org/TR/WebCryptoAPI/
https://developer.mozilla.org/docs/Web/API/Web_Crypto_API#Browser_compatibility

Utilizing bot protection services

According to Imperva473, a serious proportion (37%) of the total web traffic belongs to

automated programs (so-called “bots”), and most of them are malicious (24%). Bots can be used

for phishing, collecting information, exploiting vulnerabilities, DDoS, and many other purposes.

Using bots is a very interesting technique for attackers and especially increases the success

rate of massive attacks. That is why protecting against malicious bots can be helpful in

defending against large-scale automated attacks. The following figure shows the use of third-

party protection services against malicious bots.

The figure above shows the use of bot protection and also the market share based on our

dataset. We see that nearly 10% of desktop pages and 9% of mobile pages use such services.

Relationship between the adoption of security
headers and various factors

In the previous sections we explored the adoption rate of various browser security mechanisms

that need to be enabled by web pages through response headers. Next, we explore what drives

websites to adopt the security features, whether it is related to country-level policies and

regulations, a general interest to keep their customers safe, or whether it is driven by the

technology stack that is used to build the website.

Country of a website’s visitors

There can be many different factors that affect security at the level of a country: government-

motivated programs of cybersecurity may increase awareness of good security practices, a

focus on security in higher education could lead to more well-informed developers, or even

Figure 11.25. Usage of bot protection services by provider

Service provider Desktop Mobile

reCAPTCHA 8.30% 9.03%

Imperva 0.30% 0.36%

hCaptcha 0.01% 0.01%

Others <0.01% <0.01%

473. https://www.imperva.com/blog/bad-bot-report-2020-bad-bots-strike-back

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 337

https://www.imperva.com/blog/bad-bot-report-2020-bad-bots-strike-back

certain regulations might require companies and organizations to adhere to best security

practices. To evaluate the differences per country, we analyze the different countries for which

at least 100,000 homepages were available in our dataset, which is based on the Chrome User

Experience Report (CrUX). These pages consist of those that were visited most frequently by

the users in that country; as such, these also contain widely popular international websites.

Looking at the percentage of homepages that were visited over HTTPS, we can already see a

significant difference: for the top 5 best-performing countries 93-95% of the homepages were

served over HTTPS. For the bottom 5, we see a much smaller adoption in HTTPS, ranging from

71% to 76%. When we look at other security mechanisms, we can see even more apparent

differences between top-performing countries and countries with a low adoption rate. The top

5 countries according to the adoption rate for CSP score between 14% and 16%, whereas the

bottom 5 score between 2.5% and 5%. Interestingly, the countries that perform well/poorly for

one security mechanism, also do so for other mechanisms. For instance, New Zealand, Ireland

and Australia consistently rank among the top 5, whereas Japan scores worst for almost every

security mechanism.

Figure 11.26. Adoption of HTTPS per country

Part II Chapter 11 : Security

338 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/security/security-adoption-of-https-per-country.png
https://almanac.httparchive.org/static/images/2020/security/security-adoption-of-https-per-country.png

Technology stack

Country-level incentives can drive the adoption of security mechanisms to a certain extent, but

perhaps more important is the technology stack that website developers use when building

websites. Do the frameworks easily lend themselves to enabling a certain feature, or is this a

painstaking process requiring a complete overhaul of the application? Even better it would be if

developers start with an already-secure environment with strong security defaults to begin

with. In this section we explore different programming languages, SaaS, CMS, ecommerce and

CDN technologies that have a significantly higher adoption rate for specific features (and thus

can be seen as driving factors for widespread adoption). For brevity, we focus on the most

widely deployed technologies, but it is important to note that many smaller technology

products exist that aim to provide better security for their users.

For security features related to the transport security, we find that there are 12 technology

products (mainly ecommerce platforms and CMSs) that enable the Strict-Transport-
Security header on at least 90% of their customer sites. Websites powered by the top 3

(according to their market share, namely Shopify, Squarespace and Automattic), make up for

30.32% of all homepages that have enabled Strict Transport Security. Interestingly, the

adoption of the Expect-CT header is mainly driven by a single technology, namely Cloudflare,

which enables the header on all of their customers that have HTTPS enabled. As a result,

99.06% of the Expect-CT header presences can be related to Cloudflare.

Figure 11.27. Adoption of CSP and XFO per country.

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 339

https://almanac.httparchive.org/static/images/2020/security/security-adoption-of-csp-and-xfo-per-country.png
https://almanac.httparchive.org/static/images/2020/security/security-adoption-of-csp-and-xfo-per-country.png

With regard to security headers that secure content inclusion or that aim to thwart attacks, we

see a similar phenomenon where a few parties enable a security header for all their customers,

and thus drive its adoption. For instance, six technology products enable the Content-
Security-Policy header for more than 80% of their customers. As such, the top 3 (Shopify,

Sucuri and Tumblr) represent 52.53% of the homepages that have the header. Similarly, for X-
Frame-Options , we see that the top 3 (Shopify, Drupal and Magento) contribute 34.96% of

the global prevalence of the XFO header. This is particularly interesting for Drupal, as it is an

open-source CMS that is often set up by website owners themselves. It is clear that their

decision to enable X-Frame-Options: SAMEORIGIN by default is keeping many of their

users protected against clickjacking attacks: 81.81% of websites powered by Drupal have the

XFO mechanism enabled.

Co-occurrence of other security headers

The security “game” is highly unbalanced, and much more in the favor of attackers: an adversary

only needs to find a single flaw to exploit, whereas the defender needs to prevent all possible

vulnerabilities. As such, whereas adopting a single security mechanism can be very useful in

defending against a particular attack, websites need multiple security features in order to

defend against all possible attacks. To determine whether security headers are adopted in a

one-off manner, or rather in a rigorous way to provide in-depth defenses against as many

attacks as possible, we look at the co-occurrence of security headers. More precisely, we look

at how the adoption of one security header affects the adoption of other headers. Interestingly,

Figure 11.28. Security header as driver of adoption of other headers

Part II Chapter 11 : Security

340 2020 Web Almanac by HTTP Archive

https://www.drupal.org/node/2735873
https://www.drupal.org/node/2735873
https://almanac.httparchive.org/static/images/2020/security/security-headers-as-drivers-of-adoption-of-other-headers.png
https://almanac.httparchive.org/static/images/2020/security/security-headers-as-drivers-of-adoption-of-other-headers.png

this shows that websites that adopt a single security header, are much more likely to adopt

other security headers as well. For instance, for mobile homepages that contain a CSP header,

the adoption of the other headers (Expect-CT , Referrer-Policy , Strict-Transport-
Security , X-Content-Type-Options and X-Frame-Options) is on average 368% higher

compared to the overall adoption of these headers.

In general, websites that adopt a certain security header are 2 to 3 times more likely to adopt

other security headers as well. This is especially the case for CSP, which fosters the adoption of

other security headers the most. This can be explained on the one hand because CSP is one of

the more extensive security headers that requires considerable effort to adopt, so websites

that do define a policy, are more likely to be invested in the security of their website. On the

other hand, 44.31% of the CSP headers are on homepages that are powered by Shopify. This

SaaS product also enables several other security headers (Strict-Transport-Security ,

X-Content-Type-Options and X-Frame-Options) as a default for virtually all of their

customers.

Software update practices

A very large part of the Web is built with third-party components, at different layers of the

technology stack. These components consist of the JavaScript libraries that are used to provide

a better user experience, the Content Management Systems or web application frameworks

that form the backbone of a website, and the web servers that are used to respond to requests

from the visitors. Every so often a vulnerability is detected in one of these components. In the

best case it is detected by a security researcher who responsibly discloses it to the affected

vendor, prompting them to patch the vulnerability and release an update of their software. At

this point, it is very likely that the details of the vulnerability are publicly known, and that

attackers are eagerly working on creating an exploit for it. As such, it is of key importance for

website owners to update the affected software as fast as possible to safeguard them from

these n-day exploits474. In this section we explore how well the most widely used software is kept

up-to-date.

474. https://www.darkreading.com/vulnerabilities---threats/the-overlooked-problem-of-n-day-vulnerabilities/a/d-id/1331348

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 341

https://www.darkreading.com/vulnerabilities---threats/the-overlooked-problem-of-n-day-vulnerabilities/a/d-id/1331348

WordPress

As one of the most popular Content Management Systems, WordPress is an attractive target

for attackers. As such, it is important for website administrators to keep their installation up-to-

date. By default, updates are performed automatically for WordPress475, although it is possible

to disable this feature. The evolution of the deployed WordPress versions are displayed in the

above figure, showing the latest major versions that are still actively maintained476 (5.5: purple,

5.4: blue, 5.3: red, 5.2: green, 4.9: orange). Versions that have a prevalence of less than 4% are

grouped together under “Other”. A first interesting observation that can be made is that as of

August 2020, 74.89% of the WordPress installations on mobile homepages are running the

latest version within their branch. It can also be seen that website owners are gradually

upgrading to the new major versions. For instance, WordPress version 5.5, which was released

on August 11th 2020, already comprised 10.22% of the WordPress installations that were

Figure 11.29. WordPress version evolution.

475. https://wordpress.org/support/article/configuring-automatic-background-updates/
476. https://wordpress.org/download/releases/

Part II Chapter 11 : Security

342 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/security/security-wordpress-version-evolution.png
https://almanac.httparchive.org/static/images/2020/security/security-wordpress-version-evolution.png
https://wordpress.org/support/article/configuring-automatic-background-updates/
https://wordpress.org/download/releases/

observed in the crawl for August.

Another interesting aspect that can be inferred from the graph is that within a month, the

majority of WordPress sites that were previously up-to-date, will have updated to the new

version. This appears especially true for WordPress installations on the latest branch. On April

29, 2020, 2 days before the start of the crawl, WordPress released updates for all their

branches: 5.4 → 5.4.1, 5.3.2 → 5.3.3, etc. Based on the data, we can see that the share of

WordPress installations that were running version 5.4, reduced from 23.08% in the April 2020

crawl, to 2.66% in May 2020, further down to 1.12% in June 2020, and dropping below 1% after

that. The new 5.4.1 version was running on 35.70% of the WordPress installations as of May

2020, the result of many website operators (automatically) updating their WordPress install

(from 5.4 and other branches). Although the majority of website operators update their

WordPress either automatically, or very quickly after a new version is released, there still is a

small fraction of sites that keep stuck with an older version: as of August 2020, 3.59% of all

WordPress installations were running an outdated 5.3 or 5.4 version.

Figure 11.30. Evolution of WordPress 5.3 and 5.4 after update

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 343

https://almanac.httparchive.org/static/images/2020/security/security-evolution-of-wordpress-5-3and5-4-after-update.png
https://almanac.httparchive.org/static/images/2020/security/security-evolution-of-wordpress-5-3and5-4-after-update.png

jQuery

One of the most widely used JavaScript libraries is jQuery, which has three major versions: 1.x,

2.x and 3.x. As is clear from the evolution of jQuery versions that are used on mobile

homepages, the overall distribution is very static over time. Surprisingly, a significant fraction of

websites (18.21% as of August 2020) are still running an old 1.x version of jQuery. This fraction

is consistently decreasing (from 33.39% in November 2019), in favor of version 1.12.4, which

was released477 in May 2016 and unfortunately has various medium-level security issues478.

Figure 11.31. jQuery version evolution.

477. https://blog.jquery.com/2016/05/20/jquery-1-12-4-and-2-2-4-released/
478. https://snyk.io/test/npm/jquery/1.12.4

Part II Chapter 11 : Security

344 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/security/security-jquery-version-evolution.png
https://almanac.httparchive.org/static/images/2020/security/security-jquery-version-evolution.png
https://blog.jquery.com/2016/05/20/jquery-1-12-4-and-2-2-4-released/
https://snyk.io/test/npm/jquery/1.12.4

nginx

For nginx, one of the most widely used web servers, we see a very static and diverse landscape

in terms of the adoption of different versions over time. The largest share that any nginx

(minor) version had among all nginx servers over time was approximately 20%. Furthermore,

we can see that the distribution of versions remains fairly static over time: it is relatively

unlikely that web servers are updated. Presumably, this is related to the fact that no “major”

security vulnerability479 has been found in nginx since 2014 (affecting versions up to 1.5.11). The

last 3 vulnerabilities with a medium-ranked impact (CVE-2019-9511480, CVE-2019-9513481,

CVE-2019-9516482) date from March 2019 and can cause excessively high CPU usage in HTTP/

2-enabled nginx servers up to version 1.17.2. According to the reported version numbers, more

than half of the servers could be susceptible to this vulnerability (if they have HTTP/2 enabled).

As the web server software is not frequently updated, this number is likely to stay fairly high in

the coming months.

Figure 11.32. nginx version evolution.

479. http://nginx.org/en/security_advisories.html
480. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9511
481. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
482. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9516

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 345

https://almanac.httparchive.org/static/images/2020/security/security-nginx-version-evolution.png
https://almanac.httparchive.org/static/images/2020/security/security-nginx-version-evolution.png
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9511
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9516

Malpractices on the web

Nowadays, the performance of the used technologies plays a particularly relevant role. To this

end, technologies are constantly being further developed, optimized, and new technologies

launched. One of these new technologies is WebAssembly, which has become a W3C

recommendation483 as of the end of 2019. WebAssembly can be used to develop powerful web

applications and has made it possible to run almost native high-performance computing in web

browsers. No rose without a thorn however as attackers have taken advantage of this

technology, and this is how the new attack vector cryptojacking484 came into existence.

Attackers used this technology to mine cryptocurrencies on the web browser by using the

power of visitor’s computers (malicious cryptomining). This is a very attractive technique for

attackers – inject a few lines of JavaScript code in the web page and let all visitors mine for you.

Because some websites may also offer bona fide cryptomining on the web, we can’t generalize

that all websites with cryptomining are in fact cryptojacking. But in most cases, website

operators don’t offer an opt-in alternative for visitors, and the visitors remain still uninformed

as to whether their resources are being used while browsing the website.

The figure above shows the number of websites utilizing cryptomining in the last two years. We

see that from the beginning of 2019, interest in cryptomining is getting lower. In our last

measurement, we had a total of 348 websites including cryptomining scripts.

Figure 11.33. Cryptominer usage.

483. https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
484. https://www.malwarebytes.com/cryptojacking/

Part II Chapter 11 : Security

346 2020 Web Almanac by HTTP Archive

https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://www.malwarebytes.com/cryptojacking/
https://almanac.httparchive.org/static/images/2020/security/security-cryptominer-usage.png
https://almanac.httparchive.org/static/images/2020/security/security-cryptominer-usage.png

In the next figure, we show the market share of cryptominer on the web based on August’s

dataset. Coinimp is the most popular provider with a 45.2% market share. We found that all of

the most popular cryptominers are based on WebAssembly. Note that there are also JavaScript

libraries to mine on the web, but they are not as powerful as solutions based on WebAssembly.

Our other result shows that half of the websites including a cryptominer utilize a cryptomining

component of discontinued service providers (such as CoinHive485 and JSEcoin486), which means

that although the cryptomining scripts are included on those web pages, they are no longer

active and thus no cryptomining will occur in practice.

Conclusion

One of the most prominent developments in terms of web security over the last year has been

the increased adoption of security headers on (the long tail of) the Web. Not only does this

mean that overall users are generally better protected, more importantly, it shows that the

security incentive of website administrators has generally increased. This increase in usage can

be seen for all the different security headers, even for the ones that are non-trivial to

implement, such as CSP. Another interesting observation that can be made, is that we saw that

websites that adopt one security header, are also more likely to adopt other security

mechanisms. This shows that web security is not just considered as an afterthought, but rather

Figure 11.34. Cryptominer market share (mobile).

485. https://blog.avast.com/coinhive-shuts-down
486. https://twitter.com/jsecoin/status/1247436272869814272

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 347

https://blog.avast.com/coinhive-shuts-down
https://twitter.com/jsecoin/status/1247436272869814272
https://almanac.httparchive.org/static/images/2020/security/security-cryptominer-market-share.png
https://almanac.httparchive.org/static/images/2020/security/security-cryptominer-market-share.png

a holistic approach where developers aim to defend against all possible threats.

On a global scale, there is still a long way to go. For instance, less than a third of all sites have

adequate protection for clickjacking attacks, and many sites are opting out of the protection

(enabled by default in certain browsers) against various cross-site attacks, by setting the

SameSite attribute on cookies to None . Nevertheless, we have also seen more positive

evolutions: various software on the technology stack are enabling security features by default.

Developers that build a website using this software will start off with an already-secure

environment and would have to forcefully disable protections if they so desire. This is very

different from what we see in legacy applications, where enhancing security might be more

difficult as it could break functionality.

Looking ahead, one prediction that we know will come true is that the security landscape will

not come to a standstill. New attack techniques will surface, possibly prompting the need for

additional security mechanisms to defend against them. As we have seen with other security

features that have only recently been adopted, this will take some time, but gradually and step

by step we are converging to a more secure web.

Authors

Tom Van Goethem

@tomvangoethem tomvangoethem https://tom.vg/

Tom Van Goethem is a researcher at the DistriNet group487 of the university of

Leuven, Belgium. His research is focused on discovering new side-channel attacks

on the web that lead to security or privacy issues and figuring out how to patch the

leaks that cause them.

Nurullah Demir

@nrllah nrllh https://www.internet-sicherheit.de/team/demir-nurullah.html

Nurullah Demir is a security researcher and PhD Student at Institute for Internet

Security488. His research focuses on robust web security mechanisms and

adversarial machine learning.

487. https://distrinet.cs.kuleuven.be/
488. https://www.internet-sicherheit.de/en/

Part II Chapter 11 : Security

348 2020 Web Almanac by HTTP Archive

https://twitter.com/tomvangoethem
https://github.com/tomvangoethem
https://tom.vg/
https://distrinet.cs.kuleuven.be/
https://twitter.com/nrllah
https://github.com/nrllh
https://www.internet-sicherheit.de/team/demir-nurullah.html
https://www.internet-sicherheit.de/en/
https://www.internet-sicherheit.de/en/

Barry Pollard

@tunetheweb tunetheweb tunetheweb https://www.tunetheweb.com

Barry Pollard is a software developer and author of the Manning book HTTP/2 in

Action489. He thinks the web is amazing but wants to make it even better. You can

find him tweeting @tunetheweb and blogging at www.tunetheweb.com.

489. https://www.manning.com/books/http2-in-action

Part II Chapter 11 : Security

2020 Web Almanac by HTTP Archive 349

https://twitter.com/tunetheweb
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb/
https://www.tunetheweb.com/
https://www.manning.com/books/http2-in-action
https://www.manning.com/books/http2-in-action
https://twitter.com/tunetheweb
https://www.tunetheweb.com/

350 2020 Web Almanac by HTTP Archive

Part II Chapter 12

Mobile Web

Written by Shubhie Panicker and Michael DiBlasio
Reviewed and analyzed by David Fox
Edited by Shane Exterkamp

Introduction

Mobile Web has grown explosively in the last decade and is now the primary way many people

experience the web. In spite of this, engagement and online sales still lag behind desktop. In this

chapter, we take a look at recent trends on the mobile web and analyze why user journeys are

often difficult to complete.

2020 has seen a big surge in internet usage490, on both mobile and desktop, due to the global

pandemic. There has been an uptick in visits to news sites, ecommerce and social media sites as

people across the globe adjusted to a new lifestyle with stay-at-home orders and social

distancing. 2020 has been a significant year in history, for the web and for mobile usage.

Data sources

We’ve used a few different data sources in this chapter:

490. https://www.nytimes.com/interactive/2020/04/07/technology/coronavirus-internet-use.html

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 351

https://www.nytimes.com/interactive/2020/04/07/technology/coronavirus-internet-use.html

• CrUX

• HTTP Archive

• Lighthouse

Please visit the links above to learn more about the methodology and caveats with each data

source. It is worth noting that the HTTP Archive and Lighthouse data is limited to the data

identified from websites’ home pages only, and not site-wide.

In addition to the above, we also used a non-public Chrome data source in the section on page

loads in Chrome. For more information on this, read about Chrome’s data collection API491.

While this data is only collected from a subset of (opted in) Chrome users, it does not suffer

from being limited to homepages. It is pseudonymous and consists of histograms and events.

NOTE: Reporting is enabled if the user has enabled a feature that syncs browser windows, unless they

have disabled the “Make searches and browsing better / Sends URLs of pages you visit to Google”

setting.

Mobile web & desktop traffic trends

How much are users visiting websites on mobile web and desktop? Are there any patterns in

the traffic that websites receive from mobile versus desktop? In order to examine these

questions and what it means for websites, we looked at data from a couple of lenses.

A report published492 on perficient.com shows mobile versus desktop traffic trends over several

years, using similarweb493 as a data source. While the majority of visits—58% of site visits—were

from mobile devices, mobile devices made up only 42% of total time spent online. Moreover,

the average time spent per visit is roughly twice as much on desktop compared to mobile (11.52

minutes on desktop versus 5.95 minutes on mobile).

Page loads in Chrome (Chrome data source)

Note that this section references stats that have been made available specifically for this

chapter from non-public Chrome data source, see details here. We use this data to assess page

loads on Android and Windows—as a proxy for mobile and desktop respectively.

NOTE: we may refer to the data in this section as mobile for Android and desktop for Windows.

491. https://chromium.googlesource.com/chromium/src/+/master/services/metrics/ukm_api.md
492. https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study
493. https://www.similarweb.com/

Part II Chapter 12 : Mobile Web

352 2020 Web Almanac by HTTP Archive

https://chromium.googlesource.com/chromium/src/+/master/services/metrics/ukm_api.md
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study
https://www.similarweb.com/

Page loads across origins ranked by popularity

We looked at traffic to origins by popularity—how often are users visiting certain origins, and

what does that tell us about the global distribution across the web.

Rick Byers tweeted494 this distribution a year ago, we looked at the latest data. The chart shows

us the overall distribution across origins by their popularity, captured by their contribution to %

page loads in Chrome.

Some takeaways:

• Usage of Chrome is roughly evenly divided between the top 200 sites, the next

10,000, and all the rest.

• The web has a fat head.

• A small number of origins constitute a large fraction of traffic, for both

mobile and desktop.

• The top 30 origins constitute 25% of aggregate traffic on mobile.

• The top 200 origins constitute 33% of aggregate traffic on mobile.

Figure 12.1. Page loads across origins ranked by popularity (in Chrome)

494. https://twitter.com/RickByers/status/1195342331588706306

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 353

https://twitter.com/RickByers/status/1195342331588706306
https://almanac.httparchive.org/static/images/2020/mobile-web/page-loads-across-origins-ranked-by-popularity.png
https://almanac.httparchive.org/static/images/2020/mobile-web/page-loads-across-origins-ranked-by-popularity.png

• The web has a broad torso.

• The top 10k origins constitute roughly two-thirds of traffic: 64% of

traffic on mobile.

• The web has a long tail.

• 3M origins in top 98% on Android versus 1.8M on Windows.

• The tail is about twice as long on Android as Windows. This is most likely

attributable to the larger number of mobile devices and users,

compared to desktop.

Traffic to a site from mobile versus desktop (CrUX)

Could a website reason about their expected mobile versus desktop traffic distribution?

It’s hard to predict, because the distribution between mobile and desktop will vary greatly

based on the site. Furthermore, it heavily depends on the industry category (e.g. entertainment,

shopping) and whether the site has native apps, and how aggressively native apps are promoted

etc.

We looked at the CrUX dataset to assess Chrome traffic to sites from mobile devices vs

desktop.

Figure 12.2. Distribution of mobile vs other traffic

Part II Chapter 12 : Mobile Web

354 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/mobile-traffic-distribution.png
https://almanac.httparchive.org/static/images/2020/mobile-web/mobile-traffic-distribution.png

The distribution appears mobile heavy. A reason for that is that there are many (2 million+ in

CrUX) sites which, while low in total traffic, only get traffic from mobile. Mobile has a much

longer “tail” as we saw in the previous section.

If we put all the websites with CrUX data, in a bucket and randomly choose one, 50% of the time

the website you chose would be receiving 77.61% or more of their traffic from mobile (a slight

decrease from 79.93% in 2019).

Note that while this is an interesting observation, it’s hard to draw conclusions from CrUX

about broad trends for mobile versus desktop because:

• CrUX is Chrome only data, and missing other browsers, including Safari - a major

mobile browser.

• Even for Chrome, this is a subset from opted-in users, and impacted by opt-in rates

and variance across platforms.

Trend conclusions

So what did we learn in terms of reasoning about mobile versus desktop traffic to a website?

Traffic distribution from mobile vs desktop is highly specific to a site and dependent on the

industry category, and other factors such as presence of native apps. However odds are that for

site visits in Chrome, a given website has traffic predominantly from mobile web, in spite of

users spending more time on desktop. This is due to a much longer tail for mobile Chrome.

While one cannot generalize the expected traffic distribution from mobile versus desktop for

individual websites, it is worth comparing your site’s distribution to that of the industry

category495.

If your website is substantially different from the industry average, it could be worth digging

into the reason, for instance poor loading performance could be one reason.

The user journey

User journeys, including commercial journeys, on the mobile web are often difficult to

complete.

While mobile represents 79.6% of time spent amongst retail sites, it only accounts for 32.3% of

495. https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 355

https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study

eCommerce sales496. This suggests that users frequently start their journey on mobile, but often

finish on desktop. Why might that be?

To reason about questions like this, we need to first understand the elements of the user

journey.

We break down the user journey into 4 phases.

1. Acquisition

For a website, acquisition of visitors is a crucial entry phase. Acquisition involves getting

visitors to the website, often through search engines, Ad clicks, links from other sites and from

social media.

SEO

SEO is crucial for the acquisition phase. Search engines are an important source of visitors

being sent to websites, embarking on their user journeys. The main goal of SEO is to ensure that

a website is optimized for search engines, i.e. search engine bots that need to crawl and index

its pages, as well as the users that will be navigating the website and consuming its content.

A lot of users now start their search on mobile.

Responsive web design

Due to the popularity of mobile devices to browse and search the web, Google search moved to

a mobile-first Index497 a few years ago. This means that search ranking considers pages as seen

by mobile users, and mobile friendliness is now a ranking factor. Google will fully switch to a

mobile-first index498, for all sites, in March 2021.

Websites should ensure mobile friendliness for a good search experience and SEO, as this

impacts traffic from search users. Responsive web design499 is the recommended way to achieve

this.

Responsive websites use the viewport meta tag as well as CSS media queries to provide a

mobile friendly experience. To learn more about these mobile friendliness aspects, head over to

the SEO chapter.

496. https://www.emarketer.com/content/frictionless-commerce-2020
497. https://developers.google.com/search/blog/2016/11/mobile-first-indexing
498. https://developers.google.com/search/blog/2020/07/prepare-for-mobile-first-indexing-with
499. https://developers.google.com/search/mobile-sites/mobile-seo/responsive-design

Part II Chapter 12 : Mobile Web

356 2020 Web Almanac by HTTP Archive

https://www.emarketer.com/content/frictionless-commerce-2020
https://developers.google.com/search/blog/2016/11/mobile-first-indexing
https://developers.google.com/search/blog/2020/07/prepare-for-mobile-first-indexing-with
https://developers.google.com/search/blog/2020/07/prepare-for-mobile-first-indexing-with
https://developers.google.com/search/mobile-sites/mobile-seo/responsive-design

Learn more about responsive web design here500.

Beyond organic traffic from search engines, Ad clicks could be a key source of visitors being

sent to websites. Similar to SEO, optimizing Ads can be important for websites who invest in

and receive traffic from Ads.

Loading performance

First impressions matter. Delivering page content in a timely manner is critical for avoiding

visitor abandonment and user frustration. Loading performance is a key aspect of the

acquisition phase, poor loading performance results in users abandoning this journey.

A recent study501 showed that 0.1s mobile speed improvement increased conversion rates by

+8.4% for retail sites and +10.1% for travel sites.

Loading performance is a vast topic, so we picked a couple of aspects to cover here.

Largest Contentful Paint

A key aspect of the loading experience is how quickly the main content of a web page loads and

is visible to users. This has been difficult to measure, in the past Google recommended

performance metrics like First Meaningful Paint502 (FMP) to capture this, but it was hard to

explain, and often unable to identify when the main content of the page was visible.

Sometimes simpler is better. More recently it’s been found that a more accurate way to

measure when the main content of a page is loaded is to simply look at when the largest

element was rendered. Largest Contentful Paint503 (LCP) is a timing-based metric that captures

this—the time at which the largest above-the-fold element was rendered.

A good LCP score is 2.5s at p75. We found that the median LCP at p75 is 2.6s on mobile and

2.3s on desktop. Mobile web is especially susceptible to missing the mark on LCP.

500. https://web.dev/responsive-web-design-basics/
501. https://web.dev/milliseconds-make-millions/
502. https://web.dev/first-meaningful-paint/
503. https://web.dev/articles/lcp

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 357

https://web.dev/responsive-web-design-basics/
https://web.dev/milliseconds-make-millions/
https://web.dev/first-meaningful-paint/
https://web.dev/articles/lcp

Images

While every type of asset, such as font, CSS, JavaScript etc. plays an important role in loading

performance, we take a closer look at images.

The web continues to move towards image-heavy pages, with the growth of bandwidth and the

ubiquity of smartphones. And images impose a cost on loading performance.

Improperly sized and unoptimized images are frequent sources for image performance

problems. A staggering 41.20% of pages have improperly sized images.

Figure 12.3. Median p75 LCP score

Part II Chapter 12 : Mobile Web

358 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/median-p75-lcp-score.png
https://almanac.httparchive.org/static/images/2020/mobile-web/median-p75-lcp-score.png

4.1% of pages which have images, use the lazy loading attribute on their images, decent

adoption for a relatively new primitive.

2. Engagement

The next phase of the user journey is engagement of users towards consuming content and

fulfilling their intent.

Shifting content

Shifting content is detrimental to the experience of users engaging with content. Specifically,

content that shifts in position as resources load, impedes the user experience. Since browsers

download and display content as soon as they are able, it’s important to design your site to

smooth over the user experience. This is especially important for mobile web, as shifting

content is more noticeable on small screens.

Figure 12.4. Pages with properly sized images

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 359

https://almanac.httparchive.org/static/images/2020/mobile-web/pages-with-properly-sized-images.png
https://almanac.httparchive.org/static/images/2020/mobile-web/pages-with-properly-sized-images.png

Figure 12.5. Example of shifting content distracting a reader. CLS total of 42.59%. Image courtesy of
LookZook

Part II Chapter 12 : Mobile Web

360 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/example-of-a-site-shifting-content-while-it-loads-lookzook.gif
https://almanac.httparchive.org/static/images/2020/mobile-web/example-of-a-site-shifting-content-while-it-loads-lookzook.gif

Cumulative Layout Shift

Cumulative Layout Shift504 (CLS) is a metric that quantifies how much content within the

viewport shifts around, during the user visit.

The most common causes of a poor CLS505 are:

• Images without dimensions.

• Ads, embeds, and iframes without dimensions.

• Dynamically injected content.

• Web Fonts causing FOIT/FOUT.

• Actions waiting for a network response before updating DOM.

It’s not trivial to identify these causes locally or in a development environment, as it is heavily

dependent on how real users experience the page. Third-party content or personalized content

often doesn’t behave the same in development as it does in production.

According to CrUX data, 60% of mobile sites and 54% of desktop sites, have a good CLS.

Figure 12.6. Aggregate LCP performance by device

504. https://web.dev/articles/cls
505. https://web.dev/articles/optimize-cls

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 361

https://web.dev/articles/cls
https://web.dev/articles/optimize-cls
https://almanac.httparchive.org/static/images/2020/mobile-web/aggregate-lcp-performance-by-device.png
https://almanac.httparchive.org/static/images/2020/mobile-web/aggregate-lcp-performance-by-device.png

Design elements

To engage users, it’s important to help them quickly find what they’re looking for, and fulfill

their intention.

Landing pages

Simple design tweaks go a long way, for instance a clear call-to-action, and making the value

proposition evident to the user, with a few words.

Research has shown507 that auto-forwarding carousels are detrimental to the user experience.

Auto-forwarding carousels on the homepage should be avoided or their frequency should be

decreased.

Color and contrast

Consider the following examples from 5 lessons Eastpak learned from its mobile audience508:

Figure 12.7. Four key parts of the Pixel phone landing page.
(Source: Google506)

506. https://winonmobile.withgoogle.com
507. https://www.nngroup.com/articles/auto-forwarding/
508. https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/

Part II Chapter 12 : Mobile Web

362 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/landing-page-cta.png
https://almanac.httparchive.org/static/images/2020/mobile-web/landing-page-cta.png
https://winonmobile.withgoogle.com/
https://www.nngroup.com/articles/auto-forwarding/
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/

Here, a simple change from a button that’s hard to see, to a button with contrasting colors,

improved click through rate on the main call to action by 20%.

Figure 12.8. Eastpak improving the color contrast of their main call to action lead to a 20% increase
in click through rate.

(Source: Google509)

509. https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 363

https://almanac.httparchive.org/static/images/2020/mobile-web/eastpak-20-ctr.png
https://almanac.httparchive.org/static/images/2020/mobile-web/eastpak-20-ctr.png
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/

A simple color change on the check out button from black to orange, made it stand out more

and increased their conversion rate by 12%.

Mckinsey & Company published a report511 that shows that companies that are strong at design

and UX demonstrate better financial performance. Design and UX focused companies

demonstrated stronger revenue growth compared to their industry counterparts.

Text with low contrast ratio is hard to read, for instance, light gray text on a white background.

This can reduce reading comprehension and reading speed for users.

Lighthouse now checks for color contrast512, we found that 78.94%—a majority of web pages,

Figure 12.9. Eastpak improving the color contrast of their checkout button lead to a 12% increase in
conversion rate.

(Source: Google510)

510. https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/
511. https://www.mckinsey.com/business-functions/mckinsey-design/our-insights/the-business-value-of-design#
512. https://web.dev/color-contrast/

Part II Chapter 12 : Mobile Web

364 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/eastpak-12-ctr.png
https://almanac.httparchive.org/static/images/2020/mobile-web/eastpak-12-ctr.png
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/
https://www.mckinsey.com/business-functions/mckinsey-design/our-insights/the-business-value-of-design
https://web.dev/color-contrast/

were lacking sufficient color contrast.

Tap targets

Mobile user experience is susceptible to “fat fingering”, as users engage with sites using their

fingers—a rather imprecise tool compared to using a mouse on a desktop.

Based on research, there are standards for minimum size of buttons and tap targets, as well as

the minimum distance they should be spaced apart. Lighthouse recommends513 that targets

should be no smaller than 48 px by 48 px, and no closer than 8 px apart. We found that

63.69%—a majority of web pages, had improperly sized tap targets. This is a slight improvement

over last year, where 65.57% web pages had improperly sized tap targets.

Figure 12.10. Sites with sufficient color contrast

513. https://web.dev/tap-targets/

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 365

https://almanac.httparchive.org/static/images/2020/mobile-web/sites-with-sufficient-color-contrast.png
https://almanac.httparchive.org/static/images/2020/mobile-web/sites-with-sufficient-color-contrast.png
https://web.dev/tap-targets/

Search input

Search input or a search bar is a crucial tool for engaging users, it enables them to quickly find

the information they are looking for. It is especially important for mobile devices, as they lack

the screen real estate to easily consume large amounts of information.

Search is heavily used in large e-commerce sites, content heavy sites, news sites, and booking

sites to help users find information easily. While a small website that has a few pages, does not

need a search input, it will be needed as the website grows. For sites with 100+ pages, it is

recommended to feature a prominent search bar.

A case study with fashion website lyst.com514, showed that replacing the search icon with a

search box enabled users to locate the search function more easily, increasing usage by 43% on

desktop, and by 13% on mobile.

Figure 12.11. Sites with properly sized tap targets

514. https://www.thinkwithgoogle.com/intl/en-cee/marketing-strategies/data-and-measurement/lyst-increases-overall-conversion-rate-25-making-usability-
improvements/

Part II Chapter 12 : Mobile Web

366 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/sites-with-properly-sized-tap-targets.png
https://almanac.httparchive.org/static/images/2020/mobile-web/sites-with-properly-sized-tap-targets.png
https://www.thinkwithgoogle.com/intl/en-cee/marketing-strategies/data-and-measurement/lyst-increases-overall-conversion-rate-25-making-usability-improvements/

Search input is used in 17% of all sites using any input. At 60.10%, a majority of ecommerce

landing pages are missing the presence of search input.

Figure 12.12. Replacing the search icon with a search box on lyst.com improved conversion rate by
13% on mobile and 43% on desktop.

(Source: Google515)

515. https://www.thinkwithgoogle.com/intl/en-cee/marketing-strategies/data-and-measurement/lyst-increases-overall-conversion-rate-25-making-usability-
improvements/

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 367

https://almanac.httparchive.org/static/images/2020/mobile-web/search-input-lyst.png
https://almanac.httparchive.org/static/images/2020/mobile-web/search-input-lyst.png
https://www.thinkwithgoogle.com/intl/en-cee/marketing-strategies/data-and-measurement/lyst-increases-overall-conversion-rate-25-making-usability-improvements/

A/B testing

A/B testing is a crucial tool for making data driven decisions on matters of design and UX. A/B

testing enables validating that the UX & design changes measurably improve intended metrics

and don’t cause unexpected regressions.

Here’s a sampling of design questions that can be A/B tested:

• Would changing the color of a button increase the click through rate?

• Would increasing the size of click targets increase the number of clicks?

• Would replacing the search icon with a search box increase the number of searches

completed?

According to thirdpartyweb.today516, Optimizely517 is the most popular third party product for A/

B testing, it is used in over 20,000 pages.

Figure 12.13. Ecommerce sites using a search input

516. https://www.thirdpartyweb.today/
517. https://www.optimizely.com

Part II Chapter 12 : Mobile Web

368 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/ecommerce-sites-using-a-search-input.png
https://almanac.httparchive.org/static/images/2020/mobile-web/ecommerce-sites-using-a-search-input.png
https://www.thirdpartyweb.today/
https://www.optimizely.com/

3. Conversion

While “conversion” may sound like a concept pertaining to e-commerce sites, a conversion can

refer to a successful user transaction, such as signing up for a music streaming service, booking

a rental home, writing a review on a travel site, etc.

According to Comscore Media Matrix, traffic from mobile devices account for 79.6% of time

spent on US retail sites, but only 32.3% of US eCommerce sales.

Compared to desktop, transacting on mobile devices is error-prone and tedious, as users must

input personal information using small keyboards and screen sizes. Checkout flows should be

simple and short to avoid user frustration, or worse, abandonment. 27% of users abandon

checkout because of a “too long / complicated checkout process”518. 35% of users will abandon

the checkout if a retailer does not offer guest checkout519.

Form semantics

Users can more easily enter required information on mobile devices when their keyboard is

optimized for the appropriate input type. For example, a numeric keyboard is useful for

entering phone numbers, while keyboards displaying the “@” symbol are useful for entering

email addresses. Sites can provide browser hints to display the most appropriate keys using the

type attribute on input tags.

518. https://www.smashingmagazine.com/2018/08/best-practices-for-mobile-form-design/
519. https://baymard.com/blog/ecommerce-checkout-usability-report-and-benchmark

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 369

https://www.smashingmagazine.com/2018/08/best-practices-for-mobile-form-design/
https://baymard.com/blog/ecommerce-checkout-usability-report-and-benchmark

Sign up, sign in and checkout

Today, browsers can help populate the necessary user information to complete a transaction

and help reduce potential input errors. The autocomplete attribute can provide browsers

hints to populate input elements with the correct user information. Users who successfully use

Chrome Autofill to enter their information go through checkout an average of 30% faster than

those who don’t520.

Auto-complete can be especially helpful in completing checkout flows that require a user to

login and hence remember their password. According to a study by HYPR521 in 2019, 78% of

users forgot and had to reset a password in the past 90 days.

It’s also possible to eliminate some form fields altogether. The Credential Management and

Payment Request APIs are standards-based browser APIs that provide a programmatic

interface between sites and the browser for seamless sign-in and payments. Only .61% of

eCommerce sites are using the Payment Request API and only 0.008% use the Credential

Management API. It’s worth noting that adoption of the Payment Request API has increased

compared to 2019, with a 6x increase in payment completion rate.

Figure 12.14. Sites (with inputs) using the following input types

520. https://developers.google.com/web/fundamentals/design-and-ux/input/forms#use_metadata_to_enable_auto-complete
521. https://www.hypr.com/hypr-password-study-findings/

Part II Chapter 12 : Mobile Web

370 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/mobile-web/sites-with-inputs-using-the-following-input-types.png
https://almanac.httparchive.org/static/images/2020/mobile-web/sites-with-inputs-using-the-following-input-types.png
https://developers.google.com/web/fundamentals/design-and-ux/input/forms#use_metadata_to_enable_auto-complete
https://developers.google.com/web/fundamentals/design-and-ux/input/forms#use_metadata_to_enable_auto-complete
https://www.hypr.com/hypr-password-study-findings/

4. Retention

The last phase in the journey is user retention, this means re-engaging the user and making

them a returning customer or a loyal visitor.

Installability with PWA

Returning users benefit from a native-app-like experience with a PWA. A key value proposition

for user retention is the installability of a PWA. When a PWA is installed, it is available from the

places that a mobile user expects to find an app: the homescreen and the app tray. When the

user taps and launches the PWA, it loads in full screen and is available in the task switcher, just

like a native app.

Rakuten 24 is an online store provided by Rakuten, one of the largest e-commerce companies in

Japan. A recent case study with Rakuten 24522, showed that making their web app installable523,

resulted in a whopping 450% jump in visitor retention rate, compared to the previous mobile

web flow, over a 1-month timeframe.

By implementing installability, Rakuten 24 also saw these improvements over a 1-month

timeframe:

• 310% increase in visit frequency per user, compared to the rest of their web users

• 150% increase in sales per customer by 150%

• 200% increase in conversion rate

A seamless experience across devices

Finally, providing a seamless experience across devices can unlock deeper user engagement

and retention, the signed-in experience powers this.

At the start of the User Journey we mentioned that mobile represents 79.6% of time spent

amongst retail sites, but it only accounts for 32.3% of eCommerce sales. This suggests that

users often browse on mobile and start the user journey on mobile devices, but they often

convert or complete transactions on desktop.

Hopefully by now we have gained a better understanding to reason about this, for instance

reasons may include ease of finding and consuming content, the ease of typing, form filling etc.

522. https://web.dev/rakuten-24/
523. https://web.dev/define-install-strategy/

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 371

https://web.dev/rakuten-24/
https://web.dev/define-install-strategy/

For larger sites, it’s often not a question of whether to invest in mobile web or desktop, as they

both often complement each other.

It helps to consider all the four phases of the user journey to understand the full spectrum of

opportunities for engaging the user, as well as the risks and challenges in each phase of the

journey.

Conclusion

Mobile is now the predominant way of accessing the web, and access to the web has become all

the more important in the last year. The needs of mobile are different from those of desktop.

Image sizes can, and should, be smaller on mobile due to smaller screens and often limited

network but seeing two fifths of improperly sized images show we still have some way to go.

Similarly tap targets need to be bigger on mobile since we don;’t have the precision of a mouse

but we have shown this is still a problem. In all there is much website owners can do to make the

use of mobile web easier but it may often require a different mindset to desktop, but also not

flipping the other way entirely and forgetting desktop users either.

Authors

Shubhie Panicker

@shubhie spanicker

Shubhie Panicker is the engineering lead for Chrome’s engagement in the web

framework ecosystem, where she collaborates with open source tools,

frameworks and communities. As a member of Chrome’s Web Platform team she

has worked on web standards and chromium’s implementation for several web

performance APIs. Prior to Chrome, she worked on infrastructure and web

frameworks for Google products like Search, Google Photos etc.

Part II Chapter 12 : Mobile Web

372 2020 Web Almanac by HTTP Archive

https://twitter.com/shubhie
https://github.com/spanicker

Michael DiBlasio

mdiblasio

Michael DiBlasio is Web Ecosystems Consultant at Google. He focuses on helping

to improve the health of the web ecosystem and to ensure the web is

commercially viable for creators and partners. He works closely with strategic

retailers to adopt new modern web technologies and improve the quality of

existing web experiences. Prior to Google, Michael was a consultant at IBM.

Part II Chapter 12 : Mobile Web

2020 Web Almanac by HTTP Archive 373

https://github.com/mdiblasio

374 2020 Web Almanac by HTTP Archive

Part II Chapter 13

Capabilities

Written by Christian Liebel
Reviewed and analyzed by Thomas Steiner
Edited by Rick Viscomi

Introduction

Progressive Web Apps (PWA) are a cross-platform application model based on web technology.

With the help of Service Workers, these applications run even when the user is offline. The

Web App Manifest524 allows users to add a PWA to their home screen or program list. When

opened from there, a PWA appears as a native application. However, PWAs can only use the

functions and capabilities that are exposed through web platform APIs. Arbitrary native

interfaces cannot be called, leaving a gap between native applications and web apps.

The Capabilities Project525, informally also known as Project Fugu, is a cross-company effort by

Google, Microsoft, and Intel to bridge the gap between web and native. This is important to

keep the web relevant as a platform. To do so, the Chromium contributors implement new APIs

exposing capabilities of the operating system to the web, while maintaining user security,

privacy, and trust. These capabilities include, but are not limited to:

524. https://developer.mozilla.org/docs/Web/Manifest
525. https://www.chromium.org/teams/web-capabilities-fugu

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 375

https://developer.mozilla.org/docs/Web/Manifest
https://www.chromium.org/teams/web-capabilities-fugu

• File System Access API526 for accessing files on the local file system

• File Handling API527 for registering as a handler for certain file extensions

• Async Clipboard API528 to access the user’s clipboard

• Web Share API529 for sharing files with other applications

• Contact Picker API530 to access contacts from the user’s address book

• Shape Detection API531 for efficient detection of faces or barcodes in images

• Web NFC532, Web Serial533, Web USB534, Web Bluetooth535, and other APIs (for the

entire list, see the Fugu API Tracker536)

Anyone can propose a new capability by creating a ticket in the Chromium bug tracker537. The

Chromium contributors examine the proposals and discuss all APIs with other developers and

browser vendors through the appropriate standards bodies. Meanwhile, the Fugu team

implements the API in Chromium, where it is initially implemented behind a flag. Later in the

process, the API is made available to a limited audience via an origin trial538. During this phase,

developers can sign up for a token to test the API on a specific origin. If the API turns out to be

robust enough, the API ships in Chromium and, if the vendors decide so, other browsers. The

Capability Status539 site shows where the different Capability APIs are in the process.

Project Fugu, the codename of the Capabilities Project, is named after a Japanese dish:

correctly prepared, the meat of the blowfish is a special taste experience. If prepared

incorrectly, however, it can be fatal. The powerful APIs of Project Fugu are extremely exciting

for developers. However, they can affect the security and privacy of the user. Therefore, the

Fugu team pays special attention to these issues. For instance, new interfaces require the

website to be sent over a secure connection (HTTPS). Some of them require a user gesture,

such as a click or key press, to prevent fraud. Other capabilities require explicit permission by

the user. Developers can use all APIs as a progressive enhancement: by feature detecting the

APIs, applications won’t break in browsers lacking support for those capabilities. In browsers

that support them, users can get a better experience. This way, web apps progressively

enhance540 according to the user’s particular browser.

526. https://web.dev/file-system-access/
527. https://web.dev/file-handling/
528. https://web.dev/async-clipboard/
529. https://web.dev/web-share/
530. https://web.dev/contact-picker/
531. https://web.dev/shape-detection/
532. https://web.dev/nfc/
533. https://web.dev/serial/
534. https://web.dev/usb/
535. https://web.dev/bluetooth/
536. https://goo.gle/fugu-api-tracker
537. https://bit.ly/new-fugu-request
538. https://developer.chrome.com/blog/origin-trials
539. https://web.dev/fugu-status/
540. https://web.dev/progressively-enhance-your-pwa/

Part II Chapter 13 : Capabilities

376 2020 Web Almanac by HTTP Archive

https://web.dev/file-system-access/
https://web.dev/file-handling/
https://web.dev/async-clipboard/
https://web.dev/web-share/
https://web.dev/contact-picker/
https://web.dev/shape-detection/
https://web.dev/nfc/
https://web.dev/serial/
https://web.dev/usb/
https://web.dev/bluetooth/
https://goo.gle/fugu-api-tracker
https://bit.ly/new-fugu-request
https://developer.chrome.com/blog/origin-trials
https://web.dev/fugu-status/
https://web.dev/progressively-enhance-your-pwa/
https://web.dev/progressively-enhance-your-pwa/

This chapter gives an overview of various modern web APIs, and the state of web capabilities in

2020 based on usage data by the HTTP Archive and Chrome Platform Status541. Since some

interfaces are brand-new, their (relative) usage is very low. So, unlike most chapters, HTTP

Archive usage stats will be presented as the absolute numbers of pages rather than relative

percentages. Due to technical limitations, the HTTP Archive only has data available for APIs

that require neither permission, nor a user gesture. Where no data is available, the percentage

of page loads in Google Chrome according to Chrome Platform Status will be shown instead.

Even if some figures are so small that the statistics are not necessarily meaningful, in many

cases trends can still be read from the data. Also, these stats can be used as a baseline for future

annual editions of this chapter, looking back to see how much the APIs have matured and

improved their adoption. Unless otherwise noted, the APIs are only available in Chromium-

based browsers, and their specifications are in the early stages of standardization.

Async Clipboard API

With the help of the document.execCommand() method, websites could already access the

user’s clipboard. However, this approach is somewhat restricted, as the API is synchronous

(making it difficult to process clipboard items), and it can only interact with selected text in the

DOM. This is where the Async Clipboard API542 (W3C Working Draft543) comes in. This new API is

not only asynchronous, meaning it doesn’t block the page for large chunks of data or waiting for

a permission to be granted, but it also allows for images to be copied to or pasted from the

clipboard in supported browsers such as Chrome, Edge, and Safari.

Read Access

The Async Clipboard API provides two methods for reading content from the clipboard: a

shorthand method for plain text, called navigator.clipboard.readText() , and a method

for arbitrary data, called navigator.clipboard.read() . Currently, most browsers only

support HTML content and PNG images as additional data formats. As the clipboard may

contain sensitive data, reading from it requires the user’s consent.

541. https://chromestatus.com/metrics/feature/timeline/popularity
542. https://webkit.org/blog/10855/async-clipboard-api/
543. https://www.w3.org/TR/clipboard-apis/#async-clipboard-api

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 377

https://chromestatus.com/metrics/feature/timeline/popularity
https://webkit.org/blog/10855/async-clipboard-api/
https://www.w3.org/TR/clipboard-apis/#async-clipboard-api

The Async Clipboard API is comparatively new, so its usage is currently rather low. In March

2020, Safari added support for the Async Clipboard API in Safari 13.1. Over the course of 2020,

the usage of the read() API was growing. In October 2020, the API was called during

0.0003% of all page loads in Google Chrome.

Write Access

Apart from reading operations, the Async Clipboard API also offers two methods for writing

content to the clipboard. Again, there’s a shorthand method for plain text, called

navigator.clipboard.writeText() , and one for arbitrary data called

navigator.clipboard.write() . In Chromium-based browsers, writing to the clipboard

while the tab is active does not require permission. Trying to write to the clipboard when the

website is in the background does, however. As this method requires a user gesture and

permission first, it’s not covered by the HTTP Archive metrics. In contrast to the read()
method, the write() method shows an exponential growth in usage, being part of 0.0006% of

all page loads in October 2020.

The Raw Clipboard Access API546, another Fugu capability, might even further enhance the

Async Clipboard API by allowing arbitrary data to be copied from or pasted to the clipboard.

Figure 13.1. Percentage of page loads in Chrome using Async Clipboard API.
(Sources: Async Clipboard Read544, Async Clipboard Write545)

544. https://chromestatus.com/metrics/feature/timeline/popularity/2369
545. https://chromestatus.com/metrics/feature/timeline/popularity/2370
546. https://bugs.chromium.org/p/chromium/issues/detail?id=897289

Part II Chapter 13 : Capabilities

378 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/capabilities/async_clipboard_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/async_clipboard_api.png
https://chromestatus.com/metrics/feature/timeline/popularity/2369
https://chromestatus.com/metrics/feature/timeline/popularity/2370
https://bugs.chromium.org/p/chromium/issues/detail?id=897289

StorageManager API

Web browsers allow users to store data on the user’s system in different ways, such as Cookies,

the Indexed Database (IndexedDB), the Service Worker’s Cache Storage, or Web Storage (Local

Storage, Session Storage). In modern browsers, developers can easily store hundreds of

megabytes and even more547, depending on the browser. When browsers run out of space, they

can clear data until the system is no longer over the limit, which can lead to data loss.

Thanks to the StorageManager API548, which is part of the WHATWG Storage Living Standard549,

browsers no longer behave like a black box in that regard. This API allows developers to

estimate the remaining space available and opt-in to persistent storage550, meaning that the

browser will not clear a website’s data when disk space is low. Therefore, the API introduces a

new StorageManager interface on the navigator object, currently available on Chrome,

Edge, and Firefox.

Estimate the available storage

Developers can estimate the available storage by calling navigator.storage.estimate() .

This method returns a promise resolving to an object with two properties: usage shows the

number of bytes used by the application and quota contains the maximum number of bytes

available.

547. https://web.dev/storage-for-the-web/
548. https://developer.mozilla.org/docs/Web/API/StorageManager
549. https://storage.spec.whatwg.org/#storagemanager
550. https://web.dev/persistent-storage/

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 379

https://web.dev/storage-for-the-web/
https://web.dev/storage-for-the-web/
https://developer.mozilla.org/docs/Web/API/StorageManager
https://storage.spec.whatwg.org/#storagemanager
https://web.dev/persistent-storage/

The Storage Manager API is supported in Chrome since 2016, Firefox since 2017, and the new

Chromium-based Edge. HTTP Archive data shows that the API is used on 27,056 desktop pages

(0.49%) and 34,042 mobile pages (0.48%). Over the course of 2020, the usage of the Storage

Manager API kept growing. This also makes this interface the most commonly used API in this

chapter.

Opt-in to persistent storage

There are two categories of web storage: “Best Effort” and “Persistent”, with the first being the

default. When a device is low on storage, the browser automatically tries to free up best effort

storage. For instance, Firefox and Chromium-based browsers evict storage from the least

recently used origins. This, however, poses a risk of losing critical data. To prevent eviction,

developers can opt for persistent storage. In this case, the browser will not clear the storage,

even when space is low. Users can still choose to clear up the storage manually. To opt for

persistent storage, developers need to call the navigator.storage.persist() method.

Depending on the browser and site engagement, a permission prompt may show, or the request

will automatically be accepted or denied.

Figure 13.2. Number of pages using the estimate method of the StorageManager API.

Part II Chapter 13 : Capabilities

380 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/capabilities/storage_manager_api_estimate.png
https://almanac.httparchive.org/static/images/2020/capabilities/storage_manager_api_estimate.png

The persist() API is less often called than the estimate() method. Only 176 mobile

pages make use of this API, compared to 25 desktop websites. While usage on the desktop

seems to remain at this low level, there is no clear trend on mobile devices.

New Notification APIs

With the help of the Push and Notifications APIs, web applications have long been able to

receive push messages and display notification banners. However, some parts were missing.

Until now, push messages had to be sent via the server; they could not be scheduled offline.

Also, web applications installed to the system could not show badges on their icon. The Badging

and Notification Triggers APIs enable both scenarios.

Badging API

On several platforms, it’s common for applications to present a badge on the application’s icon

indicating the amount of open actions. For instance, the badge could show the number of

unread emails, notifications, or to-do items to complete. The Badging API551 (W3C Unofficial

Draft552) allows installed web applications to show such a badge on its icon. By calling

navigator.setAppBadge() , developers can set the badge. This method takes a number to

Figure 13.3. Number of pages using the persist method of the StorageManager API.

551. https://web.dev/badging-api/
552. https://w3c.github.io/badging/

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 381

https://almanac.httparchive.org/static/images/2020/capabilities/storage_manager_api_persist.png
https://almanac.httparchive.org/static/images/2020/capabilities/storage_manager_api_persist.png
https://web.dev/badging-api/
https://w3c.github.io/badging/
https://w3c.github.io/badging/

be shown on the application’s badge. The browser then takes care of displaying the closest

possible representation on the user’s device. If no number is specified, a generic badge will be

shown (e.g., a white dot on macOS). Calling navigator.clearAppBadge() removes the

badge again. The Badging API is a great choice for email clients, social media apps, or

messengers. The Twitter PWA makes use of the Badging API to show the number of unread

notifications on the application’s badge.

In April 2020, Google Chrome 81 shipped the new Badging API, followed by Microsoft Edge 84

in July. After Chrome shipped the API, the usage numbers shot up. In October 2020, on 0.025%

of all page loads in Google Chrome, the setAppBadge() method is called. The

clearAppBadge() method is less often called, during around 0.016% of page loads.

Notification Triggers API

The Push API requires the user to be online to receive a notification. Some applications, such as

games, reminder or to-do apps, calendars, or alarm clocks, could also determine the target date

for a notification locally and schedule it. To support this feature, the Chrome team is

experimenting with a new API called Notification Triggers555 (Explainer556, not on a standards

Figure 13.4. Percentage of page loads in Chrome using Badging API.
(Sources: Badge Set553, Badge Clear554)

553. https://chromestatus.com/metrics/feature/timeline/popularity/2726
554. https://chromestatus.com/metrics/feature/timeline/popularity/2727
555. https://web.dev/notification-triggers/
556. https://github.com/beverloo/notification-triggers/blob/master/README.md

Part II Chapter 13 : Capabilities

382 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/capabilities/badging_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/badging_api.png
https://chromestatus.com/metrics/feature/timeline/popularity/2726
https://chromestatus.com/metrics/feature/timeline/popularity/2727
https://web.dev/notification-triggers/
https://github.com/beverloo/notification-triggers/blob/master/README.md

track yet). This API adds a new property called showTrigger to the options map that can

be passed to the showNotification() method on the Service Worker’s registration. The

API is designed to allow for different kinds of triggers in the future, albeit for now, only time-

based triggers are implemented. For scheduling a notification based on a certain date and time,

developers can create a new instance of a TimestampTrigger and pass the target timestamp

to it:

registration.showNotification('Title', {

 body: 'Message',

 showTrigger: new TimestampTrigger(timestamp),

});

The Fugu team first experimented with Notification Triggers in an origin trial from Chrome 80

to 83, pausing development afterwards due to the lack of feedback by developers. Starting

from Chrome 86 released in October 2020, the API has entered the origin trial phase again.

This also explains the usage data of Notification Triggers API that peaked at being called on

0.000032% of page loads in Chrome during the first origin trial at around March 2020.

Figure 13.5. Percentage of page loads in Chrome using Notification Triggers API.
(Source: Notification Triggers557)

557. https://chromestatus.com/metrics/feature/timeline/popularity/3017

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 383

https://almanac.httparchive.org/static/images/2020/capabilities/notification_triggers_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/notification_triggers_api.png
https://chromestatus.com/metrics/feature/timeline/popularity/3017

Screen Wake Lock API

To save energy, mobile devices darken the screen backlight and eventually turn off the device’s

display, which makes sense in most cases. However, there are scenarios where the user may

want the application to explicitly keep the display awake, for instance, when reading a recipe

while cooking or watching a presentation. The Screen Wake Lock API558 (W3C Working Draft559)

solves this problem by providing a mechanism to keep the screen on.

The navigator.wakeLock.request() method creates a wake lock. This method takes a

WakeLockType parameter. In the future, the Wake Lock API could provide other lock types,

such as turning the screen off, but keeping the CPU on. For now, the API only supports screen

locks, so there is just one optional argument with the default value of screen . The method

returns a promise that resolves to a WakeLockSentinel object. Developers need to store this

reference to call its release() method and release the screen wake lock later on. The

browser will automatically release the lock when the tab is inactive, or the user minimizes the

window. Also, the browser may deny a request and reject the promise, for example due to low

battery.

BettyCrocker.com, a popular cooking website in the US, offers their users an option to prevent

the screen from going dark while cooking with the help of the Screen Wake Lock API. In a case

Figure 13.6. Numbers of pages using Screen Wake Lock API.

558. https://developer.mozilla.org/docs/Web/API/Screen_Wake_Lock_API
559. https://www.w3.org/TR/screen-wake-lock/

Part II Chapter 13 : Capabilities

384 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Screen_Wake_Lock_API
https://www.w3.org/TR/screen-wake-lock/
https://almanac.httparchive.org/static/images/2020/capabilities/screen_wake_lock_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/screen_wake_lock_api.png
https://web.dev/betty-crocker/

study560, they published that the average session duration was 3.1 times longer than normal, the

bounce rate reduced by 50%, and purchase intent indicators increased by about 300%. The

interface therefore has a directly measurable effect on the success of the website or

application, respectively. The Screen Wake Lock API shipped with Google Chrome 84 in July

2020. The HTTP Archive only has data for April, May, August, September and October. After

the release of Chrome 84, usage rose quickly. In October 2020, the API was adopted on 10

desktop and 5 mobile pages.

Idle Detection API

Some applications need to determine if the user is actively using a device or if they are idle. For

instance, chat applications may display that the user is absent. There are various factors that

can be taken into account, such as a lack of interaction with the screen, mouse, or keyboard. The

Idle Detection API561 (WICG Draft Community Group Report562) provides an abstract API that

allows developers to check if either the user is idle or the screen locked, given a certain

threshold.

To do so, the API provides a new IdleDetector interface on the global window object.

Before developers can use this functionality, they have to request permission by calling

IdleDetector.requestPermission() first. If the user grants the permission, developers

can create a new instance of IdleDetector . This object provides two properties:

userState and screenState , containing the respective states. It will raise a change
event when either the user’s or the screen’s state change. Finally, the idle detector needs to be

started by calling its start() method. The method takes a configuration object with two

parameters: a threshold defining the time in milliseconds that the user has to be idle (the

minimum is a minute), and developers can optionally pass an AbortSignal to the abort
property, which serves to abort idle detection later on.

560. https://web.dev/betty-crocker/
561. https://web.dev/idle-detection/
562. https://wicg.github.io/idle-detection/

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 385

https://web.dev/betty-crocker/
https://web.dev/idle-detection/
https://wicg.github.io/idle-detection/

At the time of this writing, the Idle Detection API is in an origin trial, so its API shape may

change in the future. For the same reason, its usage is very low and hardly measurable.

Periodic Background Sync API

When the user closes a web application, it cannot communicate with its backend service

anymore. In some cases, developers might still want to synchronize data on a more or less

regular basis, just as native applications can. For instance, news applications might want to

download the latest headlines before the user wakes up. The Periodic Background Sync API564

(WICG Draft Community Group Report565) strives to bridge this gap between web and native.

Register for periodic sync

The Periodic Background Sync API relies on Service Workers that can run even when the app is

closed. As with other capabilities, this API requires users’ permission first. The API implements

a new interface called PeriodicSyncManager . If present, developers can access an instance

of this interface on the Service Worker’s registration. To synchronize data in the background,

Figure 13.7. Percentage of page loads in Chrome using Idle Detection API.
(Source: Idle Detection563)

563. https://chromestatus.com/metrics/feature/timeline/popularity/3017
564. https://web.dev/periodic-background-sync/
565. https://wicg.github.io/periodic-background-sync/

Part II Chapter 13 : Capabilities

386 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/capabilities/idle_detection_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/idle_detection_api.png
https://chromestatus.com/metrics/feature/timeline/popularity/3017
https://web.dev/periodic-background-sync/
https://wicg.github.io/periodic-background-sync/

the application has to register first, by calling periodicSync.register() on the

registration. This method takes two parameters: a tag , which is an arbitrary string to

recognize the registration again later on, and a configuration object that takes a minInterval
property. This property defines the desired minimum interval in milliseconds by the developer.

However, the browser ultimately decides how often it will actually invoke background

synchronization:

registration.periodicSync.register('articles', {

 minInterval: 24 * 60 * 60 * 1000 // one day

});

Respond to a periodic sync interval

For each tick of the interval, and if the device is online, the browser triggers the Service

Worker’s periodicsync event. Then, the Service Worker script can perform the necessary

steps to synchronize the data:

self.addEventListener('periodicsync', (event) => {

 if (event.tag === 'articles') {

 event.waitUntil(syncStuff());

 }

});

At the time of this writing, only Chromium-based browsers implement this API. On these

browsers, the application has to be installed first (i.e., added to the homescreen) before the API

can be used. The site engagement score566 of the website defines if and how often periodic sync

events can be invoked. In the current conservative implementation, websites can sync content

once a day.

566. https://www.chromium.org/developers/design-documents/site-engagement

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 387

https://www.chromium.org/developers/design-documents/site-engagement

The use of the interface is currently very low. Over 2020, only one or two pages monitored by

HTTP Archive made use of this API.

Integration with native app stores

PWAs are a versatile application model. However, in some cases, it may still make sense to offer

a separate native application: for example, if the app needs to use features that are not

available on the web, or based on the programming experience of the app developer team.

When the user already has a native app installed, apps might not want to send notifications

twice or promote the installation of a corresponding PWA.

To detect if the user already has a related native application or PWA on the system, developers

can use the getInstalledRelatedApps() method (WICG Draft Community Group

Report567) on the navigator object. This method is currently provided by Chromium-based

browsers and works for both Android and Universal Windows Platform (UWP) apps.

Developers need to adjust the native app bundles to refer to the website and add information

about the native app(s) to the Web App Manifest of the PWA. Calling the

getInstalledRelatedApps() method will then return the list of apps installed on the

user’s device:

Figure 13.8. Number of pages using Periodic Background Sync API.

567. https://wicg.github.io/get-installed-related-apps/spec/

Part II Chapter 13 : Capabilities

388 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/capabilities/periodic_background_sync_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/periodic_background_sync_api.png
https://web.dev/get-installed-related-apps/
https://web.dev/get-installed-related-apps/
https://wicg.github.io/get-installed-related-apps/spec/
https://wicg.github.io/get-installed-related-apps/spec/

const relatedApps = await navigator.getInstalledRelatedApps();

relatedApps.forEach((app) => {

 console.log(app.id, app.platform, app.url);

});

Over the course of 2020, the getInstalledRelatedApps() API shows a steady growth on

mobile websites. In October, 363 mobile pages tracked by the HTTP Archive made use of this

API. On desktop pages, the API does not grow quite as fast. This could also be due to Android

stores currently providing significantly more apps than the Microsoft Store does for Windows.

Content Indexing API

Web apps can store content offline using various ways, such as Cache Storage, or IndexedDB.

However, for users it’s hard to discover which content is available offline. The Content Indexing

API568 (WICG Editor’s Draft569) allows developers to expose content more prominently. Currently,

Chrome on Android is the only browser to support this API. This browser shows a list of

“Articles for you” in the Downloads menu. Content indexed via the Content Indexing API will

appear there.

Figure 13.9. Number of pages using getInstalledRelatedApps() .

568. https://web.dev/content-indexing-api/
569. https://wicg.github.io/content-index/spec/

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 389

https://almanac.httparchive.org/static/images/2020/capabilities/get_installed_related_apps.png
https://almanac.httparchive.org/static/images/2020/capabilities/get_installed_related_apps.png
https://web.dev/content-indexing-api/
https://web.dev/content-indexing-api/
https://wicg.github.io/content-index/spec/

The Content Indexing API extends the Service Worker API by providing a new ContentIndex
interface. This interface is available via the index property of the Service Worker’s

registration. The add() method allows developers to add content to the index: Each piece of

content must have an ID, a URL, a launch URL, title, description, and a set of icons. Optionally,

the content can be grouped into different categories such as articles, homepages, or videos. The

delete() method allows for removing content from the index again, and the getAll()
method returns a list of all indexed entries.

The Content Indexing API launched with Chrome 84 in July 2020. Directly after shipping, the

API was used during approximately 0.0002% of page loads in Chrome. In October 2020, this

value has increased almost tenfold.

New Transport APIs

Finally, there are two new transport methods that are currently in origin trial. The first one

allows developers to receive high-frequency messages with WebSockets, while the second one

introduces an entirely new bidirectional communication protocol apart from HTTP and

WebSockets.

Figure 13.10. Percentage of page loads in Chrome using Content Indexing API.
(Source: Content Indexing570)

570. https://chromestatus.com/metrics/feature/timeline/popularity/3017

Part II Chapter 13 : Capabilities

390 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/capabilities/content_indexing_api.png
https://almanac.httparchive.org/static/images/2020/capabilities/content_indexing_api.png
https://chromestatus.com/metrics/feature/timeline/popularity/3017

Backpressure for WebSockets

The WebSocket API is a great choice for bidirectional communication between websites and

servers. However, the WebSocket API does not allow for backpressure, so applications dealing

with high-frequency messages may freeze. The WebSocketStream API571 (Explainer572, not on the

standards track yet) wants to bring easy-to-use backpressure support to the WebSocket API by

extending it with streams. Instead of using the usual WebSocket constructor, developers need

to create a new instance of the WebSocketStream interface. The connection property of

the stream returns a promise that resolves to a readable and writable stream that allow to

obtain a stream reader or writer, respectively:

const wss = new WebSocketStream(WSS_URL);

const {readable, writable} = await wss.connection;

const reader = readable.getReader();

const writer = writable.getWriter();

The WebSocketStream API transparently solves backpressure, as the stream readers and

writers will only proceed if it’s safe to do so.

Figure 13.11. Percentage of page loads in Chrome using WebSocketStreams.
(Source: WebSocketStream573)

571. https://web.dev/websocketstream/
572. https://github.com/ricea/websocketstream-explainer/blob/master/README.md

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 391

https://web.dev/websocketstream/
https://github.com/ricea/websocketstream-explainer/blob/master/README.md
https://almanac.httparchive.org/static/images/2020/capabilities/websocketstreams.png
https://almanac.httparchive.org/static/images/2020/capabilities/websocketstreams.png
https://chromestatus.com/metrics/feature/timeline/popularity/3018

The WebSocketStream API has completed its first origin trial and is now back in the

experimentation phase again. This also explains why the usage of this API currently is so low

that it’s hardly measurable.

Make it QUIC

QUIC574 (IETF Internet-Draft575) is a multiplexed, stream-based, bidirectional transport protocol

implemented on UDP. It’s an alternative to HTTP/WebSocket APIs that are implemented on top

of TCP. The QuicTransport API576 is the client-side API for sending messages to and receiving

messages from a QUIC server. Developers can choose to send data unreliably via datagrams, or

reliably by using its streams API:

const transport = new QuicTransport(QUIC_URL);

await transport.ready;

const ws = transport.sendDatagrams();

const stream = await transport.createSendStream();

QuicTransport is a valid alternative to WebSockets, as it supports the use cases from the

WebSocket API and adds support for scenarios where minimal latency is more important than

reliability and message order. This makes it a good choice for games and applications dealing

with high-frequency events.

573. https://chromestatus.com/metrics/feature/timeline/popularity/3018
574. https://www.chromium.org/quic
575. https://www.ietf.org/archive/id/draft-ietf-quic-transport-31.txt
576. https://web.dev/webtransport/

Part II Chapter 13 : Capabilities

392 2020 Web Almanac by HTTP Archive

https://www.chromium.org/quic
https://www.ietf.org/archive/id/draft-ietf-quic-transport-31.txt
https://web.dev/webtransport/

The use of the interface is currently still so low that it’s hardly measurable. In October 2020, it

has increased strongly and is now used during 0.00089% of page loads in Chrome.

Conclusion

The state of web capabilities in 2020 is healthy, as new, powerful APIs regularly ship with new

releases of Chromium-based browsers. Some interfaces like the Content Indexing API or Idle

Detection API help to add finishing touches to certain web applications. Other APIs, such as the

File System Access and Async Clipboard API, allow a whole new application category, namely

productivity apps, to finally fully make the shift to the web. Some APIs such as Async Clipboard

and Web Share API have already made their way into other, non-Chromium browsers. Safari

even was the first mobile browser to implement the Web Share API.

Through its rigorous process578, the Fugu team ensures that access to these features takes place

in a secure and privacy-friendly manner. Additionally, the Fugu team actively solicits the

feedback from other browser vendors and web developers. While the usage of most of these

new APIs is comparatively low, some APIs presented in this chapter show an exponential or

even hockey stick-like growth, such as the Badging or Content Indexing API. The state of web

capabilities in 2021 will depend on the web developers themselves. The author encourages the

Figure 13.12. Percentage of page loads in Chrome using QuicTransport.
(Source: QuicTransport577)

577. https://chromestatus.com/metrics/feature/timeline/popularity/3184
578. https://developers.google.com/web/updates/capabilities#process

Part II Chapter 13 : Capabilities

2020 Web Almanac by HTTP Archive 393

https://almanac.httparchive.org/static/images/2020/capabilities/quic_transport.png
https://almanac.httparchive.org/static/images/2020/capabilities/quic_transport.png
https://chromestatus.com/metrics/feature/timeline/popularity/3184
https://developers.google.com/web/updates/capabilities#process
mailto:fugu-dev@chromium.org

community to build great web applications, make use of the powerful APIs in a backwards-

compatible manner, and help make the web a more capable platform.

Author

Christian Liebel

@christianliebel christianliebel https://christianliebel.com

Christian Liebel is a consultant at Thinktecture579, supporting clients from various

business areas in implementing first-class web applications. He is a Microsoft MVP

for Developer Technologies, Google GDE for Web/Capabilities and Angular, and

participates in the W3C Web Applications Working Group.

579. https://thinktecture.com

Part II Chapter 13 : Capabilities

394 2020 Web Almanac by HTTP Archive

https://twitter.com/christianliebel
https://github.com/christianliebel
https://christianliebel.com/
https://thinktecture.com/

Part II Chapter 14

PWA

Written by Hemanth HM
Reviewed by Pascal Schilp, Jad Joubran, Pearl Latteier, and Gokulakrishnan Kalaikovan
Analyzed and edited by Barry Pollard

Introduction

In 1990 the first ever browser called the “WorldWideWeb” was launched and ever since, the

web and the browser have been evolving. For the web to progress itself into native application

behavior is a big win especially in this era of mobile domination. URLs and web browsers have

provided a ubiquitous way to distribute information and so a technology which provides native

app capabilities to the browser is a game changer. Progressive Web Apps provide such

advantages for the web to compete with other applications.

Simply put, a web application which give native-like application experience can be considered

as a PWA. It is built using common web technologies including HTML, CSS and JavaScript and

can operate seamlessly across devices and environments on a standards-compliant browser.

The crux of a progressive web app is the service worker, which can be thought of as a proxy

sitting between the browser and user. A service worker gives the developer total control over

the network, rather than the network controlling the application.

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 395

As last year’s chapter580 stated, it started in December 2014 when Chrome 40 first implemented

the meat of what is now known as Progressive Web Apps (PWA). This was a collaborative effort

for the web standards body and the term PWA was coined by Frances Berriman and Alex

Russell581 in 2015.

In this chapter of Web Almanac we will be looking into each of the components that make PWA

what it is, from a data-driven perspective.

Service workers

Service workers are at the very center of progressive web apps. They help developers control

the network requests.

Service worker usage

From the data we gathered we can see that about 0.88% desktop sites and 0.87% mobile sites

use a service worker. This was for the month of August 2020 and, to put that into perspective,

that equates to 49,305 (out of 5,593,642) desktop sites and 55,019 (out of 6,347,919) mobile

sites.

Figure 14.1. Timeseries of service worker installation.

580. https://almanac.httparchive.org/en/2019/pwa
581. https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

Part II Chapter 14 : PWA

396 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/pwa
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://almanac.httparchive.org/static/images/2020/pwa/pwa-timeseries-of-service-worker-installations.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-timeseries-of-service-worker-installations.png

While that usage may seem low, it is important that we realize that other measurements equate

that to 16.6% of the web traffic582–the difference being due to high traffic websites tending to

use service workers more.

Lighthouse insights

Lighthouse583 provides automated auditing, performance metrics, and best practices for the web

and has been instrumental in shaping web’s performance. We looked at the PWA category

audits gathered for over 6,782,042 pages and this has given us great insights on a few

important touch points.

Figure 14.2. Lighthouse PWA audits.

Lighthouse Audit Weight Percentage

load-fast-enough-for-pwa 7 27.97%*

works-offline 5 0.86%

installable-manifest 2 2.21%

is-on-https 2 66.67%

redirects-http 2 70.33%

viewport 2 88.43%

apple-touch-icon 1 34.75%

content-width 1 79.37%

maskable-icon 1 0.11%

offline-start-url 1 0.75%

service-worker 1 1.03%

splash-screen 1 1.90%

themed-omnibox 1 4.00%

without-javascript 1 97.57%

582. https://www.chromestatus.com/metrics/feature/timeline/popularity/990
583. https://github.com/GoogleChrome/lighthouse

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 397

https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://github.com/GoogleChrome/lighthouse

Note the performance statistic for our Lighthouse tests were incorrect for our August crawl so the

load-fast-enough-for-pwa result has been replaced with September results.

A fast page load584 ensures a good mobile user experience, particularly when slower cellular

networks are taken into consideration. 27.56% of pages loaded fast enough for a PWA. Given

how geographically distributed the web is, having a fast load time with lighter pages matter the

most of the next billion users of the web, most of whom will be introduced to the internet via a

mobile device.

If you’re building a Progressive Web App, consider using a service worker so that your app can

work offline585 0.92% of pages were offline ready.

Browsers can proactively prompt users to add your app to their home screen, which can lead to

higher engagement. 2.21% of pages had an installable manifest586. Manifest plays an important

role in how the application starts, the looks and feel of the icon on the home screen and as an

impact on the engagement rate directly.

All sites should be protected with HTTPS, even ones that don’t handle sensitive data. This

includes avoiding mixed content587, where some resources are loaded over HTTP despite the

initial request being served over HTTPS. HTTPS prevents intruders from tampering with or

passively listening in on the communications between your app and your users and is a

prerequisite for service workers and many new web platform features and APIs like HTTP/2.

The is-on-https check588 shows that 67.27% of sites were on HTTPS without mixed content and

it is surprising that we haven’t reached higher yet. The Security chapter shows that 86.91% of

sites are using HTTPS, suggesting that mixed content may be the bigger issue now. This number

will get better as browsers mandate the applications to be on HTTPS and scrutinize those

which are not on HTTPS more.

If you’ve already set up HTTPS, make sure that you redirect all HTTP traffic to HTTPS589 in order

to enable secure connection the users without changing the URL: only 69.92% of the sites pass

this audit. Redirecting all the HTTP to HTTPS on your application should be simple steps

towards robustness, though the HTTP redirection to HTTPS has a decent number of sites

passing, it can do better.

By adding <meta name="viewport"> tag you optimize your app for mobile screens. 88.43%

of the sites have the viewport590 meta tag. It is not surprising that the usage of viewport meta tag

is on the higher side as most developers and tools are aware of viewport optimization.

584. https://web.dev/load-fast-enough-for-pwa/
585. https://web.dev/works-offline/
586. https://web.dev/installable-manifest/
587. https://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content
588. https://web.dev/is-on-https/
589. https://web.dev/redirects-http/
590. https://web.dev/viewport/

Part II Chapter 14 : PWA

398 2020 Web Almanac by HTTP Archive

https://web.dev/load-fast-enough-for-pwa/
https://web.dev/works-offline/
https://web.dev/installable-manifest/
https://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content
https://web.dev/is-on-https/
https://web.dev/redirects-http/
https://web.dev/viewport/

For ideal appearance on iOS, your progressive web app should define an apple-touch-icon
meta tag. It must point to a non-transparent 192px (or 180px) square PNG. 32.34% of the sites

pass the apple touch icon591 check.

If the width of your app’s content doesn’t match the width of the viewport, your app might not

be optimized for mobile screens. 79.18% of the sites have the content-width592 set correctly.

A maskable icon593 ensures that the image fills the entire shape without being letterboxed when

adding the progressive web app to the home screen. Only 0.11% of sites use this, but given that

it is a brand new feature, having any usage here is encouraging. As it has just been introduced

we were expecting the numbers to be very low and these should improve in the coming years.

A service worker enables your web app to be reliable in unpredictable network conditions.

0.77% of sites have an offline start URL594 to allow the app to run even when not connected to

the network. This is one of the most important features for a PWA, as flaky networks are the

most common issue that the users of web applications face.

The service worker595 is the feature that enables your app to use many Progressive Web App

features, such as offline usage and push notifications. 1.05% of pages have service workers

enabled. Given the powerful features that can be addressed with service workers, and that it

has been supported for some time now, it is surprising that number is still so low.

A themed splash screen596 ensures a native-like experience when users launch your app from

their home screens. 1.95% of pages had splash screens.

The browser address bar can be themed to match your site. 4.00% of pages had themed

omnibox597.

Your app should display some content when JavaScript is disabled, even if it is just a warning to

the user that JavaScript is required to use the app. 97.57% pages show more than just a blank

page with JavaScript disabled598. Given that we only survey the home pages, it’s perhaps more

surprising that 3.43% of sites fail this audit!

Service worker events

In a service worker one can listen for a number of events:

591. https://web.dev/apple-touch-icon/
592. https://web.dev/content-width/
593. https://web.dev/maskable-icon-audit/
594. https://web.dev/offline-start-url/
595. https://web.dev/service-worker/
596. https://web.dev/splash-screen/
597. https://web.dev/themed-omnibox/
598. https://web.dev/without-javascript/

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 399

https://web.dev/apple-touch-icon/
https://web.dev/content-width/
https://web.dev/maskable-icon-audit/
https://web.dev/offline-start-url/
https://web.dev/service-worker/
https://web.dev/splash-screen/
https://web.dev/themed-omnibox/
https://web.dev/without-javascript/

1. install , which occurs upon service worker installation.

2. activate , which occurs upon service worker activation.

3. fetch , which occurs whenever a resource is fetched.

4. push , which occurs when a push notification arrives.

5. notificationclick , which occurs when a notification is being clicked.

6. notificationclose , which occurs when a notification is being closed.

7. message , which occurs when a message sent via postMessage() arrives.

8. sync , which occurs when a background sync event occurs.

We have examined which of these events are being listened to by service workers in our

dataset.

The results for mobile and desktop are very similar with install , fetch , and activate
being the three most popular events, followed by message , notification click , push
and sync . If we interpret these results, offline use cases that service workers enable are the

most attractive feature for app developers, far ahead of push notifications. Due to its limited

availability, and less common use case, background sync doesn’t play a significant role at this

time.

Web app manifests

The web app manifest is a JSON-based file that provides developers with a centralized place to

Figure 14.3. Most used service worker events.

Part II Chapter 14 : PWA

400 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/pwa/pwa-most-used-service-worker-events.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-most-used-service-worker-events.png

put metadata associated with a web application. It dictates how the application should behave

on desktop or mobile in terms of the icon, orientation, theme color and likes.

In order for a PWA to be fruitful it needs to have a manifest and a service worker. It is

interesting to note that manifests are used a lot more than service workers. This is due, in large

part, to the fact that CMS like WordPress, Drupal and Joomla have manifests by default.

Having a web app manifest does not necessarily indicate the site is a progressive web app, as

they can exist independently of service worker usage. However, as we are interested in PWAs

in this chapter, we have investigated only those manifests for sites where a service worker also

exists. This is different than the approach taken in last year’s PWA chapter599 which looked at

overall manifest usage, so you may notice some differences in results this year.

Manifest Properties

Web manifest dictates the applications meta properties. We looked at the different properties

defined by the Web App Manifest specification, and also considered non-standard proprietary

properties.

Figure 14.4. Manifest and service worker usage.

599. https://almanac.httparchive.org/en/2019/pwa#web-app-manifests

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 401

https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-and-service-worker-usage.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-and-service-worker-usage.png
https://almanac.httparchive.org/en/2019/pwa#web-app-manifests

According to the spec, the following properties are valid properties600:

• background_color

• categories

• description

• dir

• display

• iarc_rating_id

• icons

• lang

• name

• orientation

• prefer_related_applications

• related_applications

Figure 14.5. Manifest properties on service worker pages.

600. https://w3c.github.io/manifest/#webappmanifest-dictionary

Part II Chapter 14 : PWA

402 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-properties-on-service-worker-pages.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-properties-on-service-worker-pages.png
https://w3c.github.io/manifest/#webappmanifest-dictionary

• scope

• screenshots

• short_name

• shortcuts

• start_url

• theme_color

There were very little differences between mobile and desktop stats.

The proprietary properties we encountered frequently were gcm_sender_id used by Google

Cloud Messaging (GCM) service. We also found other interesting attributes like:

browser_action , DO_NOT_CHANGE_GCM_SENDER_ID (which was basically a comment, used

as JSON doesn’t allow comments), scope , public path , cacheDigest .

On both platforms, however, there’s a long tail of properties that are not interpreted by

browsers yet contain potentially useful metadata.

We also found a non-trivial number of mistyped properties; our favorite ones being variation of

theme-color , Theme_color , theme-color , Theme_color and orientation .

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 403

Top Manifest display values

Out of the five most common display values, standalone dominated the list with 86.73%

of desktop and 89.28% of mobile pages using this. This isn’t surprising at all as this mode

provides the native app-like feel. Next in the list was minimal-ui with 6.30% of desktop and

5.00% of mobile sites opting for them. This is similar to standalone except for the fact that

some browser UI is retained.

Figure 14.6. Most used display values for service worker pages.

Part II Chapter 14 : PWA

404 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/pwa/pwa-most-used-display-values-for-service-worker-pages.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-most-used-display-values-for-service-worker-pages.png

Top manifest categories

Out of all the top categories , shopping stood at the top at with 13.16% on the mobile

traffic, which is not unexpected as PWAs are e-commerce applications. news was next with

5.26% on the mobile traffic.

Figure 14.7. PWA manifest categories.

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 405

https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-categories.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-categories.png

Manifests preferring native

98.24% of desktop PWA sites and 98.52% of mobile PWA sites set the

preferred_related_applications manifest property to not prefer native apps, but

instead use web version where they exist. For the small percentage where this is set to true
this is a signal that there are many web applications that just have a manifest but aren’t really

full PWAs yet.

Figure 14.8. Manifest preferring native.

Part II Chapter 14 : PWA

406 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-preferring-native.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-manifest-preferring-native.png

Top manifest icon sizes

Lighthouse requires at least an icon sized 192x192 pixels, but common favicon generation tools

create a plethora of other sizes, too. It is always better to use the recommended icon sizes for

each device so it is encouraging to see such a widespread usage of different icon sizes.

Figure 14.9. Top manifest icon sizes.

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 407

https://almanac.httparchive.org/static/images/2020/pwa/pwa-top-manifest-icon-sizes.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-top-manifest-icon-sizes.png

Top manifest orientations

The valid values for the orientation property are defined in the Screen Orientation API

specification601. Currently, they are:

• any

• natural

• landscape

• portrait

• portrait-primary

• portrait-secondary

• landscape-primary

• landscape-secondary

Out of which we noticed that portrait , any and portrait-primary properties took

precedence.

Figure 14.10. Top manifest orientations.

601. https://www.w3.org/TR/screen-orientation/

Part II Chapter 14 : PWA

408 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/pwa/pwa-top-manifest-orientations.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-top-manifest-orientations.png
https://www.w3.org/TR/screen-orientation/

Service worker libraries

There are many cases, where the service workers use libraries as dependencies, be it external

dependencies or the application’s internal dependencies. These are usually fetched to the

service worker via the importScripts() API. In this section we will look into stats on such

libraries.

Popular import scripts

The importScripts() API602 of the WorkerGlobalScope interface603 synchronously imports one or

more scripts into the worker’s scope. The same is used to import external dependencies to the

service worker.

Around 30% of desktop PWA sites and 25% of mobile PWA sites uses importScripts() , of

which workbox , sw_toolbox and firebase take the first three positions respectively.

Figure 14.11. PWA library usage.

Script Desktop Mobile

Uses importScripts() 29.60% 23.76%

Workbox 17.70% 15.25%

sw_toolbox 13.92% 12.84%

firebase 3.40% 3.09%

OneSignalSDK 4.23% 2.76%

najva 1.89% 1.52%

upush 1.45% 1.23%

cache_polyfill 0.70% 0.72%

analytics_helper 0.34% 0.39%

Other Library 0.27% 0.15%

No Library 58.81% 64.44%

602. https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
603. https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 409

https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope

Workbox usage

Out of many libraries available, Workbox was the most heavily used with an adoption rate of

12.86% and 15.29% of PWA sites on mobile and desktop respectively.

Out of many methods that Workbox provides, we noticed that strategies were used by

29.53% of desktop and 25.71% on mobile, routing followed it with 18.91% and 15.61%

adoption and finally precaching were next most used with 16.54% and 12.98% on desktop

and mobile respectively.

This indicated that the strategies API, as one of the most complicated requirements for the

developers, played a very important role when they decided to code themselves or rely on

libraries like Workbox.

Conclusion

The stats in this chapter show that PWAs are still continuing to grow in adoption, due to the

advantages they give for performance and greater control over caching particularly for mobile.

With those advantages and ever increasing capabilities, means we still have a lot of potential

for growth. We expect to see even more progress in 2021!

More and more browsers and platforms are supporting the technologies powering PWAs. This

Figure 14.12. Most used Workbox packages.

Part II Chapter 14 : PWA

410 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/pwa/pwa-most-used-workbox-packages.png
https://almanac.httparchive.org/static/images/2020/pwa/pwa-most-used-workbox-packages.png

year, we saw that Edge gained support for the Web App Manifest. Depending on your use case

and target market, you may find that the majority of your users (close to 96%) have PWA

support. That is a great improvement! In all cases, it is important to approach technologies such

as service workers and Web App Manifest as progressive enhancements. You can use these

technologies to provide an exceptional user experience and, with the above stats, we’re excited

for another year of PWA growth!

Author

Hemanth HM

@gnumanth hemanth http://h3manth.com

Hemanth HM604 is a Computer polyglot, FOSS philosopher, GDE for web and

payments domain, DuckDuckGo community member, TC39 delegate and Google

Launchpad Accelerator mentor. Loves The WEB && CLI. Hosts TC39er.us605

podcast.

604. https://h3manth.com
605. https://TC39er.us

Part II Chapter 14 : PWA

2020 Web Almanac by HTTP Archive 411

https://twitter.com/gnumanth
https://github.com/hemanth
http://h3manth.com/
https://h3manth.com/
https://tc39er.us/

412 2020 Web Almanac by HTTP Archive

Part III Chapter 15

CMS

Written by Alex Denning
Reviewed by Jonathan Wold, Renee Johnson, and Alberto Medina
Analyzed by Greg Brimble and Rick Viscomi
Edited by Barry Pollard

Introduction

The term Content Management System (CMS) refers to systems enabling individuals and

organizations to create, manage, and publish content. A CMS for web content, specifically, is a

system aimed at creating, managing, and publishing content to be consumed and experienced

via the internet.

Each CMS implements some subset of a wide range of content management capabilities and

the corresponding mechanisms for users to build websites easily and effectively around their

content. Content is often stored in a type of database, providing users with the flexibility to

reuse it wherever needed for their content strategy. CMSs also provide administrative

capabilities aimed at making it easy for users to upload and manage content as needed.

There is great variability on the type and scope of the support CMSs provide for building sites;

some provide ready-to-use templates which are supplemented with user content, and others

require much more user involvement for designing and constructing the site structure.

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 413

When we think about CMSs, we need to account for all the components that play a role in the

viability of such a system for providing a platform for publishing content on the web. All of

these components form an ecosystem surrounding the CMS platform, and they include hosting

providers, extension developers, development agencies, site builders, etc. Thus, when we talk

about a CMS, we usually refer to both the platform itself and its surrounding ecosystem.

There are many interesting and important aspects to analyze and questions to answer in our

quest to understand the CMS space and its role in the present and the future of the web. We

acknowledge the vastness and complexity of the CMS platforms space and bring to it our

curiosity along with deep expertise on some of the major players in the space.

In this chapter, we seek to help understand the current state of the CMS ecosystems, the role

they play in shaping users’ perception of how content can be consumed and experienced on the

web, and their impact on the environment. Our goal is to discuss aspects related to the CMS

landscape in general, and the characteristics of web pages generated by these systems.

This second edition of the Web Almanac builds on last year’s work. We now have the benefit of

being able to compare the 2020 results to 2019 in order to start establishing trends. Let’s dive

into our analysis.

Why use a CMS in 2020?

People and organizations use a CMS in 2020 as in many cases CMSs offer a shortcut to creating

a website which meets their needs. As we’ll discuss later, there are both general and specialized

CMSs. The general CMSs are often extensible through add-ons, and the specialized CMSs are

often focused on specific industry needs or functionality.

Whichever CMS used, it is in use because it solves a problem for the user or organization. It’s

beyond our scope to explore why each CMS is chosen, but later we do explore why the most

popular CMS, WordPress, is disproportionately chosen.

CMS adoption

Our analysis throughout this work looks at desktop and mobile websites. The vast majority of

URLs we looked at are in both datasets, but some URLs are only accessed by desktop or mobile

devices. This can cause small divergences in the data, and we thus look at desktop and mobile

results separately.

More than 42% of web pages are powered by a CMS platform, an increase of over 5% from

2019. This breaks down to 42.18% on desktop, up from 40.01% in 2019, and 42.27% on mobile,

Part III Chapter 15 : CMS

414 2020 Web Almanac by HTTP Archive

up from 39.61% in 2019.

The increase in desktop web pages powered by a CMS platform is 5.43% from last year. On

mobile this increase is roughly a quarter higher, at 6.71%.

As with last year606, we see different results from other datasets for tracking market share of

CMS platforms, such as W3Techs607. W3Techs reports at the time of writing that 60.6% of web

pages are created by CMSs, up from 56.4% a year ago. This is a 6.4% increase, which broadly

matches our findings.

The deviation between our analysis and W3Techs’ analysis can be explained by a difference in

research methodologies. You can read more about ours on the Methodology page.

Figure 15.1. CMS adoption trend.

Figure 15.2. CMS adoption statistics.

Year Desktop Mobile

2019 39.61% 40.01%

2020 42.27% 42.18%

% Change 6.71% 5.43%

606. https://almanac.httparchive.org/en/2019/cms#cms-adoption
607. https://w3techs.com/technologies/history_overview/content_management

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 415

https://almanac.httparchive.org/static/images/2020/cms/cms-adoption.png
https://almanac.httparchive.org/static/images/2020/cms/cms-adoption.png
https://almanac.httparchive.org/en/2019/cms#cms-adoption
https://w3techs.com/technologies/history_overview/content_management

Our research identified 222 individual CMSs, with these ranging from a single install to millions

on a single CMS.

Some of them are open source (e.g. WordPress, Joomla, others) and some of them are

proprietary (e.g. Wix, Squarespace, others). As we’ll discuss later, the top 3 CMSs by adoption

share are all open source, but proprietary platforms have seen large increases in adoption share

this year. Some CMS platforms can be used on “free” hosted or self-hosted plans, and there are

also options for using these platforms on higher-tiered plans even at the enterprise level.

The CMS space as a whole is a complex, federated universe of CMS ecosystems, all separated

and at the same time intertwined. Our research shows CMSs are only getting more important.

The minimum of 5% increase in adoption of CMSs shows that in a year when COVID-19 has

created immense uncertainty, solid CMS platforms have provided some stability. As we

discussed last year, these platforms play a key role for us to succeed in our collective quest for

an evergreen, healthy, and vibrant web. This has become truer since, and we expect it to

continue to be the case going forward.

Top CMSs

Our analysis counted 222 separate CMSs. While this is a high count, 204 (92%) of these have an

adoption share of 0.01% or lower. This leaves only 13 CMSs with an adoption share of between

0.1 and 1%, and four with a share of between 1 and 2%, and one with a share over this.

The one CMS with a share over 2% is WordPress, which has a 31% usage share. This is over 15

times the share of the next most popular CMS, Joomla:

Part III Chapter 15 : CMS

416 2020 Web Almanac by HTTP Archive

Joomla and Drupal have lost 8% and 10% of their adoption share respectively, whilst Wix and

Squarespace have gained an extra 41% and 28% adoption share respectively. WordPress has

gained an extra 7% adoption share in the last year, which is a larger absolute increase than the

total share for Joomla, the next most popular CMS.

These numbers are broadly consistent when split across desktop and mobile:

Figure 15.3. CMS adoption share for top 5 CMSs.

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 417

https://almanac.httparchive.org/static/images/2020/cms/cms-adoption-share-for-top-5-cmss.png
https://almanac.httparchive.org/static/images/2020/cms/cms-adoption-share-for-top-5-cmss.png

For WordPress the numbers are very similar; for the other CMSs the difference is larger.

Drupal and Squarespace have 16.7 and 26.3% more websites on desktop than mobile

respectively, whilst Joomla and Wix have 7.5 and 15.2% more times on mobile than desktop.

The 0.1 to 1% adoption share category sees significantly more movement. These account for

CMSs powering up to 50,000 websites.

Figure 15.4. Top 5 CMSs by client.

Part III Chapter 15 : CMS

418 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/cms/cms-top-5-cms-by-client.png
https://almanac.httparchive.org/static/images/2020/cms/cms-top-5-cms-by-client.png

We see three new entrants here: Duda, GoDaddy Website Builder, and MyWebsite. Two, Tilda

and Kentico CMS, have seen an adoption share change of over 100% in the last year. This “long

Figure 15.5. Relative % adoption of smaller CMSs (0.1% - 1% adoption share)

CMS 2019 2020 % change

WordPress 28.91% 31.04% 7%

Joomla 2.24% 2.05% -8%

Drupal 2.21% 1.98% -10%

Wix 0.91% 1.28% 41%

Squarespace 0.76% 0.97% 28%

1C-Bitrix 0.55% 0.61% 10%

TYPO3 CMS 0.53% 0.52% -2%

Weebly 0.39% 0.33% -15%

Jimdo 0.28% 0.24% -16%

Adobe Experience Manager 0.27% 0.23% -14%

Duda 0.22%

GoDaddy Website Builder 0.18%

DNN 0.20% 0.16% -19%

DataLife Engine 0.19% 0.16% -12%

Tilda 0.08% 0.16% 100%

Liferay 0.12% 0.11% -10%

Microsoft SharePoint 0.15% 0.11% -25%

Kentico CMS 0.00% 0.11% 10819%

Contao 0.09% 0.09% 0%

Craft CMS 0.08% 0.09% 5%

MyWebsite 0.09%

Concrete5 0.10% 0.09% -12%

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 419

tail” of CMSs cover a mix of open source and proprietary platforms and include everything from

consumer-friendly to industry-specific. An incredible strength of the CMS platforms as a whole

is one can get specialized software which powers every conceivable type of website.

When we look at CMS adoption share relative to other CMSs (thus excluding websites with no

CMS), The dominance of WordPress becomes clear. The adoption share of websites with a CMS

is 74.2%. With these numbers relative, Joomla, Drupal, Wix, and Squarespace receive higher

adoption rates: 4.9%, 4.7%, 3.1%, and 2.3% respectively:

WordPress usage

WordPress dominates this space and thus deserves further discussion.

WordPress is an open source project608 with a mission to “democratize publishing”. The CMS is

free. While this is likely an important factor in its adoption share, the two next most popular

CMSs–Joomla and Drupal–are also free. The WordPress community, contributors, and

business ecosystem are likely the major differentiators.

A “core” WordPress community maintains the CMS and services requirements for additional

functionality through custom services and products (themes and plugins). This community has

an outsized impact, with a relatively small number of people maintaining both the CMS itself

Figure 15.6. CMS adoption share 2020.

608. https://wordpress.org/about/

Part III Chapter 15 : CMS

420 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/cms/cms-adoption-share-2020.png
https://almanac.httparchive.org/static/images/2020/cms/cms-adoption-share-2020.png
https://wordpress.org/about/

and providing the additional functionality which makes WordPress sufficiently powerful and

flexible that it can service most types of website. This flexibility is important when explaining

the market share.

Deriving from this flexibility, WordPress also has a low barrier of entry for developers and site

“builders” or “implementers”. We see a virtuous cycle: flexible extensions offer ever-easier site

building, which lets more and more users build ever-more-powerful sites with WordPress. This

increase in users makes it more attractive for developers to create better and better

extensions, furthering the cycle.

We explored how WordPress sites use these extensions, which are typically WordPress

plugins. The median WordPress site (on desktop and mobile) loads 22 plugin resources per

page, with sites at the 90th percentile loading 76 and 74 resources per page on desktop and

mobile respectively. At the 100th percentile this goes as high as 1918 and 1948 resources per

page on desktop and mobile respectively. Whilst we can’t compare this to other CMSs, it seems

likely that WordPress’s extension ecosystem is a major contributor to its high adoption rate.

WordPress’s adoption share growth of 7.40% from 2019 to 2020 outstrips the overall increase

in adoption of CMSs as a whole. This suggests WordPress has appeal significantly beyond the

“average” CMS.

2020 has seen the impact of COVID-19. This may explain the increase in market share.

Anecdotally, we can suggest that with many physical businesses closing permanently or

temporarily, there has been increased demand for websites in general and WordPress as the

Figure 15.7. WordPress plugin resources per page.

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 421

https://almanac.httparchive.org/static/images/2020/cms/cms-wordpress-plugin-resource-per-page.png
https://almanac.httparchive.org/static/images/2020/cms/cms-wordpress-plugin-resource-per-page.png

largest CMS has benefited from this. Further research in the coming years will be required to

ascertain the full impact.

With the adoption share of CMSs explored, let’s now turn our attention to user experience.

CMS user experience

CMSs must offer a good user experience. With so much of the web relying on CMSs to serve

pages, it is the responsibility of the CMS at the platform-level to ensure the user experience is

good. Our aim is to shed light on real-world user experience when using CMS-powered

websites.

To achieve this, we turn our analysis towards some user-perceived performance metrics, which

are captured in the three Core Web Vitals metrics, as well as the Lighthouse scores in the SEO

and Accessibility categories.

Chrome User Experience Report

In this section we take a look at three important factors provided by the Chrome User

Experience Report, which can shed light on our understanding of how users are experiencing

CMS-powered web pages in the wild:

• Largest Contentful Paint (LCP)

• First Input Delay (FID)

• Cumulative Layout Shift (CLS)

These metrics aim to cover the core elements which are indicative of a great web user

experience. The Performance chapter will cover these in more detail, but here we are

interested in looking at these metrics specifically in terms of CMSs. Let’s review each of these in

turn.

Largest Contentful Paint

Largest Contentful Paint (LCP) measures the point when the page’s main content has likely

loaded and thus the page is useful to the user. It does this by measuring the render time of the

largest image or text block visible within the viewport.

This is different to First Contentful Pain (FCP), which measures from page load until content

Part III Chapter 15 : CMS

422 2020 Web Almanac by HTTP Archive

such as text or an image is first displayed. LCP is regarded as a good proxy for measuring when

the main content of a page is loaded.

A “good” LCP is regarded as under 2.5 seconds. The average website on one of the top five

CMSs does not have a good LCP. Only Drupal on desktop scores over 50% here. We see major

discrepancies between desktop and mobile scores: WordPress is fairly even at 33% on desktop

and 25% on mobile, but Squarespace scores 37% on desktop and only 12% on mobile.

Even though we’d love to see CMSs performing much better here, there are still some positive

takeaways from these results. For one, the fact that 61% of Drupal websites have good LCP is

especially notable because it’s much better than the global distribution of 48% of websites

having good LCP, according to the Chrome UX Report609. For 1 in 3 or 4 WordPress websites to

have good LCP is also kind of amazing, given the sheer magnitude of the number of WordPress

websites. Wix does have some catching up to do, but it’s encouraging to see that Wix engineers

are actively610 working on fixing performance issues, so this will be something to keep an eye on

over the years.

First Input Delay

First Input Delay (FID) measures the time from when a user first interacts with your site (i.e.

when they click a link, tap on a button, or use a custom, JavaScript-powered control) to the time

Figure 15.8. Real-user Largest Contentful Paint experiences.

609. https://twitter.com/ChromeUXReport/status/1293306510509039616
610. https://twitter.com/DanShappir/status/1308043752712343552

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 423

https://almanac.httparchive.org/static/images/2020/cms/cms-real-user-largest-contentful-paint-experiences.png
https://almanac.httparchive.org/static/images/2020/cms/cms-real-user-largest-contentful-paint-experiences.png
https://twitter.com/ChromeUXReport/status/1293306510509039616
https://twitter.com/DanShappir/status/1308043752712343552

when the browser is actually able to respond to that interaction. A “fast” FID from a user’s

perspective would be immediate feedback from their actions on a site rather than a stalled

experience. Any delay is a pain point and could correlate with interference from other aspects

of the site loading when the user tries to interact with the site.

FID is very fast for the average CMS website on desktop–only Wix scores lower than

100%–and mixed on mobile. Most CMSs deliver mobile FID on an average site within a

reasonable range of the desktop score. For Wix the number of websites that have a good FID on

mobile is nearly half the desktop total.

The FID scores are generally good here, in contrast to the LCP scores. As suggested, the weight

of individual pages on CMSs in addition to mobile connection quality or the lower performance

of mobile devices relative to desktop, could play a role in the performance gaps that we see

here affecting FID less.

There is a small margin of difference between the resources shipped to desktop and mobile

versions of a website. Last year we noted that optimizing for the mobile experience was

necessary. Average scores have increased on desktop and mobile, but further attention is

required on mobile.

Cumulative Layout Shift

Cumulative Layout Shift (CLS) measures the instability of content on a web page after the first

Figure 15.9. Real-user First Input Delay experiences.

Part III Chapter 15 : CMS

424 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/cms/cms-real-user-first-input-delay-experiences.png
https://almanac.httparchive.org/static/images/2020/cms/cms-real-user-first-input-delay-experiences.png

500ms of user input, and after the first user input. This is important on mobile in particular,

where the user will tap where they want to take an action–such as a search bar–only for the

location to move as additional images, ads, or similar load.

A score of 0.1 or below is measured as “good”, over 0.25 is “poor”, and anything in between is

“needs improvement”.

The top 5 CMSs could improve here. Only 50% of web pages loaded by a top 5 CMS have a

“good” CLS experience, with this figure rising to 59% on mobile. Across all CMSs the average

desktop score is 59% and average mobile score is 67%. This shows us all CMSs have work to do

here, but the top 5 CMSs in particular need improvement.

Lighthouse scores

Lighthouse is an open-source, automated tool designed to help developers assess and improve

the quality of their websites. One key aspect of the tool is that it provides a set of audits to

assess the status of a website in terms of performance, accessibility, SEO, progressive web

apps, and more. For this year’s chapter, we looked at two specific audits categories: SEO and

accessibility.

Figure 15.10. Real-user Cumulative Layout Shift experiences.

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 425

https://almanac.httparchive.org/static/images/2020/cms/cms-real-user-cumulative-layout-shift-experiences.png
https://almanac.httparchive.org/static/images/2020/cms/cms-real-user-cumulative-layout-shift-experiences.png

SEO

Search Engine Optimization (or SEO) is the practice of optimizing websites to make your

website content more easily found in search engines. This is covered in more in depth in our

SEO chapter, but one part involves ensuring the site is coded in such a way to serve as much

information to search engine crawlers to make it as easy as possible for them to show your site

appropriately in search engine results. Compared to a custom created website, you would

expect an CMS to provide good SEO capabilities, and the Lighthouse scores in this category

show high marks:

All of the top 5 CMSs score highly here with median scores of 0.83 or above, with some

reaching as high as 0.93. SEO can depend on the website owner making use of capabilities of a

CMS but making those options easy to use in a CMS, and good defaults, can have big benefits

for sites run on those CMSs.

Accessibility

An accessible website is a site designed and developed so that people with disabilities can use

them. Web accessibility also benefits people without disabilities, such as those on slow internet

connections. A full discussion can be seen here611, and in our Accessibility chapter.

Figure 15.11. SEO Lighthouse scores for Top 5 CMSs.

611. https://www.w3.org/WAI/fundamentals/accessibility-intro/#what

Part III Chapter 15 : CMS

426 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/cms/cms-seo-lighthouse-score.png
https://almanac.httparchive.org/static/images/2020/cms/cms-seo-lighthouse-score.png
https://www.w3.org/WAI/fundamentals/accessibility-intro/#what

Lighthouse provides a set of accessibility audits and it returns a weighted average of all of them

(see Scoring Details612 for a full list of how each audit is weighted).

Each accessibility audit is either a pass or a fail, but unlike other Lighthouse audits, a page

doesn’t get points for partially passing an accessibility audit. For example, if some elements

have screen reader-friendly names, but others don’t, that page gets a 0 for the screen reader-

friendly-names audit.

The median Lighthouse accessibility score for the top 5 CMSs is all above 0.80. Across all CMSs,

the average median Lighthouse score is 0.78, with a minimum of 0.44 and a maximum of 0.98.

We thus see that the top 5 CMSs are better than average, with some better than others. Wix

and Squarespace have the highest scores of the top 5. Possibly these platforms being

proprietary helps here, as they’re able to control the sites which are created more closely.

The bar should be higher here, though. An average score of 0.78 across all CMSs still leaves

significant room for improvement, and the maximum score of 0.98 shows even the “best” CMS

for accessibility compliance has room for improvement. Improving accessibility is essential and

urgent work.

Figure 15.12. Accessibility Lighthouse scores for Top 5 CMSs.

612. https://web.dev/accessibility-scoring/

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 427

https://web.dev/accessibility-scoring/
https://almanac.httparchive.org/static/images/2020/cms/cms-accessibility-lighthouse-score.png
https://almanac.httparchive.org/static/images/2020/cms/cms-accessibility-lighthouse-score.png

Environmental impact

This year we’ve sought to better understand the impact of CMSs on the environment. The

information and communications technology (ICT) industry accounts for 2% of global carbon

emissions613, and data centers specifically account for 0.3% of global carbon emissions. This puts

the ICT industry’s carbon footprint equivalent to the aviation industry’s emissions from fuel.

We don’t have data on the role of CMSs here, but with our research showing 42% of websites

use a CMS, it is clear CMSs play an important role in the efficiency of websites and their impact

on the environment.

Our research looked at the average CMS page weight in KB and mapped this to CO2 emissions

using logic from carbonapi614. This generated the following results, split by desktop and mobile:

We found that the median CMS page load resulted in the transfer of 2.41 MB and thus the

emission of 1.5g of CO2. This was the same for desktop and mobile. The most efficient

percentile of CMS web pages result in the generation of at least one third less CO2, whilst the

least efficient percentile of CMS web pages goes the other way: over one third less efficient

than the median. The most efficient percentile of pages is approximately ten times more

efficient than the least efficient percentile.

CMSs power every type of website, so this discrepancy is not surprising. CMSs can, however,

Figure 15.13. Carbon Emissions per CMS page view.

613. https://www.nature.com/articles/d41586-018-06610-y
614. https://gitlab.com/wholegrain/carbon-api-2-0/-/blob/master/includes/carbonapi.php#L342

Part III Chapter 15 : CMS

428 2020 Web Almanac by HTTP Archive

https://www.nature.com/articles/d41586-018-06610-y
https://www.nature.com/articles/d41586-018-06610-y
https://www.nature.com/articles/d41586-018-06610-y
https://gitlab.com/wholegrain/carbon-api-2-0/-/blob/master/includes/carbonapi.php#L342
https://almanac.httparchive.org/static/images/2020/cms/cms-carbon-emissions-per-cms-page-view.png
https://almanac.httparchive.org/static/images/2020/cms/cms-carbon-emissions-per-cms-page-view.png

influence at the platform-level the efficiency of websites they create.

Page weights are important here. The average desktop CMS web page loads 2.4 MB of HTML,

CSS, JavaScript, media, etc. 10% of pages, however, load over 7 MB of this data. On mobile

devices the average web page loads 0.1 MB fewer than on desktop, with at least this number

being true across all percentiles:

CMS often load third party resources, such as external images, videos, scripts, or stylesheets:

Figure 15.14. Distribution of CMS page sizes.

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 429

https://almanac.httparchive.org/static/images/2020/cms/cms-distribution-of-cms-pages-sizes.png
https://almanac.httparchive.org/static/images/2020/cms/cms-distribution-of-cms-pages-sizes.png

We find that the median desktop CMS page has 27 third-party requests with 436 KB of

content, with the mobile equivalent generating 26 requests with 397 KB of content.

One of the main ways a CMS can influence its page load size is by supporting and encouraging

the usage of more efficient formats. Images are behind only video in their contribution to page

weight.

Figure 15.15. Third party bytes.

Part III Chapter 15 : CMS

430 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/cms/cms-third-party-bytes.png
https://almanac.httparchive.org/static/images/2020/cms/cms-third-party-bytes.png

Video contributes a larger percentage per resource type here. Making video more efficient, or

other mechanisms such as the impact of stopping autoplay, are interesting areas for future

research. Here our focus is on images. Popular image formats are JPEG, PNG, GIF, SVG, WebP,

and ICO. Of these, WebP is the most efficient in most situations615, with WebP lossless images

26% smaller616 than equivalent PNGs and 25-34% smaller617 than comparable JPGs. We see,

however, that WebP is the second least popular image format across all CMS pages:

Figure 15.16. Median CMS KB per resource type.

615. https://developers.google.com/speed/webp/
616. https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study#results
617. https://developers.google.com/speed/webp/docs/webp_study

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 431

https://almanac.httparchive.org/static/images/2020/cms/cms-median-cms-kb-per-resource-type.png
https://almanac.httparchive.org/static/images/2020/cms/cms-median-cms-kb-per-resource-type.png
https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study#results
https://developers.google.com/speed/webp/docs/webp_study

Of the top 5 CMSs, only Wix automatically converts and serves images in the WebP format.

WordPress, Drupal, and Joomla support WebP with extensions, whilst at the time of writing

Squarespace does not support WebP.

As we saw earlier, Wix had the lowest proportion of sites with a “good” LCP. While we know

that Wix is making efficient use of image bytes in WebP, there are clearly other issues affecting

its LCP performance beyond image formats that we aren’t controlling for here. WebP is,

however, a more efficient format and improved native support for the format by the most

popular CMSs would be beneficial.

Image formats are one mechanism for making images more efficient. Other mechanisms such as

“lazy loading” images would benefit from future research.

We’re unable to fully answer the question of the impact of CMSs on the environment, but we

are contributing to an answer. CMSs have a responsibility to take environmental impact

seriously and decreasing the average page weight is important work.

Conclusion

CMSs have only gotten more important in the last year. They are essential for how content is

created and consumed on the internet, and there are no signs that this will change in the

foreseeable future. CMSs are set to become more important with each year passing.

Figure 15.17. Popularity of image formats.

Part III Chapter 15 : CMS

432 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/cms/cms-popularity-of-image-formats.png
https://almanac.httparchive.org/static/images/2020/cms/cms-popularity-of-image-formats.png

We have reviewed the adoption of CMSs, user experience of websites created by these CMSs,

and for the first time looked at the impact of CMSs on the environment. We have answered

many questions here but leave further questions unanswered. Further research building on this

chapter will be gratefully received. We have also highlighted some areas which need attention

by the CMSs. We hope there will be progress to share in the 2021 report.

CMSs are vital for the success of the internet and open web. Let’s work towards continued

progress.

Author

Alex Denning

@AlexDenning alexdenning https://getellipsis.com/

Alex Denning is the Founder of Ellipsis Marketing618, a marketing agency for

WordPress businesses. Alex is a WordPress Core Contributor and has helped

organize WordCamp London619.

618. https://getellipsis.com/
619. https://london.wordcamp.org/

Part III Chapter 15 : CMS

2020 Web Almanac by HTTP Archive 433

https://twitter.com/AlexDenning
https://github.com/alexdenning
https://getellipsis.com/
https://getellipsis.com/
https://london.wordcamp.org/

434 2020 Web Almanac by HTTP Archive

Part III Chapter 16

Ecommerce

Written by Rockey Nebhwani and Jason Haralson
Reviewed by Alan Kent
Analyzed by Jason Haralson and Rockey Nebhwani
Edited by Barry Pollard

Introduction

An “ecommerce platform” is a set of software or services that enables you to create and operate

an online store. There are several types of ecommerce platforms, for example:

• Paid-for services such as Shopify that host your store and help you get started. They

provide website hosting, site and page templates, product-data management,

shopping carts and payments.

• Software platforms such as Magento Open Source which you set up, host and

manage yourself. These platforms can be powerful and flexible but may be more

complex to set up and run than services such as Shopify.

• Hosted platforms such as Magento Commerce that offer the same features as their

self-hosted counterparts, except that hosting is managed as a service by a third-

party.

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 435

Last year’s analysis could only detect sites built on an ecommerce platform. This means that

most large online stores and marketplaces—such as Amazon, JD, and eBay or any ecommerce

sites built using in-house platforms (typically by bigger businesses) were not part of the

analysis. For this year’s analysis, this limitation was addressed by enhancing Wappalyzer’s

detection of ecommerce sites. See the Platform detection section for more details.

Also note that the data here is for home pages only: not category, product or other pages. Learn

more about our methodology.

Platform detection

How do we check if a page is on an ecommerce platform? Detection is done through

Wappalyzer. Wappalyzer is a cross-platform utility that uncovers the technologies used on

websites. It detects content management systems, ecommerce platforms, web servers,

JavaScript frameworks, analytics tools, and many more technologies.

Compared to 2019, you will notice that in 2020, % of ecommerce websites have increased

significantly. This is primarily due to improved detection in Wappalyzer this year using

secondary signals. These secondary signals include following:

• Sites using Google Analytics Enhanced Ecommerce tagging is counted as an

ecommerce site.

• Secondary signal also includes looking for most commonly used patterns for

identifying ’Cart’ links.

This change in methodology provides enhanced coverage for enterprise platforms and sites

built using headless solutions.

Limitations

Our methodology has the following limitations:

• Headless ecommerce platforms like commercetools620 may not get detected as

ecommerce platform but if we are able to detect presence of cart on such sites, we

will still include sites using such platforms in our overall coverage stats.

• Technologies which are typically deployed outside homepages (e.g. WebAR on

product detail pages) are not detected.

620. https://commercetools.com/

Part III Chapter 16 : Ecommerce

436 2020 Web Almanac by HTTP Archive

https://commercetools.com/

• Due to our crawl originating from US, there may be some bias towards US specific

platforms. For example, if a global business has ecommerce sites built on different

platforms for different countries (using country specific domains/sub-domains), it

may not show these regional differences in our analysis.

• It’s common for B2B sites to hide the cart functionality behind a login and due to

that this study is not a correct representation of B2B market.

Ecommerce platforms

In total, 21.72% of mobile websites and 21.27% of desktop websites used an ecommerce

platform. For 2019, the same number was 9.41% for mobile websites and 9.67% for desktop

websites.

Note: This increase is primarily due to improvements made to Wappalyzer to detect ecommerce

websites and shouldn’t be attributed to other factors like growth due to Covid-19. Also a minor

correction was applied to 2019 stats retrospectively to account for an error and hence the 2019

percentages are slightly different than those given in the 2019 Ecommerce621 chapter.

Figure 16.1. Ecommerce comparison 2019 to 2020.

621. https://almanac.httparchive.org/en/2019/ecommerce

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 437

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-comparison-2019-to-2020.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-comparison-2019-to-2020.png
https://almanac.httparchive.org/en/2019/ecommerce

Top ecommerce platforms

Our analysis counted 145 separate ecommerce platforms (compared to 116 in last year’s

analysis622). Out of these, only 9 platforms have market share of greater than 0.1%.

WooCommerce is the most common ecommerce platform and has maintained its number one

position. Wix appears in this analysis for the first time this year, after Wappalyzer started

identifying it as ecommerce platform from 30th Jun 2019.

Top enterprise ecommerce platforms

While it is difficult to discern a platform’s precise tier let us highlight four vendors who focus

heavily on the Enterprise tier—Salesforce, HCL, SAP, and Oracle.

Figure 16.2. Top ecommerce platforms.

622. https://almanac.httparchive.org/en/2019/ecommerce#ecommerce-platforms

Part III Chapter 16 : Ecommerce

438 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/top-ecommerce-platforms.png
https://almanac.httparchive.org/static/images/2020/ecommerce/top-ecommerce-platforms.png
https://almanac.httparchive.org/en/2019/ecommerce#ecommerce-platforms
https://almanac.httparchive.org/en/2019/ecommerce#ecommerce-platforms

Salesforce Commerce Cloud remains the leading platform from this group. The 3,437 desktop

websites in 2020 represent a 29.5% increase from 2019’s 2,653 desktop websites. Salesforce’s

websites account for 36.8% of the four enterprise ecommerce platforms.

HCL Technologies acquired WebSphere Commerce from IBM in July 2019. The transition had

mixed results in 2020. While HCL’s WebSphere Commerce increased their desktop website

count by a 14.8% increase this year up to 2,604 from 2019’s 2,268 desktop websites, there was

a slip in popularity by 0.5% within this group down to 27.9%. Something to watch for in the

future.

SAP Commerce Cloud, formally known as Hybris, remains the third most popular enterprise

ecommerce platform at 25.4% which is a slight increase from last year’s 24.8%. The 2,371

desktop websites is a 19.8% increase from the 1,979 desktop sites found in 2019 attributed to

Hybris.

Lastly, Oracle Commerce Cloud unfortunately lost a bit of traction between 2019 and 2020.

The desktop websites fell from 1,095 to 917, down 16%, and in turn their Enterprise

ecommerce platform foothold fell from 13.7% to 9.8%.

Figure 16.3. Enterprise ecommerce platforms (desktop).

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 439

https://almanac.httparchive.org/static/images/2020/ecommerce/enterprise-ecommerce-platforms.png
https://almanac.httparchive.org/static/images/2020/ecommerce/enterprise-ecommerce-platforms.png

Shopify’s Shopify Plus, Adobe’s Magento Enterprise and Bigcommerce’s Enterprise offerings

are available and gaining traction but the Platform Detection limitations hamper any ability to

isolate the Enterprise websites from their Community or Commercial websites.

Figure 16.4. Enterprise ecommerce platforms - 2019 desktop

Figure 16.5. Enterprise ecommerce platforms - 2020 desktop

Part III Chapter 16 : Ecommerce

440 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/enterprise-ecommerce-platforms-2019.png
https://almanac.httparchive.org/static/images/2020/ecommerce/enterprise-ecommerce-platforms-2019.png
https://almanac.httparchive.org/static/images/2020/ecommerce/enterprise-ecommerce-platforms-2020.png
https://almanac.httparchive.org/static/images/2020/ecommerce/enterprise-ecommerce-platforms-2020.png

COVID-19 impact on ecommerce

COVID-19 has had a huge impact on the world and necessitated an even bigger move online.

Measuring the total increase in ecommerce platforms is influenced by the greatly increased

detection undertaken in part for this chapter. So instead we look at some of the platforms that

were already being detected and note an increase in their usage - particularly since March

2020 when COVID started impacting large parts of the world:

There is definitely a measurable increase WooCommerce and Shopify sites around the time

COVID started really impacting the world.

Note: Wappalyzer detection for Wix623 doesn’t differentiate if a site is using Wix as CMS or ecommerce

platform. Due to this, growth of Wix as ecommerce platform may not be represented correctly in above

graph.

Page weight and requests

The page weight of an ecommerce platform includes all HTML, CSS, JavaScript, JSON, XML,

images, audio, and video.

Figure 16.6. Ecommerce platform growth Covid-19 impact

623. https://github.com/AliasIO/wappalyzer/pull/2731/commits/f44f20f03618f6a5fd868dd38ce9db5e2e2f1407

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 441

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-vendor-growth-covid-19-impact.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-vendor-growth-covid-19-impact.png
https://github.com/AliasIO/wappalyzer/pull/2731/commits/f44f20f03618f6a5fd868dd38ce9db5e2e2f1407

Promisingly, mobile page weights have dropped across all percentiles compared to 2019624 while

desktop page weights have remained the same more or less (except 90th percentile). Requests

per page also dropped on mobile (9-11 requests less across all percentiles except 90th

Figure 16.7. Page requests distribution.

Figure 16.8. Page weight distribution.

624. https://almanac.httparchive.org/en/2019/ecommerce#page-weight-and-requests

Part III Chapter 16 : Ecommerce

442 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/page-requests-distribution.png
https://almanac.httparchive.org/static/images/2020/ecommerce/page-requests-distribution.png
https://almanac.httparchive.org/static/images/2020/ecommerce/page-weight-distribution.png
https://almanac.httparchive.org/static/images/2020/ecommerce/page-weight-distribution.png
https://almanac.httparchive.org/en/2019/ecommerce#page-weight-and-requests

percentile) and on desktop.

Ecommerce sites are still larger in terms of requests and size compared to all sites, as shown in

the Page Weight chapter.

Page weight by resource type

Breaking this down by resource type, for median pages, we see that images and JavaScript

requests dominate ecommerce pages:

However, when looking at actual bytes delivered, media are by far the largest assets:

Figure 16.9. Median page requests by type.

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 443

https://almanac.httparchive.org/static/images/2020/ecommerce/median-page-requests-by-type.png
https://almanac.httparchive.org/static/images/2020/ecommerce/median-page-requests-by-type.png

Video, despite accounting for a small number of requests, is by far largest resources on

ecommerce sites, followed by images and then JavaScript.

Figure 16.10. Median page kilobytes by type.

Part III Chapter 16 : Ecommerce

444 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/median-page-kilobytes-by-type.png
https://almanac.httparchive.org/static/images/2020/ecommerce/median-page-kilobytes-by-type.png

HTML payload size

Note that HTML payloads may include other code such as inline JSON, JavaScript, or CSS

directly in the markup itself, rather than referenced as external links. The median HTML

payload size for ecommerce pages is 35 KB on mobile and 36 KB on desktop. Compared to

2019625, median payload size and 10th, 25th and 50th percentiles have remained approximately

the same. However, at 75th and 90th percentile, we see an increase of approximately 10kb and

15kb respectively across mobile and desktop.

Mobile HTML payload sizes are not very different from desktop. In other words, it appears that

sites are not delivering significantly different HTML files for different devices or viewport sizes.

Image usage

Next, let’s look at how images are used on ecommerce sites. Note that because our data

collection methodology does not simulate user interactions on pages like clicking or scrolling,

images that are lazy loaded would not be represented in these results.

Figure 16.11. Distribution of HTML bytes per ecommerce page

625. https://almanac.httparchive.org/en/2019/ecommerce#html-payload-size

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 445

https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-html-bytes-per-ecommerce-page.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-html-bytes-per-ecommerce-page.png
https://almanac.httparchive.org/en/2019/ecommerce#html-payload-size
https://almanac.httparchive.org/en/2019/ecommerce#html-payload-size

The figures above show that the median ecommerce page has 34 images and an image payload

of 1,208 KB on mobile, 37 images and 1,271 KB on desktop. 10% of home pages have 90 or

more images and an image payload of nearly between 5.5 MB on mobile and 5.8MB on desktop.

Figure 16.12. Distribution of image requests for ecommerce

Figure 16.13. Distribution of image bytes for ecommerce

Part III Chapter 16 : Ecommerce

446 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-image-requests-for-ecommerce.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-image-requests-for-ecommerce.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-image-bytes-for-ecommerce.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-image-bytes-for-ecommerce.png

Compared to 2019626, both median image requests and median image payloads have seen a

drop. Median image requests dropped by 3 for both mobile and desktop. Median image payload

also dropped by approximately 200kb-250kb across mobile and desktop. This drop may be

driven by sites adopting lazy loading techniques such as usage of the loading="lazy"
attribute which is now supported by more and more browsers627. This year’s Markup chapter

makes an observation usage for native lazy loading appears to be on the increase and around

3.86% of the pages use this in Aug-2020 and this has been on constant rise (as seen in this

tweet628).

Popular image formats

Note that some image services or CDNs will automatically deliver WebP (rather than JPEG or PNG) to

platforms that support WebP, even for a URL with a .jpg or .png suffix. For example,

IMG_20190113_113201.jpg returns a WebP image in Chrome. However, the way HTTP Archive

detects image formats is to check for keywords in the MIME type first, then fall back to the file

extension. This means that the format for images with URLs such as the above will be given as WebP,

since WebP is supported by HTTP Archive as a user agent.

PNG usage remained roughly at the same level as 2019629 (at 27% for both desktop and mobile).

Figure 16.14. Popular image formats on ecommerce sites

626. https://almanac.httparchive.org/en/2019/ecommerce#image-stats
627. https://caniuse.com/loading-lazy-attr
628. https://twitter.com/rick_viscomi/status/1344380340153016321?s=20
629. https://almanac.httparchive.org/en/2019/ecommerce#png

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 447

https://almanac.httparchive.org/en/2019/ecommerce#image-stats
https://caniuse.com/loading-lazy-attr
https://twitter.com/rick_viscomi/status/1344380340153016321?s=20
https://twitter.com/rick_viscomi/status/1344380340153016321?s=20
https://almanac.httparchive.org/static/images/2020/ecommerce/popular-image-formats-on-ecommerce-sites.png
https://almanac.httparchive.org/static/images/2020/ecommerce/popular-image-formats-on-ecommerce-sites.png
https://almanac.httparchive.org/en/2019/ecommerce#png

We observed drop in JPEG usage (4% for desktop and 6% for mobile). Out of this drop, most of

it went towards increased GIF usage. GIFs are quite common on ecommerce homepages

whereas GIFs may not be much used on product detail pages. Since our methodology only looks

at homepages, this explains the significantly high usage of GIFs across ecommerce sites.

Lighthouse has an audit which recommends using “video formats for animated content”. This is

a technique ecommerce sites can use to optimize for performance but still retain animation

properties of GIFs. See this article630 for more details.

WebP usage across ecommerce sites still remains very low though usage doubled and went

from a total of 1% usage in 2019 to 2% usage in 2020. WebP format is now nearly 10 years old

and even after allowing for progressive enhancement using the picture element, usage has

remained low. In 2020, WebP got a new lease of life when Safari introduced support in Safari

14631. However, the Web Almanac for this year is based on August 2020 and Safari support came

in September 2020 so any stats presented here don’t reflect the impact of support added by

Safari.

This year, in Chrome 85 (released in August 2020), we also saw support for AVIF which is a

more efficient image format compared to WebP632. In next year’s analysis, we hope to cover

AVIF usage across ecommerce sites. Similar to WebP, AVIF is also a progressive enhancement

and can be implemented using the picture element to address cross-browser concerns633.

As per the author’s experience, there is a lack of awareness in engineering teams about image

optimization services offered by CDNs where CDNs can do most of the heavy lifting without

touching any code. For example, Adobe Scene7 offers this under their Smart Imaging solution634.

Clients on Salesforce Commerce Cloud using the platform’s embedded CDN capability (which

uses Cloudflare) can enable this with a simple toggle. By increasing the awareness of such

solutions, we can try to move the needle in favor of more efficient formats.

Another point for readers who are interested in improving CRUX metrics with images sizes/

formats, currently progressive images provides no weightage towards Largest Contentful Paint

despite being helpful for user-perceived performance. There is a fascinating discussion635 in the

community on this topic and in the future it is possible that progressive images will contribute

towards LCP. There may be renewed interest in the ecommerce community towards formats

supporting progressive loading due to this and inclusion of Core Web Vitals in Page Experience

signals from May 2021.

630. https://web.dev/replace-gifs-with-videos/
631. https://caniuse.com/webp
632. https://www.ctrl.blog/entry/webp-avif-comparison.html
633. https://caniuse.com/avif
634. https://helpx.adobe.com/uk/experience-manager/6-3/assets/using/imaging-faq.html
635. https://github.com/WICG/largest-contentful-paint/issues/68

Part III Chapter 16 : Ecommerce

448 2020 Web Almanac by HTTP Archive

https://web.dev/replace-gifs-with-videos/
https://caniuse.com/webp
https://caniuse.com/webp
https://www.ctrl.blog/entry/webp-avif-comparison.html
https://caniuse.com/avif
https://helpx.adobe.com/uk/experience-manager/6-3/assets/using/imaging-faq.html
https://github.com/WICG/largest-contentful-paint/issues/68

Third-party requests and bytes

Ecommerce platforms and sites often make use of third-party content. We use the Third Party

Web project to detect third-party usage.

Figure 16.15. Distribution of third-party requests

Figure 16.16. Distribution of third-party bytes

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 449

https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-third-party-requests.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-third-party-requests.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-third-party-bytes.png
https://almanac.httparchive.org/static/images/2020/ecommerce/distribution-of-third-party-bytes.png

We see a significant increase in the use of third-party requests and bytes compared to last

year’s third-party data636, but have been unable to identify any particular cause or notable

change in detection. We’d love to hear readers opinions637 on this as third-party usage seems to

have basically doubled in the last year!

Ecommerce user experience

Ecommerce is all about converting customers and in order to do that a fast performing website

is paramount. In this section, we try to shed light on real-world user experience of ecommerce

websites. To achieve this, we turn our analysis towards some user-perceived performance

metrics, which are captured in the three Core Web Vitals638 metrics.

Chrome User Experience Report

In this section we take a look at three important factors provided by the Chrome User

Experience Report, which can shed light on our understanding of how users are experiencing

ecommerce websites in the wild:

• Largest Contentful Paint (LCP)

• First Input Delay (FID)

• Cumulative Layout Shift (CLS)

These metrics aim to cover the core elements which are indicative of a great web user

experience. The Performance chapter covers these in more detail, but here we are interested in

looking at these metrics specifically for ecommerce websites. Let’s review each of these in turn.

Largest Contentful Paint

Largest Contentful Paint (LCP) measures the point when the page’s main content has likely

loaded and thus the page is useful to the user. It does this by measuring the render time of the

largest image or text block visible within the viewport.

This is different to First Contentful Paint (FCP), which measures from page load until content

such as text or an image is first displayed. LCP is regarded as a good proxy for measuring when

the main content of a page is loaded.

636. https://almanac.httparchive.org/en/2019/ecommerce#third-party-requests-and-bytes
637. https://discuss.httparchive.org/t/2052
638. https://web.dev/articles/vitals

Part III Chapter 16 : Ecommerce

450 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/ecommerce#third-party-requests-and-bytes
https://almanac.httparchive.org/en/2019/ecommerce#third-party-requests-and-bytes
https://discuss.httparchive.org/t/2052
https://web.dev/articles/vitals

In the context of ecommerce, this metric provides very good indication of most useful content

for the users (e.g. Hero banner image for landing pages, Image of 1st product displayed on a

search/listings pages, Product image in case of a product detail page). Before this metric, sites

had to explicitly instrument sites in their RUM solution but this metric democratizes the

measurement for anybody who may not have resources or expertise to do this.

We see large degrees of variability across the major platforms with Wix, and WooCommerce in

particular scoring very low. As two of the three most used ecommerce platforms, it seems they

have some improvements to make!

First Input Delay

First Input Delay (FID) attempts to measure interactivity, or more importantly any barriers to

interactivity when a page is unresponsive while busy processing the page.

Figure 16.17. Real-user Largest Contentful Paint experiences

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 451

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-largest-contentful-paint-experiences.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-largest-contentful-paint-experiences.png

In general FID scores are typically higher than the other Core Web Vitals, and it is promising

that ecommerce sites, despite making use of a lot of Media and JavaScript as we’ve seen earlier,

maintain high scores in this category.

Cumulative Layout Shift

Cumulative Layout Shift (CLS) measures how much the page “jumps about” as new content is

loaded and placed into the page. From our crawls this will be limited to initial page load above

“the fold”, but ecommerce sites should understand that below the page fold or other

interactions may impact CLS more than our stats show.

Figure 16.18. Real-user First Input Delay experiences

Part III Chapter 16 : Ecommerce

452 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-first-input-delay-experiences.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-first-input-delay-experiences.png

About half ecommerce sites have good CLS scores and interestingly there is little difference

between mobile and desktop, despite the usual convention that mobile devices are usually

under powered and often experience variable network changes.

Core Web Vitals overall

Looking at Core Web Vitals overall, for which sites pass all three core metrics we see the

following:

Figure 16.19. Real-user Cumulative Layout Shift experiences

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 453

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-cumulative-layout-shift-experiences.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-cumulative-layout-shift-experiences.png

This is very similar to the LCP chart earlier, perhaps somewhat unsurprisingly since it was the

one with the most variability and the most sites that failed this metric.

Tools

How are ecommerce sites using common tools like Analytics, Tag Managers, Consent

Management Platforms and Accessibility solutions?

Figure 16.20. Real-user Core Web Vitals experiences

Part III Chapter 16 : Ecommerce

454 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-core-web-vitals-exeriences.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-real-user-core-web-vitals-exeriences.png

Analytics

Google Analytics scores highly unsurprisingly at 77% of mobile ecommerce sites, but what is

perhaps more surprising is that Google Analytics Enhanced Ecommerce is only used by 22% of

ecommerce sites, reflecting either an opportunity for 55% of sites to get more out of their

Google Analytics, or perhaps reflecting another limitation of our methodology which is limited

to home pages as some sites may only load this on checkout funnels.

HotJar is another tool often used by ecommerce sites to analyze and improve usage of the site,

and so conversions but usage is very low at 6% of mobile sites.

Tag Managers

Google Tag Manager remains the most used tag manager on ecommerce sites followed by

Adobe Tag Manager. We don’t expect this to change due to free nature of Google Tag Manager.

In August 2020, Google also launched server side tagging639 in Google Tag Manager.

Implementing server-side tagging will incur a small cost for ecommerce sites but it can help

sites eliminate third-party overhead and thus improving metrics like Total Blocking Time (TBT),

First Input Delay (FID) and Time to Interactive (TTI). Simon Ahava has lot of useful information

on his blog640 which we recommend to readers.

Figure 16.21. Top analytics solutions on ecommerce sites

639. https://developers.google.com/tag-manager/serverside
640. https://www.simoahava.com/analytics/server-side-tagging-google-tag-manager/

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 455

https://almanac.httparchive.org/static/images/2020/ecommerce/top-analytics-solutions-on-ecommerce-sites.png
https://almanac.httparchive.org/static/images/2020/ecommerce/top-analytics-solutions-on-ecommerce-sites.png
https://developers.google.com/tag-manager/serverside
https://www.simoahava.com/analytics/server-side-tagging-google-tag-manager/
https://www.simoahava.com/analytics/server-side-tagging-google-tag-manager/

Adoption of server-side tagging will depend on third parties to provide server side templates to

make the migration easier. These are early days for GTM server-side tagging and at the time of

writing this chapter, we didn’t find any server-side templates in publicly available community

gallery641. But if the adoption increases, it will be interesting to compare the performance scores

of sites using client-side vs server-side tagging. Other vendors like Adobe, Signal also offer

similar server-side solutions which sites should consider adopting to help with performance.

Note: Above analysis is based on Wappalyzer detection which may differ from analysis done using

Third Party Web dataset which is used for Third parties chapter.

Consent Management Platforms

This year’s Privacy chapter covered the adoption of Consent Management Platforms across all

types of websites. When we compare adoption on ecommerce sites versus all sites, we see a

slightly higher adoption both across mobile (4.2% on ecommerce sites Vs 4.0% on all sites) and

desktop (4.6% on ecommerce sites Vs 4.4% on all sites).

Figure 16.22. Tag manager usage on ecommerce sites.

Tag Manager Desktop Mobile

Google Tag Manager 48.45% 46.56%

Adobe DTM 0.41% 0.38%

Ensighten 0.13% 0.13%

TagCommander 0.08% 0.07%

Signal 0.05% 0.03%

Matomo Tag Manager 0.02% 0.02%

Yahoo! Tag Manager 0.00% 0.00%

Total 49.14% 47.20%

641. https://tagmanager.google.com/gallery/#/?context=server&page=1

Part III Chapter 16 : Ecommerce

456 2020 Web Almanac by HTTP Archive

https://tagmanager.google.com/gallery/#/?context=server&page=1
https://tagmanager.google.com/gallery/#/?context=server&page=1

In terms of share of various CMPs, the trend for ecommerce websites was similar as all

websites covered in Privacy chapter. In future editions of the Web Almanac, we expect this

adoption to increase as more and more countries come up with their own regulations. Also,

“Content Management Platform” was recently added to Wappalyzer by the Web Almanac

team. Though the team added most popular CMPs, with time we expect additional CMPs to be

added and hence expected increase in adoption stats.

Accessibility solutions

In this year’s Accessibility Chapter introduction, the Web Almanac team talks about dangers of

implementing quick fix accessibility solutions and points to Lainey Feingold’s brilliant article,

Honor the ADA: Avoid Web Accessibility Quick Fix Overlays642.

Though not recommended, we looked at usage of such solutions across ecommerce websites

and found that 0.47% of mobile websites and 0.54% of desktop websites have deployed such

solutions.

In the current methodology adopted for this chapter, there is no easy way for us to look at if any

top ecommerce websites have gone this quick fix route instead of trying to achieve accessibility

by design. It will be possible to find out this in future by combining HTTP Archive data with

publications like Top 500 UK sites by International retailing or similar publications.

Figure 16.23. Consent Management Platform adoption

642. https://www.lflegal.com/2020/08/quick-fix/

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 457

https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-consent-management-platform-adoption.png
https://almanac.httparchive.org/static/images/2020/ecommerce/ecommerce-consent-management-platform-adoption.png
https://www.lflegal.com/2020/08/quick-fix/

AMP adoption

In the SEO chapter we covered stats on AMP usage across all websites. In this chapter, we look

at AMP adoption on ecommerce websites. AMP adoption remains low across ecommerce

websites (0.61% on mobile and 0.66% on desktop) as AMP still doesn’t support all ecommerce

use cases. Also, in this analysis, we rely on detection using Wappalyzer and this may result in

double counting of ecommerce sites where AMP is implemented as a different domain using

<link rel="amphtml"...> element. This shouldn’t be an issue while looking at

percentages as such domains are also counted twice while coming up with total ecommerce

websites.

We also considered looking at CRUX performance of ecommerce websites with their AMP

counterpart (where implemented on a different domain using amphtml attribute). Such an

analysis will help us identify if there was a significant difference in performance of AMP

domain, but due to low adoption rates of AMP across ecommerce websites, such an analysis

may not give any meaningful results and we deferred the analysis for future years (if adoption

rates increase).

Web Push notifications

Marketeers love push notifications but as per author’s experience that awareness among

marketeers about web push notifications is still very low in spite of Push API643 being introduced

in 2015 for the first time in Chrome. We tried to look at adoption of web push notifications

(which are possible using technologies like service workers) on ecommerce sites. As part of

CRUX notifications permission data, we have access to metrics like push acceptance rates, push

prompts dismissal rates. Please refer this Google article644 for more details on how this data is

captured and what metrics are available.

In our analysis, we found that only 0.68% of desktop ecommerce sites and 0.69% of mobile

ecommerce sites use web push notifications. When it comes to push notifications, it’s important

that customers find push notifications useful. Key to this is to request permission at right time

in customer journey and not to bombard users with irrelevant notifications. To address the

customer fatigue with push notifications, Chrome will automatically enroll sites with very low

Figure 16.24. AMP usage on ecommerce sites (mobile).

0.61%

643. https://developers.google.com/web/updates/2015/03/push-notifications-on-the-open-web
644. https://developers.google.com/web/updates/2020/02/notification-permission-data-in-crux

Part III Chapter 16 : Ecommerce

458 2020 Web Almanac by HTTP Archive

https://developers.google.com/web/updates/2015/03/push-notifications-on-the-open-web
https://developers.google.com/web/updates/2020/02/notification-permission-data-in-crux

acceptance rates into quieter notifications UI645 (though exact threshold is not yet defined).

Standard UI will be restored for the site when acceptance rates improve within the control

group.

PJ Mclachlan (Product Manager, Google) has talked about aiming for at least 50% acceptance

rates646 to be in safe territory to avoid falling into quieter notifications UI and aiming for 80%

and above acceptance rate. The median notifications acceptance rates for an ecommerce

website is 13.6% on mobile and 13.2% on desktop. At median level, these acceptance rates have

a lot to be desired. Even at 90th percentile level, numbers don’t look very good (36.9% for

mobile and 36.8% for desktop). Ecommerce sites can refer to this talk for recommended

patterns to make sure push acceptance rates remain healthy647 and they are not getting caught

off guard by upcoming abusive notifications changes.

Future analysis opportunities

It will also be interesting to look at adoption of native apps by ecommerce sites by tapping into

native app association standards like .well-known/assetlinks.json on play store and

.well-known/apple-app-site-association on app store. Google has made easy for

PWAs to achieve this using Trusted Web Activity but currently there are no public stats

Figure 16.25. Web Push Notification acceptance rates

645. https://blog.chromium.org/2020/05/protecting-chrome-users-from-abusive.html
646. https://www.youtube.com/watch?v=J_t8c9HOjBc
647. https://www.youtube.com/watch?v=riKmez3sHaM

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 459

https://blog.chromium.org/2020/05/protecting-chrome-users-from-abusive.html
https://www.youtube.com/watch?v=J_t8c9HOjBc
https://www.youtube.com/watch?v=J_t8c9HOjBc
https://www.youtube.com/watch?v=riKmez3sHaM
https://www.youtube.com/watch?v=riKmez3sHaM
https://almanac.httparchive.org/static/images/2020/ecommerce/web-push-notification-acceptance-rates.png
https://almanac.httparchive.org/static/images/2020/ecommerce/web-push-notification-acceptance-rates.png

available on how many sites may be using this technique to submit their PWAs in play store.

This year’s SEO chapter includes analysis of websites using hreflang and lang attributes,

and content-language HTTP header. This combined with Wappalyzer detection of cross-

border commerce solutions like Global-e, Flow, Borderfree can provide opportunity to just look

at Cross border commerce aspects of the ecommerce websites. Currently Wappalyzer doesn’t

have a separate category for ’Cross-border commerce’ and hence this type of analysis is not

possible unless we build a repository of such solutions ourselves.

Wappalyzer also provides detection of payment solutions (Apple Pay / PayPal / ShopPay etc.)

but based on the types of implementation and solution, it’s not always possible to detect this

just by looking at homepage but for solutions where detection can be done by just looking at

homepage, such an analysis can be useful to look at year of year trends.

Conclusion

Covid-19 massively accelerated the growth of ecommerce in 2020 and lot of smaller players

had to establish online presence quickly and had to find ways to continue trading during

lockdowns. Platforms like WooCommerce/Shopify/Wix/BigCommerce played very important

role in bringing more and more small businesses online. Covid-19 also saw launch of D2C

(direct to consumer) offerings by brand and this is expected to increase in future. Full impact of

Covid-19 may not be visible in this year’s Web Almanac as these new businesses need to cross

certain traffic threshold first in order to become part of CRUX dataset which we use for our

analysis. Due to this reason, we may see continued growth in next year’s analysis as well.

Improving core web vitals score will be a priority for ecommerce businesses due to changes

announced by Google and marketing teams using Web Push Notifications should keep an eye

on their notifications stats using CRUX to not get caught by upcoming abusing notifications

changes. Tag Managers still seem to cause a lot of friction between marketing and engineering

teams and solutions like Google Tag Manager server side tagging will make some inroads but we

don’t expect a lot to change in 2021 and this will be more like 3-5 years journey but community

need to ask their respective third parties to provide compatible solutions to further evolve this

ecosystem.

While remembering the limitation that we are looking only homepage data for this analysis, we

would like to hear from community what else we should cover in next year’s analysis. We have

covered some possibilities of further analysis in section above and any feedback is greatly

appreciated648.

648. https://discuss.httparchive.org/t/2052

Part III Chapter 16 : Ecommerce

460 2020 Web Almanac by HTTP Archive

https://discuss.httparchive.org/t/2052
https://discuss.httparchive.org/t/2052

Authors

Rockey Nebhwani

@rnebhwani rockeynebhwani rockeynebhwani

Rockey Nebhwani is an independent consultant who has worked in retail and

ecommerce since 2001 and has extensive experience in the industry working with

retailers like Amazon, Wal-Mart, Tesco, M&S, Safeway etc. across US and UK.

Rockey is an occasional speaker at ecommerce events and also tweets at

@rnebhwani.

Jason Haralson

jrharalson

Part III Chapter 16 : Ecommerce

2020 Web Almanac by HTTP Archive 461

https://twitter.com/rnebhwani
https://github.com/rockeynebhwani
https://www.linkedin.com/in/rockeynebhwani/
https://twitter.com/rnebhwani
https://github.com/jrharalson

462 2020 Web Almanac by HTTP Archive

Part III Chapter 17

Jamstack

Written by Ahmad Awais
Reviewed by Maedah Batool and Nicolas Goutay
Analyzed by Artem Denysov and Brian Rinaldi
Edited by Barry Pollard

Introduction

Jamstack is a relatively new concept of an architecture designed to make the web faster, more

secure, and easier to scale. It builds on many of the tools and workflows which developers love,

and which maximizes productivity.

The core principles of Jamstack are pre-rendering your site pages and decoupling the frontend

from the backend. It relies on the idea of delivering the frontend content hosted separately on a

CDN provider that uses APIs (for example, a headless CMS) as its backend if any.

The HTTP Archive649 crawls millions of pages650 every month and runs them through a private

instance of WebPageTest651 to store key information on every page crawled. You can learn more

about this in our methodology page. In the context of Jamstack, HTTP Archive provides

extensive information on the usage of the frameworks and CDNs for the entire web. This

649. https://httparchive.org/
650. https://httparchive.org/reports/state-of-the-web#numUrls
651. https://webpagetest.org/

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 463

https://httparchive.org/
https://httparchive.org/reports/state-of-the-web#numUrls
https://webpagetest.org/

chapter consolidates and analyzes many of these trends.

The goals of this chapter are to estimate and analyze the growth of the Jamstack sites, the

performance of popular Jamstack frameworks, as well as an analysis of real user experience

using the Core Web Vitals metrics.

It should be noted that our analysis is limited by those Jamstacks that make themselves easily

identifiable using Wappalyzer. This means our data does not include some popular Jamstacks like

Eleventy652 which make a deliberate choice to not make themselves identifiable653. While we would

ideally include all Jamstacks, we believe there is still plenty of value in analyzing the significant data

we do have.

Adoption of Jamstack

Our analysis throughout this work looks at desktop and mobile websites. The vast majority of

URLs we looked at are in both datasets, but some URLs are only accessed by desktop or mobile

devices. This can cause small divergences in the data, and we thus look at desktop and mobile

results separately.

Approximately 0.9% of web pages are powered by Jamstack and breaks down to 0.91% on

Figure 17.1. Jamstack adoption trend.

652. https://github.com/11ty/eleventy/
653. https://twitter.com/eleven_ty/status/1334225624110608387?s=20

Part III Chapter 17 : Jamstack

464 2020 Web Almanac by HTTP Archive

https://github.com/11ty/eleventy/
https://twitter.com/eleven_ty/status/1334225624110608387?s=20
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-adoption.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-adoption.png

desktop, up from 0.50% in 2019, and 0.84% on mobile, up from 0.34% in 2019.

The increase in desktop web pages powered by a Jamstack framework is 85% from last year. On

mobile, this increase is almost two and a half times, at 147%. This is a significant growth from

2019, especially for mobile pages. We believe this is a sign of the steady growth of the Jamstack

community.

Jamstack frameworks

Our analysis counted 14 separate Jamstack frameworks. Only six frameworks had more than

1% share: Next.js, Nuxt.js Gatsby, Hugo, Jekyll are the top contenders for the Jamstack market

share.

In 2020, most of the Jamstack market share seems distributed between the top five

frameworks. Interestingly, Next.js has 58.65% usage share. This is over three times the share of

the next most popular Jamstack framework, Nuxt.js at 18.6%!

Figure 17.2. Jamstack adoption statistics.

Year Desktop Mobile

2019 0.50% 0.34%

2020 0.91% 0.85%

% Change 85% 147%

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 465

Framework adoption changes

Looking at the year on year growth, we see that Next.js has increased its lead over its

competitors in the last year:

Figure 17.3. Jamstack adoption share pie chart 2020.

Part III Chapter 17 : Jamstack

466 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-adoption-share-2020-pie.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-adoption-share-2020-pie.png

And concentrating on the top 5 Jamstacks further shows Next.js’s lead:

Figure 17.4. Relative % adoption of Jamstack frameworks

Jamstack 2019 2020 % change

Next.js 47.89% 58.59% 22%

Nuxt.js 20.30% 18.59% -8%

Gatsby 12.45% 11.99% -4%

Hugo 9.50% 5.30% -44%

Jekyll 6.22% 3.43% -45%

Hexo 1.16% 0.64% -45%

Docusaurus 1.26% 0.60% -52%

Gridsome 0.19% 0.46% 140%

Octopress 0.61% 0.20% -68%

Pelican 0.31% 0.11% -64%

VuePress 0.05%

Phenomic 0.10% 0.02% -77%

Saber 0.01%

Cecil 0.01% -100%

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 467

It’s worth noting here the fact that Next.js and Nuxt.js websites include a mix of both Static Site

Generated (SSG) pages and Server-Side Rendered (SSR) pages. This is due to the lack of our

ability to measure them separately. This means that the analysis may include sites that are

mostly or partially server-rendered, meaning they do not fall under the traditional definition of

a Jamstack site. Nonetheless, it appears that this hybrid nature of Next.js gives it a competitive

advantage over other frameworks hence making it more popular.

Environmental impact

This year we have sought to better understand the impact of Jamstack sites on the

environment. The information and communications technology (ICT) industry accounts for 2%

of global carbon emissions654, and data centers specifically account for 0.3% of global carbon

emissions. This puts the ICT industry’s carbon footprint equivalent to the aviation industry’s

emissions from fuel.

Jamstack is often credited for being mindful of performance. In the next section, we look into

the carbon emissions of Jamstack websites.

Figure 17.5. Jamstack adoption share year on year.

654. https://www.nature.com/articles/d41586-018-06610-y

Part III Chapter 17 : Jamstack

468 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-adoption-share-yoy.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-adoption-share-yoy.png
https://www.nature.com/articles/d41586-018-06610-y
https://www.nature.com/articles/d41586-018-06610-y

Page weight

Our research looked at the average Jamstack page weight in KB and mapped this to CO2

emissions using logic from the Carbon API655. This generated the following results, split by

desktop and mobile:

We found that the median Jamstack page load resulted in the transfer of 1.82 MB of various

assets on desktop, and 1.54 MB on mobile, and thus the emission of 1.2 grams and 1.0 grams of

CO2 respectively. The most efficient percentile of Jamstack web pages result in the generation

of at least one third less CO2 than the median, whilst the least efficient percentile of Jamstack

web pages goes the other way, generating around four times more.

Page weights are important here. The average desktop Jamstack web page loads 1.5 MB of

video, image, script, font, CSS, and audio data. 10% of pages, however, load over 4 MB of this

data. On mobile devices, the average web page loads 0.28 MB fewer than on desktop, a fact

consistent across all percentiles.

Image formats

Popular image formats are PNG, JPG, GIF, SVG, WebP, and ICO. Of these, WebP is the most

Figure 17.6. Carbon Emissions per Jamstack page view.

655. https://gitlab.com/wholegrain/carbon-api-2-0/-/blob/master/includes/carbonapi.php#L342

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 469

https://gitlab.com/wholegrain/carbon-api-2-0/-/blob/master/includes/carbonapi.php#L342
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-carbon-emissions-per-jamstack-page-view.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-carbon-emissions-per-jamstack-page-view.png
https://developers.google.com/speed/webp/

efficient in most situations656, with WebP lossless images 26% smaller657 than equivalent PNGs

and 25-34% smaller658 than comparable JPGs. We see, however, that WebP is the second least

popular image format across all Jamstack pages, where PNG is the most popular both for

mobile and desktop. Only slightly less popular is JPG whereas GIF is almost 20% of all the

images used on Jamstack sites. An interesting discovery is SVG which is almost twice as popular

on mobile sites as desktop sites.

Third-party bytes

Jamstack sites, like most websites, often load third-party resources, such as external images,

videos, scripts, or stylesheets:

Figure 17.7. Popularity of image formats.

656. https://developers.google.com/speed/webp/
657. https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study#results
658. https://developers.google.com/speed/webp/docs/webp_study

Part III Chapter 17 : Jamstack

470 2020 Web Almanac by HTTP Archive

https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study#results
https://developers.google.com/speed/webp/docs/webp_study
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-popularity-of-image-formats.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-popularity-of-image-formats.png

We find that the median desktop Jamstack page has 26 third-party requests with 470 KB of

content, with the mobile equivalent generating 38 requests with 642 KB of content. Whereas

10% of the desktop sites have 114 requests with 2.88MB of content which is only superseded

by 148 requests on mobile with 3MB of content.

User experience

Jamstack websites are often said to offer a good user experience. It’s what the entire concept of

separating the frontend from the backend and hosting it on the CDN edge is all about. We aim

to shed light on real-world user experience when using Jamstack websites using the recently

launched Core Web Vitals659.

The Core Web Vitals are three important factors which can shed light on our understanding of

how users are experiencing Jamstack pages in the wild:

• Largest Contentful Paint (LCP)

• First Input Delay (FID)

• Cumulative Layout Shift (CLS)

Figure 17.8. Third party bytes.

659. https://web.dev/learn-web-vitals/

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 471

https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-third-party-bytes.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-third-party-bytes.png
https://web.dev/learn-web-vitals/

These metrics aim to cover the core elements which are indicative of a great web user

experience. Let’s we take a look at the real-world Core Web Vitals statistics of the top-five

Jamstack frameworks.

Largest Contentful Paint

Largest Contentful Paint (LCP) measures the point when the page’s main content has likely

loaded and thus the page is useful to the user. It does this by measuring the render time of the

largest image or text block visible within the viewport.

This is different from First Contentful Paint (FCP), which measures from page load until content

such as text or an image is first displayed. LCP is regarded as a good proxy for measuring when

the main content of a page is loaded.

A “good” LCP is regarded as under 2.5 seconds. Jekyll and Hugo have impressive LCP scores all

above 50% with Jekyll and Hugo on desktop at 91% and 85% on desktop respectively. Gatsby,

Next.js and Nuxt.js sites lagged — scoring 52%, 38%, and 31% respectively on desktop, and

36%, 23%, and 18% on mobile.

This might be attributed to the fact that most of the sites built with Gatsby, Next.js and Nuxt.js

have complex layouts and high page weights, in comparison with Hugo and Jekyll which are

primarily used to produce static content sites with fewer or no dynamic parts. For what it’s

worth, you don’t have to use React, VueJS or any other JavaScript framework with Hugo or

Figure 17.9. Real-user Largest Contentful Paint experiences.

Part III Chapter 17 : Jamstack

472 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-real-user-largest-contentful-paint-experiences.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-real-user-largest-contentful-paint-experiences.png

Jekyll.

As we explored in the section above, high page weights can have a possible impact on the

environment. However, this also affects LCP performance, which is either very good or

generally bad depending on the Jamstack framework. This can have an impact on the real user

experience as well.

First Input Delay

First Input Delay (FID) measures the time from when a user first interacts with your site (i.e.

when they click a link, tap on a button, or use a custom, JavaScript-powered control) to the time

when the browser is actually able to respond to that interaction.

A “fast” FID from a user’s perspective would provide immediate feedback from their actions on

a site rather than a stalled experience. This delay is a pain point and could correlate with

interference from other aspects of the site loading when the user tries to interact with the site.

FID is extremely fast for the average Jamstack website on desktop – most popular frameworks

score 100% – and above 80% on mobile.

There is a small margin of difference between the resources shipped to desktop and mobile

versions of a website. The FID scores are generally very good here, but it is interesting this does

not translate to similar LCP scores. As suggested, the weight of individual pages on Jamstack

Figure 17.10. Real-user First Input Delay experiences.

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 473

https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-real-user-first-input-delay-experiences.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-real-user-first-input-delay-experiences.png

sites in addition to mobile connection quality could play a role in the performance gaps that we

see here.

Cumulative Layout Shift

Cumulative Layout Shift (CLS) measures the instability of content on a web page within the first

500ms of user input. CLS measures any layout changes which happen after user input. This is

important on mobile in particular, where the user will tap where they want to take an action –

such as a search bar – only for the location to move as additional images, ads, or similar load.

A score of 0.1 or below is good, over 0.25 is poor, and anything in between needs improvement.

The top-five Jamstack frameworks do OK here. About 65% of web pages loaded by top-five

Jamstack frameworks have a “good” CLS experience, with this figure rising to 82% on mobile.

Across all the average desktop and mobile score is 65%. Next.js and Nuxt.js are both under 50%

and have work to do here. Educating developers and documenting how to avoid bad CLS scores

can go a long way.

Conclusion

Jamstack, both as a concept and a stack, has picked up importance in the last year. Stats suggest

Figure 17.11. Real-user Cumulative Layout Shift experiences.

Part III Chapter 17 : Jamstack

474 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-real-user-cumulative-layout-shift-experiences.png
https://almanac.httparchive.org/static/images/2020/jamstack/jamstack-real-user-cumulative-layout-shift-experiences.png

almost twice as many Jamstack sites exist now than in 2019. Developers enjoy a better

development experience by separating the frontend from the backend (a headless CMS,

serverless functions, or third-party services). But what about the real-user experience of

browsing Jamstack sites?

We’ve reviewed the adoption of Jamstack, user experience of websites created by these

Jamstack frameworks, and for the first time looked at the impact of Jamstack on the

environment. We have answered many questions here but leave further questions unanswered.

There are frameworks like Eleventy which we weren’t able to measure or analyze since there is

no pattern available to determine the usage of such frameworks, which has an impact on the

data presented here. Next.js dominates usage and offers both Static Site Generation and

Server-Side Rendering, separating the two in this data is nearly impossible since it also offers

incremental Static Generation. Further research building on this chapter will be gratefully

received.

Moreover, we have highlighted some areas which need attention from the Jamstack

community. We hope there will be progress to share in the 2021 report. Different Jamstack

frameworks can start to document how to improve real user experience by looking at Core

Web Vitals.

Vercel, one of the CDNs meant to host Jamstack sites, has built an analytics offering called Real

User Experience Score660. While other performance measuring tools like Lighthouse661 estimate

your user’s experience by running a simulation in a lab, Vercel’s Real Experience Score is

calculated using real data points collected from the devices of the actual users of your

application.

It is probably worth noting here that Vercel created and maintains Next.js, since Next.js had low

LCP scores. This new offering could mean we can hope to see a marked improvement in those

scores next year. This would be extremely helpful information for users and developers alike.

Jamstack frameworks are improving the developer experience of building sites. Let’s work

towards continued progress for improving the real-user experience of browsing Jamstack sites.

660. https://vercel.com/docs/analytics#real-experience-score
661. https://web.dev/measure/

Part III Chapter 17 : Jamstack

2020 Web Almanac by HTTP Archive 475

https://vercel.com/docs/analytics#real-experience-score
https://vercel.com/docs/analytics#real-experience-score
https://web.dev/measure/

Author

Ahmad Awais

@MrAhmadAwais ahmadawais https://AhmadAwais.com

Ahmad Awais is an award-winning open-source engineer, Google Developers

Expert Dev Advocate, Node.js Community Committee Outreach Lead, WordPress

Core Dev, and VP of Engineering DevRel at WGA. He has authored various open-

source software tools used by millions of developers worldwide. Like his Shades of

Purple662 code-theme or projects like the corona-cli663. Awais loves to teach. Over

20,000 developers are learning from his courses664 i.e. Node CLI665, VSCode.pro666,

and Next.js Beginner667. Awais received FOSS community leadership recognition as

one of the 12 featured GitHub Stars668. He is a member of the Smashing Magazine

Experts Panel; featured & published author at CSS-Tricks, Tuts+, Scotch.io,

SitePoint. You can mostly find him on Twitter @MrAhmadAwais where he tweets

his #OneDevMinute669 developer tips.

662. https://shadesofpurple.pro/more
663. https://github.com/AhmadAwais/corona-cli
664. https://AhmadAwais.com/courses/
665. https://nodecli.com/
666. https://vscode.pro/
667. https://nextjsbeginner.com/
668. https://ahmadawais.com/github-stars/
669. https://awais.dev/odmt

Part III Chapter 17 : Jamstack

476 2020 Web Almanac by HTTP Archive

https://twitter.com/MrAhmadAwais
https://github.com/ahmadawais
https://ahmadawais.com/
https://shadesofpurple.pro/more
https://shadesofpurple.pro/more
https://github.com/AhmadAwais/corona-cli
https://ahmadawais.com/courses/
https://nodecli.com/
https://vscode.pro/
https://nextjsbeginner.com/
https://ahmadawais.com/github-stars/
https://twitter.com/MrAhmadAwais/
https://awais.dev/odmt

Part IV Chapter 18

Page Weight

Written by Henri Helvetica
Reviewed and analyzed by Paul Calvano
Edited by Barry Pollard

Introduction

Page weight is one of the simpler metrics available. Much like stepping on a human scale to get

a sense of your personal weight (well, mass really, but you get it), loading a page will provide a

sense of the number and size of resources collected and requested. But as the web and web

pages have matured and grown, so have associated metrics — such as page weight. It can affect

a page’s performance much like personal weight (mass) can do the same. This chapter will take a

deeper dive and peel back the layers of web pages and see what it is that constitutes a page’s

weight at the possible detriment of the end user: you, I, us.

#PageWeightStillMatters

#PageWeightStillMatters would almost imply that it didn’t or ever mattered. It might not have

mattered when text based Craigslist launched. But 25 years ago when it was founded, Mosaic

1.0 also launched the same year, and Waterfalls by TLC was a top hit. The web matured as did

Part IV Chapter 18 : Page Weight

2020 Web Almanac by HTTP Archive 477

resources. It was just a few years back when the twitterverse was tied up discussing how the

average size of web pages now equaled the size of the original doom670. Many of us mused about

what the size the page could become in time, including our very own Tammy Everts671, but the

reality is startling. A page sits @ ~4 MB and 3.7 MB, desktop/mobile respectively, at the 75th

percentile, and a shocking 7.4 MB and 6.7 MB at the 90th percentile. There are multitudes of

implications in having such heavy pages, like the likelihood of poor user experience due to

unreliable networks. Today, despite lessons learned a decade ago672, we are experiencing

variations of the same challenges: despite having slightly better networks, we are working with

much larger resources.

Bandwidth

In 2016, when asked to explain why an Australian tourist I’d talked to was delighted with UK

internet, Google’s Ilya Grigorik had two words673: physics damn it! (whoops, that’s three).

The point was simple: though you might benefit from increased bandwidth, the laws of physics

still prevail. An Australian is unable to escape laws of latency. In the best case scenario, at home

in Sydney, this Australian was experiencing enough latency that his internet was at times

perceived as unresponsive.

Now, imagine that the same Australian, knowing that at the 75th percentile, his page is making

about 108 requests (more on that later), and we still have no idea of the network protocol, the

resources being requested, the level of compression or optimization. You can pursue the HTTP/

2 and Compression chapters for more information on the life of a modern request.

Assets

In 25 years of modern browsing, the assets and resources have mostly not changed, other than

the amount. The HTTP archive modus operandi is “how the web was built”, and that was mostly

done with HTML, CSS, JavaScript and finally images.

Prior to 1995, the web’s page weight was mostly predictable and manageable. But with RFC

1866674, which introduced HTML 2.0 which introduced inline images via the element,

page weight would make a dramatic increase—all for the good of web development (adding

images was seen as a positive experiment).

For the most part, the rule of thumb has been that images would make up the majority of page

weight. It was certainly the case and a concern when in-line images were added to the web then

670. https://www.wired.com/2016/04/average-webpage-now-size-original-doom/
671. https://speedcurve.com/blog/web-performance-page-bloat/
672. https://blog.chriszacharias.com/page-weight-matters
673. https://youtu.be/x4S38hpgxuM?t=89
674. https://tools.ietf.org/html/rfc1866

Part IV Chapter 18 : Page Weight

478 2020 Web Almanac by HTTP Archive

https://www.wired.com/2016/04/average-webpage-now-size-original-doom/
https://speedcurve.com/blog/web-performance-page-bloat/
https://blog.chriszacharias.com/page-weight-matters
https://youtu.be/x4S38hpgxuM?t=89
https://tools.ietf.org/html/rfc1866
https://tools.ietf.org/html/rfc1866

and remains the case today. In a separate scenario, as image data will be the greatest source of

page weight, it will also be the greatest source of page weight savings (again, more on that

later). This will be achieved from ensuring that the images are sized properly, but also making

sure that the images are at the optimization sweet spot - finding the best balance of quality and

file size.

Although JavaScript is on average the second most abundant resource on a page, we tend to

have more opportunities in working with that file type: from bundling, compression and

minification to name a few.

Intricate and interactive

The web’s journey from the plain, near pedagogical platform, to the innovative, intricate and

highly interactive apps that have become the norm, the rudimentary page weight metric hid a

bigger story: a ratatouille of resources, each affecting modern metrics, in turn affecting user

experience.

Whenever we talk about interactivity, we are talking almost exclusively about JavaScript. Now,

though we are not here to discuss interactivity in any depth, we know there are metrics which

are focused and dependent on JavaScript content and execution. So the weightier the

JavaScript, the likelier it is to have a greater impact on interactivity metrics (time to interactive,

total blocking time). We have the JavaScript chapter that dives a pinch more.

Analysis

As we post and parse the statistical results, the data is often based on transfer sizes. However,

we are employing decompressed sizes in this analysis when possible.

Page weight

Let’s look at the classic page weight, on both desktop and mobile. The deltas are mostly due to a

few less resources transferred on mobile, a likely pinch of media management, but you can see

below that at the median, the differences are not that significant between the two clients.

Part IV Chapter 18 : Page Weight

2020 Web Almanac by HTTP Archive 479

We can however surmise from this the following: we are closing in on 7 MB of page weight on

mobile and 7.5 MB on desktop at the 90th percentile. The data is following an age old trend:

growth in page weight is on the upward trajectory yet again, from the previous year.

Figure 18.1. Distribution of total bytes per page.

Figure 18.2. Median bytes per page by content type.

Part IV Chapter 18 : Page Weight

480 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution.png
https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution.png
https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution-content-type.png
https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution-content-type.png

Popping the hood, we can see how things look at the median and average for each resource.

One thing again remains: images are the dominant resource and JavaScript is the second most

abundant, though a far second.

Requests

We have an old adage: the quickest request is the one never made. Dare we then say: the

smallest resource is one never requested. At the request level, much is the same. The weightiest

resources are making the most requests.

The request distribution shows that the difference between desktop and mobile is not so

significant, with desktop leading the way. Something worth noting: the median request on

desktop at this time is the same as last year675 (74), yet the page weight has ticked up (+122kb). A

simple observation, but one which confirms the trajectory we’ve seen over the years.

Figure 18.3. Distribution of requests per page.

675. https://almanac.httparchive.org/en/2019/page-weight#page-requests

Part IV Chapter 18 : Page Weight

2020 Web Almanac by HTTP Archive 481

https://almanac.httparchive.org/static/images/2020/page-weight/requests-distribution.png
https://almanac.httparchive.org/static/images/2020/page-weight/requests-distribution.png
https://almanac.httparchive.org/en/2019/page-weight#page-requests

Images again make up the largest number of requests, though JavaScript is closing in as the gap

has narrowed slightly in the last year.

Figure 18.4. Median number of requests per mobile page by content type.

Part IV Chapter 18 : Page Weight

482 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/page-weight/requests-content-type.png
https://almanac.httparchive.org/static/images/2020/page-weight/requests-content-type.png

File formats

We know that images are a great source of page weight. This graphic above shows us the top

sources of image weight and the weight distribution. Top 3: JPG, PNG and WebP. So not only is

the JPG the most popular image format, it also tends to be the largest by size as well - even

larger than a lossless format like the PNG. But as we noted last year676, that has to do with the

predominant use case for the PNG, which seems to be icons and logos.

Figure 18.5. Distribution of image sizes by format.

676. https://almanac.httparchive.org/en/2019/page-weight#file-size-by-image-format-for-images--1024-bytes

Part IV Chapter 18 : Page Weight

2020 Web Almanac by HTTP Archive 483

https://almanac.httparchive.org/static/images/2020/page-weight/response-distribution-format.png
https://almanac.httparchive.org/static/images/2020/page-weight/response-distribution-format.png
https://almanac.httparchive.org/en/2019/page-weight#file-size-by-image-format-for-images--1024-bytes

Image bytes

Looking at total image bytes, we see the same trend upwards, as noted previously on overall

page weight.

COVID-19

2020 has been the most demanding of any year in internet history. This is based on self-

reporting by telecom companies677 all over the globe. YouTube, Netflix, gaming console

manufacturers and many more were asked to throttle their networks678 due to anticipated

bandwidth demands of COVID-19 and the stay at home orders. There are now new suspects

creating demands on the networks: we are now working from home, teleconferencing from

home, and schooling from home as well. In the midst of this crisis some government

organizations have moved forward to optimize all aspects of the site and redesign or update.

Two such examples of being ca.gov679 (link680) and gov.uk681. In these times, COVID-19 has certified

the internet as an essential service and being able to access crucial and life-saving information,

must be as friction free as possible, which includes a manageable page weight via discipline

delivery of data.

Figure 18.6. Distribution of image response sizes per page.

677. https://www2.telegeography.com/network-impact
678. https://www.bloomberg.com/news/articles/2020-03-19/netflix-to-cut-streaming-traffic-in-europe-to-relieve-networks
679. https://ca.gov
680. https://news.alpha.ca.gov/prioritizing-users-in-a-crisis-building-covid19-ca-gov/
681. https://gov.uk

Part IV Chapter 18 : Page Weight

484 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/page-weight/response-distribution-images.png
https://almanac.httparchive.org/static/images/2020/page-weight/response-distribution-images.png
https://www2.telegeography.com/network-impact
https://www.bloomberg.com/news/articles/2020-03-19/netflix-to-cut-streaming-traffic-in-europe-to-relieve-networks
https://ca.gov/
https://news.alpha.ca.gov/prioritizing-users-in-a-crisis-building-covid19-ca-gov/
https://gov.uk/

If we have been married to the internet, COVID-19 has forced us to renew our vows. Assuring

that content is delivered as efficiently as possible over the internet, page weight must be kept

at the forefront at all times.

A not so distant future

We have watched for 25 years page weight grow steadily. It might have been one of the

greatest stock investments — had it been one. But this is the web and, we are trying to manage

data, requests, file size and ultimately page weight.

We have just combed over data, seeing how images are the greatest source of weight. This

means, it will also be our greatest source of savings. 2020 was a pivotal year, a possible

inflection point for HTTP Archive tracking of web data. 2020 marked the year the modern

format WebP was finally adopted by Safari, making this format finally supported by all

browsers across the board. This means that the format could comfortably be used with little to

no fall back. The most important point? The potential for significant page weight savings is

there — at a possible 30%.

Even more interesting is the idea of a more modern format: avif. This format has burst onto the

scene with enough support today for approximately 70% browser market share, creating a

scenario for small image file sizes - even smaller than WebP. And lastly, and possibly most

distant: media queries level 5, prefers-reduced-data . Though in very early draft, this

media feature will be used to detect if a user may have a preference for variant resources in

data sensitive situations and has already started to become available in browsers682.

Looking at the crystal ball, the third installment of the Web Almanac and the Page Weight

chapter could have a much different look in 2021. The big technological and engineering

investments into images, might finally provide the diminishing returns we have been looking for.

Conclusion

It’s of no surprise that web pages have generally kept growing. We have been feeding more

resources down the wire to create richer experiences, more engaging interactivity, more

stunning visuals through more powerful imagery. We have created these applications at the

cost of data overages and user experiences. But as we move forward and keep pushing the web

to places we had never anticipated, we are also making additional advances in engineering, as

mentioned earlier. We may begin to see a drop in page weight as early as next year, as modern

raster image formats see more adoption, we start to manage JavaScript more efficiently, and

682. https://caniuse.com/mdn-css_at-rules_media_prefers-reduced-data

Part IV Chapter 18 : Page Weight

2020 Web Almanac by HTTP Archive 485

https://caniuse.com/mdn-css_at-rules_media_prefers-reduced-data

deliver the data down the wire with the discipline that users demand.

Author

Henri Helvetica

@HenriHelvetica henrihelvetica

Henri is a freelance developer who has turned his interests to a potpourri of

performance engineering with pinches of user experience. When not reading the

deluge of daily research docs and case studies, or indiscriminately auditing sites in

dev tools, Henri can be found contributing back to the community, co-

programming meetups including the Toronto Web Performance Group683 or

volunteering his time for lunch and learns at various bootcamps. Otherwise, he’s

tooling with music production software or with near certainty training and

focusing on running the fastest 5k possible.

683. https://twitter.com/towebperf

Part IV Chapter 18 : Page Weight

486 2020 Web Almanac by HTTP Archive

https://twitter.com/HenriHelvetica
https://github.com/henrihelvetica
https://twitter.com/towebperf

Part IV Chapter 19

Compression

Written by Moritz Firsching, Luca Versari, Sami Boukortt, and Jyrki Alakuijala
Reviewed by Paul Calvano
Analyzed by Abby Tsai
Edited by Shane Exterkamp

Introduction

Using HTTP compression makes a website load faster and therefore guarantees a better user

experience. Running no compression on HTTP makes for a worse user experience, may affect

the growth rate of the related web service, and affects search rankings. Effective use of

compression can reduce page weight, improves web performance, and therefore is an

important part of search engine optimization.

While lossy compression is often acceptable for images and other media types, for text we want

to use lossless compression, i.e. recover the exact text after decompression.

What type of content should we compress?

For most text-based assets, such as HTML, CSS, JavaScript, JSON, or SVG, as well as certain

non-text formats such as woff, ttf, ico, using compression is recommended.

Part IV Chapter 19 : Compression

2020 Web Almanac by HTTP Archive 487

The figure shows the percent of responses of a certain content type using either Brotli, Gzip or

no text compression. It is surprising that while all those content types would profit from

compression, the range of percentages varies widely over the different content types: only 44%

use compression for text/html against 93% for application/x-javascript .

For image-based assets text-based compression is less useful and not widely employed. The

data shows that the percent of image responses that employ either Brotli, or Gzip is very low,

less than 4%. For more info on non text-based assets, check out the Media chapter.

Figure 19.1. Compression methods for different content types

Part IV Chapter 19 : Compression

488 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/compression/compession-methods-by-content-type.png
https://almanac.httparchive.org/static/images/2020/compression/compession-methods-by-content-type.png

How to use HTTP compression?

To reduce the size of the files that we plan to serve one could first use some minimizers, e.g.

HTMLMinifier684, CSSNano685, or UglifyJS686. However bigger gains are expected from using

compression.

There are two ways of doing the compression on the server side:

• Precompressed (compress and save assets ahead of time)

• Dynamically Compressed (compress assets on-the-fly after a request is made)

Since precompression is done beforehand, we can spend more time compressing the assets. For

dynamically compressed resources, we need to choose the compression levels such that

compression takes less time than the time difference between sending an uncompressed versus

a compressed file. This difference is borne out when looking at compression level

recommendations for both methods.

Figure 19.2. Compression methods for image types on desktop.

684. https://github.com/kangax/html-minifier
685. https://github.com/ben-eb/cssnano
686. https://github.com/mishoo/UglifyJS2

Part IV Chapter 19 : Compression

2020 Web Almanac by HTTP Archive 489

https://almanac.httparchive.org/static/images/2020/compression/http-compression-methods-for-image-types.png
https://almanac.httparchive.org/static/images/2020/compression/http-compression-methods-for-image-types.png
https://github.com/kangax/html-minifier
https://github.com/ben-eb/cssnano
https://github.com/mishoo/UglifyJS2

Currently, practically all text compression is done by one of two HTTP content encodings:

Gzip687 and Brotli688. Both are widely supported by browsers: can I use Brotli689/can I use Gzip690

When you want to use Gzip, consider using Zopfli691, which generates smaller Gzip compatible

files. This should be done especially for precompressed resources, since here the greatest gains

are expected692. See this comparison between Gzip and Zopfli693 that takes into account different

compression levels for Gzip.

Many popular servers694 support dynamically and/or pre-compressed HTTP and many of them

support Brotli695.

Current state of HTTP compression

Approximately 60% of HTTP responses are delivered with no text-based compression. This

may seem like a surprising statistic, but keep in mind that it is based on all HTTP responses in

the dataset. Some content, such as images, will not benefit from these compression algorithms

and is therefore not often used, as shown in figure 19.2.

Figure 19.3. Recommended compression levels to use.

Brotli Gzip

Precompressed 11 9 or Zopfli

Dynamically compressed 5 6

Figure 19.4. Adoption of compression algorithms.

Content Encoding Desktop Mobile Combined

No text compression 60.06% 59.31% 59.67%

Gzip 30.82% 31.56% 31.21%

Brotli 9.10% 9.11% 9.11%

Other 0.02% 0.02% 0.02%

687. https://tools.ietf.org/html/rfc1952
688. https://github.com/google/brotli
689. https://caniuse.com/?search=brotli
690. https://caniuse.com/?search=gzip
691. https://en.wikipedia.org/wiki/Zopfli
692. https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
693. https://blog.codinghorror.com/zopfli-optimization-literally-free-bandwidth/
694. https://en.wikipedia.org/wiki/HTTP_compression#Servers_that_support_HTTP_compression
695. https://en.wikipedia.org/wiki/Brotli

Part IV Chapter 19 : Compression

490 2020 Web Almanac by HTTP Archive

https://tools.ietf.org/html/rfc1952
https://github.com/google/brotli
https://caniuse.com/?search=brotli
https://caniuse.com/?search=gzip
https://en.wikipedia.org/wiki/Zopfli
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://blog.codinghorror.com/zopfli-optimization-literally-free-bandwidth/
https://en.wikipedia.org/wiki/HTTP_compression#Servers_that_support_HTTP_compression
https://en.wikipedia.org/wiki/Brotli

Of the resources that are served compressed, the majority are using either Gzip (77%) or Brotli

(23%). The other compression algorithms are used infrequently.

In the graph below, the top 11 content types are displayed with box sizes representing the

relative number of responses. The color of each box represents how many of these resources

were served compressed, orange indicates a low percentage of compression while blue

indicates a high percentage of compression. Most of the media content is shaded orange, which

is expected since Gzip and Brotli would have little to no benefit for them. Most of the text

content is shaded blue to indicate that they are being compressed. However, the light blue

shading for some content types indicate that they are not compressed as consistently as the

others.

Figure 19.5. Compression algorithm for HTTP responses.

Part IV Chapter 19 : Compression

2020 Web Almanac by HTTP Archive 491

https://almanac.httparchive.org/static/images/2020/compression/compression-algorithms-for-http-responses.png
https://almanac.httparchive.org/static/images/2020/compression/compression-algorithms-for-http-responses.png

Figure 19.1 above breaks down the percentage of compression used per content type, in figure

19.6 this percentage is indicated as color. The two figures tell similar stories, non-text based

assets are rarely compressed, while text-based assets are often compressed. The rates of

compression are also similar for both mobile and desktop.

First-party vs third-party compression

In the Third Parties chapter, we learn about third parties and their impact on performance.

Using third parties can also have an impact on compression.

Figure 19.6. Compression by type on desktop pages.

Part IV Chapter 19 : Compression

492 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/compression/compression-algorithms-by-content-type-desktop.png
https://almanac.httparchive.org/static/images/2020/compression/compression-algorithms-by-content-type-desktop.png

When we compare compression techniques between first and third parties, we can see that

third-party content tends to be compressed more than first-party content. Additionally, the

percentage of Brotli compression is higher for third-party content. This is likely due to the

number of resources served from the larger third parties that typically support Brotli, such as

Google and Facebook.

Compared with last year’s results696, we can see that there was a significant increase in the use

of compression, notably Brotli for first parties, almost to the point that the use of compression

is around 40% for both first and third party, and for desktop and mobile. However within the

responses that do use compression, for first parties, the ratio of Brotli compression is only 18%,

while the ratio for third parties is 27%.

How to analyze compression on your sites

You can use Firefox Developer Tools697 or Chrome DevTools698 to quickly figure out what content

a website already compresses. To do this, go to the Network tab, right click and activate

“Content Encoding” under Response Headers. Hovering over the size of individual files you will

see “transferred over network” and “resource size”. Aggregated for the entire site one can see

size/transferred size for Firefox and “transferred” and “resources” for Chrome on the bottom

left hand side of the Network tab.

Figure 19.7. First-party versus third-party compression by device type.

Desktop Mobile

Content Encoding First-Party Third-Party First-Party Third-Party

No Text Compression 61.93% 57.81% 60.36% 58.11%

Gzip 30.95% 30.66% 32.36% 30.65%

br 7.09% 11.51% 7.26% 11.22%

deflate 0.02% 0.01% 0.02% 0.01%

Other / Invalid 0.01% 0.01% 0.01% 0.01%

696. https://almanac.httparchive.org/en/2019/compression#first-party-vs-third-party-compression
697. https://developer.mozilla.org/docs/Tools
698. https://developers.google.com/web/tools/chrome-devtools

Part IV Chapter 19 : Compression

2020 Web Almanac by HTTP Archive 493

https://almanac.httparchive.org/en/2019/compression#first-party-vs-third-party-compression
https://developer.mozilla.org/docs/Tools
https://developers.google.com/web/tools/chrome-devtools

Figure 19.8. Use DevTools to check if content encoding is used on your site

Part IV Chapter 19 : Compression

494 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/compression/content-encoding.png
https://almanac.httparchive.org/static/images/2020/compression/content-encoding.png

Another tool to better understand compression on your site is Google’s Lighthouse699 tool,

which enables you to run a series of audits against web pages. The text compression audit700

evaluates whether a site can benefit from additional text-based compression. It does this by

attempting to compress resources and evaluate whether an object’s size can be reduced by at

least 10% and 1,400 bytes. Depending on the score, you may see a compression

recommendation in the results, with a list of specific resources that could be compressed.

Because the HTTP Archive runs Lighthouse audits for each mobile page, we can aggregate the

scores across all sites to learn how much opportunity there is to compress more content.

Overall, 74% of websites are passing this audit, while almost 13% of websites have scored

below a 40. This is a 11.5% improvement when compared to last year’s701 62.5% of passing

scores.

Conclusion

Compared with last year’s Almanac702, there is a clear trend towards using more text

compression. The number of responses that don’t use any text compression went down a little

more than 2%, while at the same time the use of Brotli has increased by almost 2%. The

Lighthouse scores have improved significantly.

Figure 19.9. Text compression Lighthouse scores.

699. https://developers.google.com/web/tools/lighthouse
700. https://web.dev/uses-text-compression/
701. https://almanac.httparchive.org/en/2019/compression#identifying-compression-opportunities
702. https://almanac.httparchive.org/en/2019/compression

Part IV Chapter 19 : Compression

2020 Web Almanac by HTTP Archive 495

https://developers.google.com/web/tools/lighthouse
https://web.dev/uses-text-compression/
https://almanac.httparchive.org/en/2019/compression#identifying-compression-opportunities
https://almanac.httparchive.org/static/images/2020/compression/text-compression-lighthouse-scores.png
https://almanac.httparchive.org/static/images/2020/compression/text-compression-lighthouse-scores.png
https://almanac.httparchive.org/en/2019/compression

Text compression is widely used for the relevant formats, although there is still a significant

percentage of HTTP responses that could benefit from additional compression. You can profit

from taking a close look at the configuration of your server and set compression methods and

levels to your need. A great impact for a more positive user experience could be made by

carefully choosing defaults for the most popular HTTP servers.

Authors

Moritz Firsching

mo271 https://mo271.github.io/

Moritz Firsching is software engineer at Google Switzerland, where he works on

progressive image formats and font compression. Before that Moritz did research

as a mathematician studying polytopes.

Luca Versari

veluca93

Luca Versari is a software engineer at Google, working on JPEG XL703. He’s finishing

a PhD on graph compression and has a background in mathematics.

Sami Boukortt

sboukortt

Sami joined Google after completing his studies in engineering mathematics. After

a few years of remote interest in compression, he eventually made it his full-time

subject of work in 2018.

703. https://gitlab.com/wg1/jpeg-xl

Part IV Chapter 19 : Compression

496 2020 Web Almanac by HTTP Archive

https://github.com/mo271
https://mo271.github.io/
https://github.com/veluca93
https://gitlab.com/wg1/jpeg-xl
https://github.com/sboukortt

Jyrki Alakuijala

@jyzg jyrkialakuijala

Jyrki Alakuijala is an active member of the open source software community, and a

data compression researcher. Jyrki works at Google as a Technical Lead/Manager,

and his recent published work has been with Zopfli, Butteraugli, Guetzli, Gipfeli,

WebP lossless, Brotli, and JPEG XL compression formats and algorithms, and two

hashing algorithms, CityHash, and HighwayHash. Before his Google employment

he developed software for neurosurgery and radiation therapy treatment

planning.

Part IV Chapter 19 : Compression

2020 Web Almanac by HTTP Archive 497

https://twitter.com/jyzg
https://github.com/jyrkialakuijala

498 2020 Web Almanac by HTTP Archive

Part IV Chapter 20

Caching

Written by Rory Hewitt and Raghu Ramakrishnan
Reviewed by Julia Yang
Analyzed by Raghu Ramakrishnan
Edited by Barry Pollard

Introduction

Caching is a technique that enables the reuse of previously downloaded content. It involves

something (a server which builds web pages, a proxy such as a CDN or the browser itself)

storing ’content’ (web pages, CSS, JS, images, fonts, etc.) and tagging it appropriately, so it can

be reused.

Here’s a very high-level example:

Jane visits the home page of the www.example.com website. Jane lives in Los Angeles, CA, and the

example.com server is located in Boston, MA. Jane visiting www.example.com involves a network

request which has to travel across the country.

On the example.com server (a.k.a. Origin server), the home page is retrieved. The server knows Jane is

located in LA and adds dynamic content to the page—a list of upcoming events near her. Then the page

is sent back across the country to Jane and displayed on her browser.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 499

http://www.example.com/
http://www.example.com/

If there is no caching, if Carlos in LA also visits www.example.com after Jane, his request must travel

across the country to the example.com server. The server has to build the same page, including the LA

events list. It will have to send the page back to Carlos.

Worse, if Jane revisits the example.com home page, her subsequent requests will act like the first—the

request must go across the country and the example.com server must rebuild the home page to send it

back to her.

So without any caching, the example.com server builds each request from scratch. That’s bad for the

server because it is more work. Additionally, any communication between either Jane or Carlos and

the example.com server requires data to travel across the country. All of this can add up to a slow

experience that’s bad for both of them.

However, with server caching, when Jane makes her first request the server builds the LA variant of the

home page. It caches the data for reuse by all LA visitors. So when Carlos’s request gets to the

example.com server, the server checks if it has the LA variant of the home page in its cache. Since that

page is in cache as a result of Jane’s earlier request, the server saves time by returning the cached page.

More importantly, with browser caching, when Jane’s browser receives the page from the server for the

first request, it caches the page. All of her future requests for the example.com home page will be

served from her browser’s cache, without a network request. The example.com server also benefits by

not having to process or deal with Jane’s request.

Jane is happy. Carlos is happy. The example.com folks are happy. Everyone is happy.

It should be clear then, that browser caching provides a significant performance benefit by

avoiding costly network requests (though there are always edge cases704). It also helps an

application scale by reducing the traffic to a website’s origin infrastructure. Server caching also

significantly reduces the load on the underlying application.

Caching benefits both the end users (they get their web pages quickly) and the companies

serving the web pages (reducing the load on their servers). Caching really is a win-win!

Web architectures typically involve multiple tiers of caching. There are four main places or

caching entities where caching can occur:

1. An end user’s web browser.

2. A service worker cache running in the end user’s web browser.

3. A Content Delivery Network (CDN) or similar proxy, which sits between the end

user’s web browser and the origin server.

4. The origin server itself.

704. https://simonhearne.com/2020/network-faster-than-cache/

Part IV Chapter 20 : Caching

500 2020 Web Almanac by HTTP Archive

http://www.example.com/
https://simonhearne.com/2020/network-faster-than-cache/

In this chapter, we will primarily be discussing caching within web browsers (1-2), as opposed to

caching at the origin server or in a CDN. Nevertheless, many of the specific caching topics

discussed in this chapter rely on the relationship between the browser and the server (or CDN,

if one is used).

The key to understanding how caching, and the web in general, works is to remember that it all

consists of transactions between a requesting entity (e.g. a browser) and a responding entity

(e.g. a server). Each transaction consists of two parts:

1. The request from the requesting entity: “I want object X”.

2. The response from the responding entity: “Here is object X”.

When we talk about caching, it refers to the object (HTML page, image, etc.) cached by the

requesting entity.

Below figure shows how a typical request/response flow works for an object (e.g. a web page). A

CDN sits between the browser and the server. Note that at each point in the browser → CDN →

server flow, each of the caching entities first checks whether it has the object in its cache. It

returns the cached object to the requester if found, before forwarding the request to the next

caching entity in the chain:

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 501

Note: Unless specified otherwise, all statistics in this chapter are for mobile, on the understanding that

desktop statistics are similar. Where mobile and desktop statistics differ significantly, that is called out.

Many of the responses used in this chapter are from web servers which use commonly-

available server packages. While we may indicate best practices, the practices may not be

possible if the software package used has a limited number of cache options.

Caching guiding principles

There are three guiding principles to caching web content:

• Cache as much as you can

Figure 20.1. Request/response flow for an object.

Part IV Chapter 20 : Caching

502 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/request-response-flow-with-caching.png
https://almanac.httparchive.org/static/images/2020/caching/request-response-flow-with-caching.png

• Cache for as long as you can

• Cache as close as you can to end users

Cache as much as you can

When considering what to cache, it is important to understand whether the response content is

static or dynamic.

Static content

An example of static content is an image. For instance, a picture of a cat in a cat.jpg file is usually

the same regardless of who’s requesting it or where the requester is located (of course

alternative formats or sizes may be delivered but usually from a different filename).

Static content is typically cacheable and often for long periods of time. It has a one-to-many

relationship between the content (one) and the requests (many).

Figure 20.2. Yes, we have a picture of a cat.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 503

https://almanac.httparchive.org/static/images/2020/caching/luna-cat.jpg
https://almanac.httparchive.org/static/images/2020/caching/luna-cat.jpg

Dynamic content

An example of dynamic content is a list of events which are specific to a geographic location.

The list will be different based on the requester’s location.

Dynamically generated content can be more nuanced and requires careful consideration. Some

dynamic content can be cached, but often for a shorter period of time. The example of a list of

upcoming events will change, possibly from day to day. Different variants of the list may also

need to be cached and what’s cached in a user’s browser may be a subset of what’s cached on

the server or CDN. Nevertheless, it is possible to cache some dynamic contents. It is incorrect

to assume that “dynamic” is another word for “uncacheable”.

Cache for as long as you can

The length of time you would cache a resource is highly dependent on the content’s volatility,

that is the likelihood and/or frequency of change. For example, an image or a versioned

JavaScript file could potentially be cached for a very long time. An API response or a non-

versioned JavaScript file may need a shorter cache duration to ensure users get the most up-to-

date response. Some content might only be cached for a minute or less. And, of course, some

content should not be cached at all. This is discussed in more detail in Identifying caching

opportunities below.

Another point to bear in mind is that no matter how long you tell a browser to cache content for,

the browser may evict that content from cache before that point in time. It may do so to make

room for other content that is accessed more frequently for example. However, a browser will

not use cache content for longer than it is told.

Cache as close to end users as you can

Caching content close to the end user reduces download times by removing latency. For

example, if a resource is cached in a user’s browser, then the request never goes out to the

network and it is available locally every time the user needs it. For visitors that don’t have

entries in their browser’s cache, a CDN would be the next place a cached resource is returned

from. In most cases, it will be faster to fetch a resource from a local cache or a CDN compared

to an origin server.

Some terminology

Caching entity: The hardware or software that is doing the caching. Due to the focus of this

Part IV Chapter 20 : Caching

504 2020 Web Almanac by HTTP Archive

chapter, we use “browser” as a synonym for “caching entity” unless otherwise specified.

Time-To-Live (TTL): The TTL of a cached object defines how long it can be stored in a cache,

typically measured in seconds. After a cached object reaches its TTL, it is marked as ’stale’ by

the cache. Depending on how it was added to the cache (see the details of the caching headers

below), it may be evicted from cache immediately, or it may remain in the cache but marked as a

’stale’ object, requiring revalidation before reuse.

Eviction: The automated process by which an object is actually removed from a cache when/

after it reaches its TTL or possibly when the cache is full.

Revalidation: A cached object that is marked as stale may need to be ’revalidated’ with the

server before it can be displayed to the user. The browser must first check with the server that

the object the browser has in its cache is still up-to-date and valid.

Overview of browser caching

When a browser makes a request for a piece of content (e.g. a web page), it will receive a

response which includes not just the content itself (the HTML markup), but also a number of

HTTP response headers which describe the content, including information about its cacheability.

The caching-related headers, or the absence of them, tell the browser three important pieces of

information:

1. Cacheability: Is this content cacheable?

2. Freshness: If it is cacheable, how long can it be cached for?

3. Validation: If it is cacheable, how do I subsequently ensure that my cached version

is still fresh?

The two HTTP response headers typically used for specifying freshness are Cache-Control
and Expires :

• Expires specifies an explicit expiration date and time (i.e. when exactly the

content expires)

• Cache-Control specifies a cache duration (i.e. how long the content can be

cached in the browser relative to when it was requested)

Often, both these headers are specified; in that case Cache-Control takes precedence.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 505

The full specifications for these caching headers are in RFC 7234705, and discussed in sections

4.2 (Freshness)706 and 4.3 (Validation)707, but we will discuss them in more detail below.

Cache-Control vs Expires

In the early HTTP/1.0 days of the web, the Expires header was the only cache-related

response header. As stated above, it is used to indicate the exact date/time after which the

response is considered stale. Its value is a date and time, such as:

Expires: Thu, 01 Dec 1994 16:00:00 GMT

The Expires header can be thought of as a blunt instrument. If a relative cache TTL is

required, then processing must be done on the server to generate an appropriate value based

upon the current date/time.

HTTP/1.1 introduced the Cache-Control header, which is supported by all commonly used

browsers for a long time. The Cache-Control header provides much more extensibility and

flexibility than Expires via caching directives, several of which can be specified together.

Details on the various directives are below.

> GET /static/js/main.js HTTP/2

> Host: www.example.org

> Accept: */*

< HTTP/2 200

< Date: Thu, 23 Jul 2020 03:04:17 GMT

< Expires: Thu, 23 Jul 2020 03:14:17 GMT

< Cache-Control: public, max-age=600

The simple example above shows a request and response for a JavaScript file though some

headers have been removed for clarity. The Date header indicates the current date

(specifically, the date that the content was served). The Expires header indicates that it can

be cached for 10 minutes (the difference between the Expires and Date headers). The

Cache-Control header specifies the max-age directive, which indicates that the resource

can be cached for 600 seconds (5 minutes). Since Cache-Control takes precedence over

705. https://tools.ietf.org/html/rfc7234#section-8
706. https://tools.ietf.org/html/rfc7234#section-4.2
707. https://tools.ietf.org/html/rfc7234#section-4.3

Part IV Chapter 20 : Caching

506 2020 Web Almanac by HTTP Archive

https://tools.ietf.org/html/rfc7234#section-8
https://tools.ietf.org/html/rfc7234#section-4.2
https://tools.ietf.org/html/rfc7234#section-4.3

Expires , the browser will cache the response for 5 minutes, after which it will be marked as

stale.

RFC 7234 says that if no caching headers are present in a response, then the browser is allowed

to heuristically cache the response—it suggests a cache duration of 10% of the time since the

Last-Modified header (if passed). In such cases, most browsers implement a variation of this

suggestion, but some may cache the response indefinitely and some may not cache it at all.

Because of this variation between browsers, it is important to explicitly set specific caching

rules to ensure that you are in control of the cacheability of your content.

As we can see 73.5% of mobile responses are served with a Cache-Control header, and

56.2% of responses are served with an Expires header and nearly all of those (55.4%) will not

be used as the responses include both headers. 25.6% of responses did not include either

header and are therefore subject to heuristic caching.

These statistics are interesting when compared with last years data:

Figure 20.3. Usage of Cache-Control and Expires headers.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 507

https://almanac.httparchive.org/static/images/2020/caching/cache-control-and-max-age-and-expires.png
https://almanac.httparchive.org/static/images/2020/caching/cache-control-and-max-age-and-expires.png

While we see a slight increase in the use of the Cache-Control header (1.8%), we also see a

minimal decrease in the use of the older Expires header (0.2%). On Desktop we actually see a

marginal increase of Cache-Control (1.3%), with a smaller increase on Expires (0.8%)

Effectively, more desktop sites look to be adding Cache-Control header without the

Expires header.

As we delve into the various directives allowed in the Cache-Control header, we will see

how its flexibility and power make it a better fit in many cases.

Cache-Control directives

When you use the Cache-Control header, you specify one or more directives—predefined

values that indicate specific caching functionality. Multiple directives are separated by commas

and can be specified in any order, although some of them ’clash’ with one another (e.g. public
and private). Some directives take a value, such as max-age .

Below is a table showing the most common Cache-Control directives:

Figure 20.4. Usage of Cache-Control and Expires headers in 2019.

Part IV Chapter 20 : Caching

508 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/cache-control-and-max-age-and-expires-2019.png
https://almanac.httparchive.org/static/images/2020/caching/cache-control-and-max-age-and-expires-2019.png

The max-age directive is the most commonly-found, since it directly defines the TTL, in the

same way that the Expires header does.

Here is an example of a valid Cache-Control header with multiple directives:

Cache-Control: public, max-age=86400, must-revalidate

This indicates that the object can be cached for 86,400 seconds (1 day) and it can be stored by

all caches between the server and the browser, as well as in the browser itself. Once it has

reached its TTL and is marked as stale, it can remain in cache, but must be conditionally

revalidated before reuse.

Figure 20.5. Cache-Control directives.

Directive Description

max-age
Indicates the number of seconds that a resource can be cached for, relative to

the current time. For example max-age=86400.

public
Any cache may store the response, including the browser, and any proxies

between the server and the browser, such as a CDN. This is assumed by default.

no-cache
A cached entry must be revalidated prior to its use, via a conditional request,

even if it is not marked as stale.

must-revalidate
A stale cached entry must be revalidated prior to its use, via a conditional

request.

no-store Indicates that the response must not be cached.

private
The response is intended for a specific user and should not be stored by shared

caches such as proxies and CDNs.

proxy-revalidate Same as must-revalidate but applies to shared caches.

s-maxage Same as max-age but applies to shared caches (e.g. CDN’s) only.

immutable
Indicates that the cached entry will never change during its TTL, and that

revalidation is not necessary.

stale-while-revalidate
Indicates that the client is willing to accept a stale response while

asynchronously checking in the background for a fresh one.

stale-if-error
Indicates that the client is willing to accept a stale response if the check for a

fresh one fails.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 509

The above figure illustrates the 11 Cache-Control directives in use on mobile and desktop

websites. There are a few interesting observations about the popularity of these cache

directives:

• max-age is used by about 59.66% of mobile Cache-Control headers, and no-
store is used by about 9.64% (see below for some discussion on the meaning and

use of the no-store directive).

• Explicitly specifying public isn’t ever really necessary since cached entries are

assumed public unless private is specified. Nevertheless, almost one third of

responses include public —a waste of a few header bytes on every response :)

• The immutable directive is relatively new, introduced in 2017 and is only

supported on Firefox and Safari—its usage is still only at about 3.47%, but it is

widely seen in responses from Facebook, Google, Wix, Shopify and others. It has the

potential to greatly improve cacheability for certain types of requests.

As we head out to the long tail, there are a small percentage of invalid directives that can be

found; these are ignored by browsers, and just end up wasting header bytes. Broadly they fall

into two categories:

• Misspelled directives such as nocache and s-max-age and invalid directive

syntax, such as using : instead of = or using _ instead of - .

Figure 20.6. Distribution of Cache-Control directives.

Part IV Chapter 20 : Caching

510 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/cache-control-directives.png
https://almanac.httparchive.org/static/images/2020/caching/cache-control-directives.png

• Non-existent directives such as max-stale , proxy-public , surrogate-
control .

The most interesting standout in the list of invalid directives is the use of no-cache="set-
cookie" —even at only 0.2% of all Cache-Control header values, it still makes up more than

all the other invalid directives combined. In some early discussions on the Cache-Control
header, this syntax was raised as a possible way to ensure that any Set-Cookie response

headers (which might be user-specific) would not be cached with the object itself by any

intermediate proxies such as CDNs. However, this syntax was not included in the final RFC.

Nearly equivalent functionality can be implemented using the private directive, and the no-
cache directive does not allow a value.

Cache-Control : no-store , no-cache and max-
age=0

When a response absolutely must not be cached, the Cache-Control: no-store directive

should be used; if this directive is not specified, then the response is considered cacheable and

may be cached. Note that if no-store is specified, it takes precedence over other directives.

This makes sense, since serious privacy and security issues could occur if a resource is cached

which should not be.

We can see a few common errors that are made when attempting to configure a response to be

non-cacheable:

• Specifying Cache-Control: no-cache may sound like a directive to not cache

the resource. However, as noted above, the no-cache directive does allow the

resource to be cached—it simply informs the browser to revalidate the resource

prior to use and is not the same as stopping the resource from being cached at all.

• Setting Cache-Control: max-age=0 sets the TTL to 0 seconds, but again, that is

not the same as being non-cacheable. When max-age=0 is specified, the resource

is cached, but is marked as stale, resulting in the browser having to immediately

revalidate its freshness.

Functionally, no-cache and max-age=0 are similar, since they both require revalidation of a

cached resource. The no-cache directive can also be used alongside a max-age directive

that is greater than 0—this results in the object being cached for the specified TTL but being

revalidated prior to every use.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 511

When looking at the above three discussed directives, 2.7% of responses include the

combination of all three no-store , no-cache and max-age=0 directives, 6.7% of

responses include both no-store and no-cache , and a negligible number of responses (<

0.15%) include no-store alone.

As noted above, where no-store is specified with either/both of no-cache and max-
age=0 , the no-store directive takes precedence, and the other directives are ignored.

Therefore, if you don’t want content to be cached anywhere, simply specifying Cache-
Control: no-store is sufficient and is both simpler and uses the minimum number of header

bytes.

The max-age=0 directive is present on less than 2% of responses where no-store is not

specified. In such cases, the resource will be cached in the browser but will require revalidation

as it is immediately marked as stale.

Conditional requests and revalidation

There are often cases where a browser has previously requested an object and already has it in

its cache but the cache entry has already exceeded its TTL (and is therefore marked as stale) or

where the object is defined as one that must be revalidated prior to use.

In these cases, the browser can make a conditional request to the server—effectively saying “I

have object X in my cache—can I use it, or do you have a more recent version I should use instead?”.

The server can respond in one of two ways:

• “Yes, the version of object X you have in cache is fine to use”: In this case the server

response consists of a 304 Not Modified status code and response headers, but

no response body

• “No, here is a more recent version of object X—use this instead”: In this case the server

response consists of a 200 OK status code, response headers, and a new response

body (the actual new version of object X)

In either case, the server can optionally include updated caching response headers, possibly

extending the TTL of the object so the browser can use the object for a further period of time

without needing to make more conditional requests.

The above is known as revalidation and if implemented correctly can significantly improve

perceived performance since a 304 Not Modified response consists only of headers, it is

much smaller than a 200 OK response, resulting in reduced bandwidth and a quicker

response.

Part IV Chapter 20 : Caching

512 2020 Web Almanac by HTTP Archive

So how does the server identify a conditional request from a regular request?

It actually all comes down to the initial request for the object. When a browser requests an

object which it does not already have in its cache, it simply makes a GET request, like this (again,

some headers removed for clarity):

> GET /index.html HTTP/2

> Host: www.example.org

> Accept: */*

If the server wants to allow the browser to make use of conditional requests (this decision is

entirely up to the server!), it can include one or both of two response headers which identify

the object as being eligible for subsequent conditional requests. The two response headers are:

• Last-Modified : This indicates when the object was last changed. Its value is a

date timestamp.

• ETag (Entity Tag): This provides a unique identifier for the content as a quoted

string. It can take any format that the server chooses; it is typically a hash of the file

contents, but it could be a timestamp or a simple string.

If both headers are present, ETag takes precedence.

Last-Modified

When the server receives the request for the file, it can include the date/time that the file was

most recently changed as a response header, like this:

< HTTP/2 200

< Date: Thu, 23 Jul 2020 03:04:17 GMT

< Last-Modified: Mon, 20 Jul 2020 11:43:22 GMT

< Cache-Control: max-age=600

...lots of html here...

The browser will cache this object for 600 seconds (as defined in the Cache-Control
header), after which it will mark the object as stale. If the browser needs to use the file again, it

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 513

requests the file from the server just as it did initially, but this time it includes an additional

request header, called If-Modified-Since , which it sets to the value that was passed in the

Last-Modified response header in the initial response:

> GET /index.html HTTP/2

> Host: www.example.org

> Accept: */*

> If-Modified-Since: Mon, 20 Jul 2020 11:43:22 GMT

When the server receives this request, it can check whether the object has changed by

comparing the If-Modified-Since header value with the date that it most recently

changed the file.

If the two values are the same, then the server knows that the browser has the latest version of

the file and the server can return a 304 Not Modified response with just headers (including

the same Last-Modified header value) and no response body:

< HTTP/2 304

< Date: Thu, 23 Jul 2020 03:14:17 GMT

< Last-Modified: Mon, 20 Jul 2020 11:43:22 GMT

< Cache-Control: max-age=600

However, if the file on the server has changed since it was last requested by the browser, then

the server returns a 200 OK response consisting of headers (including an updated Last-
Modified header) and the new version of the file in the body:

< HTTP/2 200

< Date: Thu, 23 Jul 2020 03:14:17 GMT

< Last-Modified: Thu, 23 Jul 2020 03:12:42 GMT

< Cache-Control: max-age=600

...lots of html here...

As you can see, the Last-Modified response header and If-Modified-Since request

header work as a pair.

Part IV Chapter 20 : Caching

514 2020 Web Almanac by HTTP Archive

Entity Tag (ETag)

The functionality here is almost exactly the same as the date-based Last-Modified / If-
Modified-Since conditional request processing described above.

However, in this case, the Server sends an ETag response header—rather than a date

timestamp. An ETag is simply a string and is often a hash of the file contents or a version

number calculated by the server. The format of this string is entirely up to the server. The only

important fact is that the server changes the ETag value whenever it changes the file.

In this example, when the server receives the initial request for the file, it can return the file’s

version in an ETag response header, like this:

< HTTP/2 200

< Date: Thu, 23 Jul 2020 03:04:17 GMT

< ETag: "v123.4.01"

< Cache-Control: max-age=600

...lots of html here...

As with the If-Modified-Since example above, the browser will cache this object for 600

seconds, as defined in the Cache-Control header. When it needs to request the object from

the server again, it includes an additional request header, called If-None-Match , which has

the value passed in the ETag response header in the initial response:

> GET /index.html HTTP/2

> Host: www.example.org

> Accept: */*

> If-None-Match: "v123.4.01"

When the server receives this request, it can check whether the object has changed by

comparing the If-None-Match header value with the current version it has of the file.

If the two values are the same, then the browser has the latest version of the file and the server

can return a 304 Not Modified response with just headers:

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 515

< HTTP/2 304

< Date: Thu, 23 Jul 2020 03:14:17 GMT

< ETag: "v123.4.01"

< Cache-Control: max-age=600

However, if the values are different, then the version of the file on the server is more recent

than the version that the browser has, so the server returns a 200 OK response consisting of

headers (including an updated ETag header) and the new version of the file:

< HTTP/2 200

< Date: Thu, 23 Jul 2020 03:14:17 GMT

< ETag: "v123.5.06"

< Cache-Control: public, max-age=600

...lots of html here...

Again, we see a pair of headers being used for this conditional request processing—the ETag
response header and the If-None-Match request header.

In the same way that the Cache-Control header has more power and flexibility than the

Expires header, the ETag header is in many ways an improvement over the Last-
Modified header. There are two reasons for this:

1. The server can define its own format for the ETag header. The example above

shows a version string, but it could be a hash, or a random string. By allowing this,

versions of an object are not explicitly linked to dates, and this allows a server to

create a new version of a file and yet give it the same ETag as the prior

version—perhaps if the file change is unimportant.

2. ETag ’s can be defined as either ’strong’ or ’weak’, which allows browsers to

validate them differently. A full understanding and discussion of this functionality is

beyond the scope of this chapter but can be found in RFC 7232708.

However, since the ETag is often based on last modified time of the server, it may effectively

be the same in a lot of implementations, and worse than that various bugs in server

implementations (Apache in particular), can mean it is less effective to use ETag ’s.

708. https://tools.ietf.org/html/rfc7232

Part IV Chapter 20 : Caching

516 2020 Web Almanac by HTTP Archive

https://tools.ietf.org/html/rfc7232
https://www.tunetheweb.com/performance/http-performance-headers/etag/#downsides
https://www.tunetheweb.com/performance/http-performance-headers/etag/#downsides

We can see 72.0% of mobile responses are served with a Last-Modified header. In

comparison to 2019, its usage on mobile has remained static, but it has increased marginally (by

< 1%) on desktop.

Looking at ETag headers, 46.2% of responses on mobiles are using this. Out of these

Figure 20.7. Adoption of validating freshness via Last-Modified and ETag headers.

Figure 20.8. Adoption of validating freshness via Last-Modified and ETag headers in 2019.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 517

https://almanac.httparchive.org/static/images/2020/caching/last-modified-and-etag.png
https://almanac.httparchive.org/static/images/2020/caching/last-modified-and-etag.png
https://almanac.httparchive.org/static/images/2020/caching/last-modified-and-etag-2019.png
https://almanac.httparchive.org/static/images/2020/caching/last-modified-and-etag-2019.png

responses, 34.38% are strong, 9.81% are weak, and the remaining 1.98% are invalid. In contrast

with Last-Modified , the usage of ETag headers has marginally decreased (by <1%) in

comparison to 2019.

41.0% of mobile responses are served with both headers and, as noted above, the ETag
header takes precedence in this case. 22.9% of mobile responses include neither a Last-
Modified or ETag header.

Correctly-implemented revalidation using conditional requests can significantly reduce

bandwidth (304 responses are typically much smaller than 200 responses), load on servers

(only a small amount of processing is required to compare change dates or hashes) and improve

perceived performance (servers respond more quickly with a 304). However, as we can see

from the above statistics, more than a fifth of all requests are not using any form of conditional

requests.

Only 0.1% of the responses had a 304 Not Modified status in our crawl, though this is not

unexpected as our crawl is using an empty cache and 304 responses are mostly useful for

subsequent visits that our Methodology does not test for. Still we analyzed these to see how

the 304 was used.

We see that 17.2% of the mobile responses (20.5% on desktop) had no ETag header and

contained the same Last-Modified value, passed in the If-Modified-Since header of

the corresponding request. Out of these, 78.3% (86% on desktop) had a 304 Not Modified

Figure 20.9. Distribution of 304 Not Modified status.

Part IV Chapter 20 : Caching

518 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/valid-if-none-match-returns-304.png
https://almanac.httparchive.org/static/images/2020/caching/valid-if-none-match-returns-304.png

status.

89.9% of the mobile responses (86.1% on desktop) contained the same ETag value, passed in

the If-None-Match header of the corresponding request. If the If-Modified-Since
header is also present, ETag takes precedence. Out of these, 90.2% (88.9% on desktop) had a

304 Not Modified status.

Validity of date strings

Throughout this document, we have discussed several caching-related HTTP headers used to

convey timestamps:

• The Date response header indicates when the resource was served to a client.

• The Last-Modified response header indicates when a resource was last changed

on the server.

• The Expires header is used to indicate for how long a resource is cacheable.

All three of these HTTP headers use a date formatted string to represent timestamps. The

date-formatted string is defined in RFC 2616709, and must specify a GMT timestamp string. For

example:

> GET /index.html HTTP/2

> Host: www.example.org

> Accept: */*

< HTTP/2 200

< Date: Thu, 23 Jul 2020 03:14:17 GMT

< Cache-Control: max-age=600

< Last-Modified: Mon, 20 Jul 2020 11:43:22 GMT

Invalid date strings are ignored by most browsers, which can affect the cacheability of the

response on which they are served. For example, an invalid Last-Modified header will result

in the browser being unable to subsequently perform a conditional request for the object, since

it is cached without that invalid timestamp.

709. https://tools.ietf.org/html/rfc2616#section-3.3.1

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 519

https://tools.ietf.org/html/rfc2616#section-3.3.1

Because the Date HTTP response header is almost always generated automatically by the

web server, invalid values are extremely rare. Similarly Last-Modified headers had a very

low percentage (0.75% on mobile and 0.5% on desktop) of invalid values. What was very

surprising to see though, was that a relatively high 2.94% of Expires headers used an invalid

date format (2.5% in desktop).

Examples of some of the invalid uses of the Expires header are:

• Valid date formats, but using a time zone other than GMT

• Numerical values such as 0 or -1

• Values that would be valid in a Cache-Control header

One large source of invalid Expires headers is from assets served from a popular third party,

in which a date/time uses the EST time zone, for example Expires: Tue, 27 Apr 1971
19:44:06 EST . Note that some browsers may understand and accept this date format, on the

principle of robustness, but it should not be assumed that this will be the case.

The Vary header

We have discussed how a caching entity can determine whether a response object is cacheable,

Figure 20.10. Invalid date formats in response headers.

Part IV Chapter 20 : Caching

520 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/invalid-last-modified-and-expires-and-date.png
https://almanac.httparchive.org/static/images/2020/caching/invalid-last-modified-and-expires-and-date.png

and for how long it can be cached. However, one of the most important steps the caching entity

must take is determining if the resource being requested is already in its cache. While this may

seem simple, many times the URL alone is not enough to determine this. For example, requests

with the same URL could vary in what compression they used (Gzip, Brotli, etc.) or could be

returned in different encodings (XML, JSON etc.).

To solve this problem, when a caching entity caches an object, it gives the object a unique

identifier (a cache key). When it needs to determine whether the object is in its cache, it checks

for the existence of the object using the cache key as a lookup. By default, this cache key is

simply the URL used to retrieve the object, but servers can tell the caching entity to include

other attributes of the response (such as compression method) in the cache key, by including

the Vary response header. The Vary header identifies variants of the object, based on

factors other than the URL.

The Vary response header instructs the browser to add the value of one or more request

header values to the cache key. The most common example of this is Vary: Accept-
Encoding , which will result in the browser caching the same object in different formats, based

on the different Accept-Encoding request header values (i.e. gzip , br , deflate).

A caching entity sends a request for an HTML file, indicating that it will accept a gzipped

response:

> GET /index.html HTTP/2

> Host: www.example.org

> Accept-Encoding: gzip

The server responds with the object and indicates that the version it is sending should include

the value of the Accept-Encoding request header.

< HTTP/2 200 OK

< Content-Type: text/html

< Vary: Accept-Encoding

In this simplified example, the caching entity would cache the object using a combination of the

URL and the Vary header.

Another common value is Vary: Accept-Encoding, User-Agent , which instructs the

client to include both the Accept-Encoding and User-Agent values in the cache key.

However, when discussing shared proxies and CDNs, using values other than Accept-

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 521

Encoding can be problematic as it dilutes or fragments the cache and can reduce the amount

of traffic served from cache. For instance, there are several thousand different varieties of

User-Agent , so if a CDN attempts to cache many different variants of an object, it may end

up filling up the cache with many almost identical (or indeed, identical) cached objects. This is

very inefficient and can lead to very sub-optimal caching within the CDN, resulting in fewer

cache hits and greater latency.

In general, you should only vary the cache if you are serving alternate content to clients based

on that header.

The Vary header is used on 43.4% of HTTP responses, and 84.2% of these responses include a

Cache-Control header.

The graph below details the popularity for the top 10 Vary header values. Accept-Encoding
accounts for almost 92% of Vary ’s use, with User-Agent at 10.7%, Origin (used for CORS

processing) at 8%, and Accept at 4.1% making up much of the rest.

Setting cookies on cacheable responses

When a response is cached, its entire set of response headers are included with the cached

object as well. This is why you can see the response headers when inspecting a cached response

in Chrome via DevTools:

Figure 20.11. Vary header usage.

Part IV Chapter 20 : Caching

522 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/vary-headers.png
https://almanac.httparchive.org/static/images/2020/caching/vary-headers.png

But what happens if you have a Set-Cookie on a response? According to RFC 7234 Section

8710, the presence of a Set-Cookie response header does not inhibit caching. This means that

a cached entry might contain a Set-Cookie response header. The RFC goes on to recommend

that you should configure appropriate Cache-Control headers to control how responses are

cached.

Since we have primarily been talking about browser caching, you may think this isn’t a big

issue—the Set-Cookie response headers that were sent by the server to me in responses to

my requests clearly contain my cookies, so there’s no problem if my browser caches them.

However, if there is a CDN between myself and the server, the server must indicate to the CDN

that the response should not be cached in the CDN itself, so that the response meant for me is

not cached and then served (including my Set-Cookie headers!) to other users.

For example, if a login cookie or a session cookie is present in a CDN’s cached object, then that

cookie could potentially be reused by another client. The primary way to avoid this is for the

server to send the Cache-Control: private directive, which tells the CDN not to cache

the response, because it may only be cached by the client browser.

Figure 20.12. Chrome Dev Tools for a cached resource.

710. https://tools.ietf.org/html/rfc7234#section-8

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 523

https://almanac.httparchive.org/static/images/2020/caching/chrome-dev-tools.png
https://almanac.httparchive.org/static/images/2020/caching/chrome-dev-tools.png
https://tools.ietf.org/html/rfc7234#section-8
https://tools.ietf.org/html/rfc7234#section-8

40.4% of cacheable mobile responses contain a Set-Cookie header. Of those responses, only

4.9% use the private directive. The remaining 95.1% (198.6 million HTTP responses) contain

at least one Set-Cookie response header and can be cached by both public cache servers,

such as CDNs. This is concerning and may indicate a continued lack of understanding about

how cacheability and cookies coexist.

Figure 20.13. Set-Cookie in cacheable responses.

Part IV Chapter 20 : Caching

524 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/set-cookie-usage-on-cacheable-responses.png
https://almanac.httparchive.org/static/images/2020/caching/set-cookie-usage-on-cacheable-responses.png

Service workers

Service workers are a feature of HTML5 that allow front-end developers to specify scripts that

should run outside the normal request/response flow of web pages, communicating with the

web page via messages. Common uses of service workers are for background synchronization

and push notifications and, obviously, for caching—and browser support has been rapidly

growing for them.

Figure 20.14. Set-Cookie in private and non-private cacheable responses.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 525

https://almanac.httparchive.org/static/images/2020/caching/set-cookie-usage-on-private-and-non-private-cacheable-responses.png
https://almanac.httparchive.org/static/images/2020/caching/set-cookie-usage-on-private-and-non-private-cacheable-responses.png

Adoption is just at 1% of websites, but it has been steadily increasing since July 2019. The

Progressive Web App chapter discusses this more, including the fact that it is used a lot more

than this graph suggests due to its usage on popular sites, which are only counted once in the

above graph.

In the table above, you can see that 64,373 site out of a total of 6,290,147 websites have

implemented a service worker.

If we break this out by HTTP vs HTTPS, then this gets even more interesting. Even though

HTTPS is a requirement for using service workers, the following table shows that 1,469 of the

sites using them are served over HTTP.

Figure 20.15. Growth in service worker controlled pages from 2019.

Figure 20.16. Number of websites using service workers.

Sites not using service workers Sites using service workers Total sites

6,225,774 64,373 6,290,147

Figure 20.17. Number of websites using service workers by HTTP/HTTPS.

HTTP Sites HTTPS Sites Total Sites

1,469 62,904 64,373

Part IV Chapter 20 : Caching

526 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/service-workers-controlled-pages-2019-2020.png
https://almanac.httparchive.org/static/images/2020/caching/service-workers-controlled-pages-2019-2020.png

What type of content are we caching?

As we have seen, a cacheable resource is stored by the browser for a period of time and is

available for reuse on subsequent requests.

Across all HTTP(S) requests, 90.4% of responses are considered cacheable, meaning that a

cache is permitted to store them. The remaining 9.6% of responses are not permitted to be

stored in browser caches—typically because of Cache-Control: no-store .

Figure 20.18. Distribution of cacheable and non-cacheable responses.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 527

https://almanac.httparchive.org/static/images/2020/caching/cacheable-and-non-cacheable.png
https://almanac.httparchive.org/static/images/2020/caching/cacheable-and-non-cacheable.png

Digging a little deeper, we see that 4.1% of requests have a TTL of 0 seconds, which causes the

object to be added to cache, but immediately marked as stale, requiring revalidation. 28.4% are

cached heuristically because of a lack of either a Cache-Control or Expires header and

58.8% are cached for more than 0 seconds.

The table below details the cache TTL values for mobile requests by type:

Figure 20.19. Distribution of TTL in cacheable responses.

Part IV Chapter 20 : Caching

528 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/ttl-cachable-responses.png
https://almanac.httparchive.org/static/images/2020/caching/ttl-cachable-responses.png

While most of the median TTLs are high, the lower percentiles highlight some of the missed

caching opportunities. For example, the median TTL for images is 720 hours (1 month);

however the 25th percentile is just 168 hours (1 week) and the 10th percentile has dropped to

just a few hours. Compare this with fonts, which have a very high TTL of 8,760 hours (1 year) all

the way down to the 25th percentile, with even the 10th percentile showing a TTL of 1 month.

By exploring the cacheability by content type in more detail in figure below, we can see that

while fonts, video and audio, and CSS files are browser cached at close to 100% (which makes

sense, since these files are typically very static), approximately one third of all HTML responses

are considered non-cacheable.

Figure 20.20. Mobile cache TTL hours by percentiles and resource type.

Type 10 25 50 75 90

Audio 6 6 240 744 8,760

CSS 24 24 720 8,760 8,760

Font 720 8,760 8,760 8,760 8,760

HTML 0 3 336 8,760 8,600

Image 6 168 720 8,760 8,766

Other 0 3 31 336 23,557

Script 0 4 720 8,760 8,760

Text 0 1 6 24 8,760

Video 6 336 336 336 8,674

XML 1 24 24 24 720

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 529

Additionally, 10.1% of images and 4.9% scripts on desktop are non-cacheable. There is likely

some room for improvement here, since no doubt some of these objects are also static and

could be cached at a higher rate—remember: cache as much as you can for as long as you can!

How do cache TTLs compare to resource age?

So far we’ve talked about how servers tell a client what is cacheable, and how long it has been

cached for. When designing cache rules, it is also important to understand how old the content

you are serving is.

When you are selecting a cache TTL to specify in response headers to send back to the client,

ask yourself: “how often am I updating these assets?” and “what is their content sensitivity?”.

For example, if a hero image is going to be modified infrequently, then it could be cached with a

very long TTL. By contrast, if a JavaScript file will change frequently, then either it should be

versioned, for instance with a unique query string, and cached with a long TTL or it should be

cached with a much shorter TTL.

The graphs below illustrate the relative age of resources by content type.

Figure 20.21. Distribution of cacheability by content type.

Part IV Chapter 20 : Caching

530 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/cacheable-by-resource-type.png
https://almanac.httparchive.org/static/images/2020/caching/cacheable-by-resource-type.png

Some of the interesting observations in this data are:

• First-party HTML is the content type with the shortest age, with 41.1% of the

requests having an age less than a week. In most of the other content types, third-

Figure 20.22. Resource age by Content Type (1st Party).

Figure 20.23. Resource age by Content Type (3rd Party).

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 531

https://almanac.httparchive.org/static/images/2020/caching/resource-age-party-and-type-wise-groups-1st-party.png
https://almanac.httparchive.org/static/images/2020/caching/resource-age-party-and-type-wise-groups-1st-party.png
https://almanac.httparchive.org/static/images/2020/caching/resource-age-party-and-type-wise-groups-3rd-party.png
https://almanac.httparchive.org/static/images/2020/caching/resource-age-party-and-type-wise-groups-3rd-party.png

party content has a smaller resource age than first party content.

• Some of the longest aged first-party content on the web, with age eight weeks or

more, are the traditionally cacheable objects like images (78.9%), scripts (68.7%),

CSS (74.9%), web fonts (80.4%), audio (78.2%) and video (79.3%).

• There is a significant gap in some first vs. third-party resources having an age of

more than a week. 93.4% of first-party CSS are older than one week compared to

48.0% of third-party CSS, which are older than one week.

By comparing a resource’s cacheability to its age, we can determine if the TTL is appropriate or

too low.

For example, the resource served below on 18 Oct 2020 was last modified on 30 Aug 2020,

which means that it was well over a month old at the time of delivery—this indicates that it is an

object which does not change frequently. However, the Cache-Control header says that the

browser can cache it for only 86,400 seconds (one day). This is a case where a longer TTL might

be appropriate, to avoid the browser needing to re-request it, even conditionally—especially if

the website is one that a user might visit multiple times over the course of several days.

> HTTP/1.1 200

> Date: Sun, 18 Oct 2020 19:36:57 GMT

> Content-Type: text/html; charset=utf-8

> Content-Length: 3052

> Vary: Accept-Encoding

> Last-Modified: Sun, 30 Aug 2020 16:00:30 GMT

> Cache-Control: public, max-age=86400

Overall, 60.2% of mobile resources served on the web have a cache TTL that could be

considered too short compared to its content age. Furthermore, the median delta between the

TTL and age is 25 days—again, an indication of significant under-caching.

Figure 20.24. Percent of requests with short TTLs.

Client 1st party 3rd party Overall

desktop 61.6% 59.3% 60.7%

mobile 61.8% 57.9% 60.2%

Part IV Chapter 20 : Caching

532 2020 Web Almanac by HTTP Archive

When we break this out by first-party vs third-party in the above table, we can see that almost

two-thirds (61.8%) of first-party resources can benefit from a longer TTL. This clearly highlights

a need to spend extra attention focusing on what is cacheable, and then ensuring that caching is

configured correctly.

Identifying caching opportunities

Google’s Lighthouse711 tool enables users to run a series of audits against web pages, and the

cache policy audit712 evaluates whether a site can benefit from additional caching. It does this by

comparing the content age (via the Last-Modified header) to the cache TTL and estimating

the probability that the resource would be served from cache. Depending on the score, you may

see a caching recommendation in the results, with a list of specific resources that could be

cached.

Lighthouse computes a score for each audit, ranging from 0% to 100%, and those scores are

then factored into the overall scores. The caching score is based on potential byte savings.

Figure 20.25. Lighthouse report highlighting potential cache policy improvements.

711. https://developers.google.com/web/tools/lighthouse
712. https://developers.google.com/web/tools/lighthouse/audits/cache-policy

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 533

https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse/audits/cache-policy
https://almanac.httparchive.org/static/images/2020/caching/lighthouse-caching-audit.png
https://almanac.httparchive.org/static/images/2020/caching/lighthouse-caching-audit.png

When we examine the Lighthouse results, we can get a perspective of how many sites are doing

well with their cache policies.

Only 3.3% of sites scored a 100%, meaning that the vast majority of sites can probably benefit

from some cache optimizations. Approximately two-thirds of sites score below 40%, with

almost one-third of sites scoring less than 10%. Based on this, there is a significant amount of

under-caching, resulting in excess requests and bytes being served across the network.

Lighthouse also indicates how many bytes could be saved on repeat views by enabling a longer

cache policy:

Figure 20.26. Distribution of Lighthouse caching TTL score.

Part IV Chapter 20 : Caching

534 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/caching/cache-ttl-lighthouse-score.png
https://almanac.httparchive.org/static/images/2020/caching/cache-ttl-lighthouse-score.png

Of the sites that could benefit from additional caching, more than one-fifth can reduce their

page weight by over 2 MB!

Conclusion

Caching is an incredibly powerful feature that allows browsers, proxies and other

intermediaries such as CDNs to store web content and serve it to end users. The performance

benefits of this are significant, since it reduces round-trip times and minimizes costly network

requests.

Caching is also a very complex topic, and one that is often left until late in the development

cycle (due to requirements by site developers to see the very latest version of a site while it is

still being designed), then being added in at the last minute. Additionally, caching rules are often

defined once and then never changed, even as the underlying content on a site changes.

Frequently a default value is chosen without careful consideration.

To correctly cache objects, there are numerous HTTP response headers that can convey

freshness as well as validate cached entries, and Cache-Control directives provide a

tremendous amount of flexibility and control.

Many object types and content that are typically considered to be uncacheable can actually be

cached (remember: cache as much as you can!) and many objects are cached for too short a

Figure 20.27. Distribution of potential byte savings from the Lighthouse caching audit.

Part IV Chapter 20 : Caching

2020 Web Almanac by HTTP Archive 535

https://almanac.httparchive.org/static/images/2020/caching/cache-wasted-bytes-lighthouse.png
https://almanac.httparchive.org/static/images/2020/caching/cache-wasted-bytes-lighthouse.png

period of time, requiring repeated requests and revalidation (remember: cache for as long as you

can!). However, website developers should be cautious about the additional opportunities for

mistakes that come with over-caching content.

If the site is intended to be served through a CDN, additional opportunities for caching at the

CDN to reduce server load and provide faster response to end-users should be considered,

along with the related risks of accidentally caching private information, such as cookies.

However, powerful and complex do not necessarily imply difficult. Like most everything else,

caching is controlled by rules which can be defined fairly easily to provide the best mix of

cacheability and privacy. Regularly auditing your site to ensure that cacheable resources are

cached appropriately is recommended, and tools like Lighthouse do an excellent job of helping

to simplify such an analysis.

Authors

Rory Hewitt

@roryhewitt3 roryhewitt roryhewitt https://romche.com

Enterprise Architect at Akamai713, who is passionate about performance. A British

ex-patriate, he has lived in San Francisco for more than twenty years. In his spare

time, he’s a long-distance adventure motorcyclist, snowboarder and boxer/

karateka. He likes being known as a troublemaker. Most importantly, he’s a father

and husband and the owner of Luna the cat.

Raghu Ramakrishnan

raghuramakrishnan71

Enterprise architect at Tata Consultancy Services714, working on large digital

transformation programs in the public sector. A technology enthusiast with a

special interest in performance engineering. An avid traveler, intrigued by

astronomy, history, biology, and advancements in medicine. A strong follower of

the 47th verse, Chapter 2 of Bhagavad Gita “karmaṇy-evādhikāras te mā

phaleṣhu kadāchana” meaning “You have a right to perform your prescribed duty,

but you are not entitled to the fruits of action.”

713. https://www.akamai.com/
714. https://www.tcs.com/

Part IV Chapter 20 : Caching

536 2020 Web Almanac by HTTP Archive

https://twitter.com/roryhewitt3
https://github.com/roryhewitt
https://www.linkedin.com/in/roryhewitt/
https://romche.com/
https://www.akamai.com/
https://github.com/raghuramakrishnan71
https://www.tcs.com/

Part IV Chapter 21

Resource Hints

Written by Leonardo Zizzamia
Reviewed by Jessica Nicolet, Patrick Meenan, Giovanni Puntil, Minko Gechev, and notwillk
Analyzed by Katie Hempenius
Edited by Shane Exterkamp

Introduction

Over the past decade resource hints715 have become essential primitives that allow developers

to improve page performance and therefore the user experience.

Preloading resources and having browsers apply some intelligent prioritization is something

that was actually started way back in 2009 by IE8 with something called the preloader716. In

addition to the HTML parser, IE8 had a lightweight look-ahead preloader that scanned for tags

that could initiate network requests (<script> , <link> , and).

Over the following years, browser vendors did more and more of the heavy lifting, each adding

their own special sauce for how to prioritize resources. But it’s important to understand that

the browser alone has some limitations. As developers however, we can overcome these limits

by making good use of resource hints and help decide how to prioritize resources, determining

715. https://www.w3.org/TR/resource-hints/
716. https://speedcurve.com/blog/load-scripts-async/

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 537

https://www.w3.org/TR/resource-hints/
https://speedcurve.com/blog/load-scripts-async/

which should be fetched or preprocessed to further boost page performance.

In particular we can mention a few of the victories resource hints achieved/made in the last

year:

• CSS-Tricks717 web fonts showing up faster on a 3G first render.

• Wix.com718 using resource hints got 10% improvement for FCP.

• Ironmongerydirect.co.uk719 used preconnect to improve product image loading by

400ms at the median and greater than 1s at the 95th percentile.

• Facebook.com720 used preload for faster navigation.

Let’s take a look at most predominant resource hints supported by most browsers today: dns-
prefetch , preconnect , preload , prefetch , and native lazy loading.

When working with each individual hint we advise to always measure the impact before and

after in the field, by using libraries like WebVitals721, Perfume.js722, or any other utility that

supports the Web Vitals metrics.

dns-prefetch

dns-prefetch helps resolve the IP address for a given domain ahead of time. As the oldest723

resource hint available, it uses minimal CPU and network resources compared to

preconnect , and helps the browser to avoid experiencing the “worst-case” delay for DNS

resolution, which can be over 1 second724.

<link rel="dns-prefetch" href="https://www.googletagmanager.com/">

Be mindful when using dns-prefetch as even if they are lightweight to do it’s easy to exhaust

browser limits for the number of concurrent in-flight DNS requests allowed (Chrome still has a

limit of 6725).

717. https://www.zachleat.com/web/css-tricks-web-fonts/
718. https://www.youtube.com/watch?v=4QqlGgF8Y2I&t=1469
719. https://andydavies.me/blog/2019/03/22/improving-perceived-performance-with-a-link-rel-equals-preconnect-http-header/
720. https://engineering.fb.com/2020/05/08/web/facebook-redesign/
721. https://github.com/GoogleChrome/web-vitals
722. https://github.com/zizzamia/perfume.js
723. https://caniuse.com/link-rel-dns-prefetch
724. https://www.chromium.org/developers/design-documents/dns-prefetching
725. https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;l=353

Part IV Chapter 21 : Resource Hints

538 2020 Web Almanac by HTTP Archive

https://www.zachleat.com/web/css-tricks-web-fonts/
https://www.youtube.com/watch?v=4QqlGgF8Y2I&t=1469
https://andydavies.me/blog/2019/03/22/improving-perceived-performance-with-a-link-rel-equals-preconnect-http-header/
https://engineering.fb.com/2020/05/08/web/facebook-redesign/
https://github.com/GoogleChrome/web-vitals
https://github.com/zizzamia/perfume.js
https://web.dev/preconnect-and-dns-prefetch/
https://web.dev/preconnect-and-dns-prefetch/
https://caniuse.com/link-rel-dns-prefetch
https://www.chromium.org/developers/design-documents/dns-prefetching
https://source.chromium.org/chromium/chromium/src/+/master:net/dns/host_resolver_manager.cc;l=353

preconnect

preconnect helps resolve the IP address and open a TCP/TLS connection for a given domain

ahead of time. Similar to dns-prefetch it is used for any cross-origin domain and helps the

browser to warm up any resources used during the initial page load.

<link rel="preconnect" href="https://www.googletagmanager.com/">

Be mindful when you use preconnect :

• Only warm up the most frequent and significant resources.

• Avoid warming up origins used too late in the initial load.

• Use it for no more than three origins because it can have CPU and battery cost.

Lastly, preconnect is not available for Internet Explorer or Firefox726, and using dns-
prefetch as a fallback is highly advised.

preload

The preload hint initiates an early request. This is useful for loading important resources that

would otherwise be discovered late by the parser.

<link rel="preload" href="style.css" as="style">

<link rel="preload" href="main.js" as="script">

Be mindful of what you are going to preload , because it can delay the download of other

resources, so use it only for what is most critical to help you improve the Largest Contentful

Paint (LCP727). Also, when used on Chrome, it tends to over-prioritize preload resources and

potentially dispatches preloads before other critical resources.

Lastly, if used in a HTTP response header, some CDN’s will also automatically turn a preload
into a HTTP/2 push which can over-push cached resources.

726. https://caniuse.com/?search=preconnect
727. https://web.dev/articles/lcp

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 539

https://web.dev/uses-rel-preconnect/
https://web.dev/uses-rel-preconnect/
https://caniuse.com/?search=preconnect
https://web.dev/preconnect-and-dns-prefetch/#resolve-domain-name-early-with-reldns-prefetch
https://web.dev/preconnect-and-dns-prefetch/#resolve-domain-name-early-with-reldns-prefetch
https://web.dev/preconnect-and-dns-prefetch/#resolve-domain-name-early-with-reldns-prefetch
https://web.dev/preconnect-and-dns-prefetch/#resolve-domain-name-early-with-reldns-prefetch
https://web.dev/uses-rel-preload/
https://web.dev/uses-rel-preload/
https://web.dev/articles/lcp

prefetch

The prefetch hint allows us to initiate low-priority requests we expect to be used on the next

navigation. The hint will download the resources and drop it into the HTTP cache for later

usage. Important to notice, prefetch will not execute or otherwise process the resource, and

to execute it the page will still need to call the resource by the <script> tag.

<link rel="prefetch" as="script" href="next-page.bundle.js">

There are a variety of ways to implement a resource’s prediction logic, it could be based on

signals like user mouse movement, common user flows/journeys, or even based on a

combination of both on top of machine learning.

Be mindful, depending on the quality728 of HTTP/2 prioritization of the CDN used, prefetch
prioritization could either improve performance or make it slower, by over prioritizing

prefetch requests and taking away important bandwidth for the initial load. Make sure to

double check the CDN you are using and adapt to take into consideration some of the best

practices shared in Andy Davies’s729 article.

Native lazy loading

The native lazy loading730 hint is a native browser API for deferring the load of offscreen images

and iframes. By using it, assets that are not needed during the initial page load will not initiate a

network request, this will reduce data consumption and improve page performance.

<img src="image.png" loading="lazy" alt="…" width="200"

height="200">

Be mindful Chromium’s implementation of lazy-loading thresholds logic historically has been

quite conservative731, keeping the offscreen limit to 3000px. During the last year the limit has

been actively tested and improved on to better align developer expectations, and ultimately

moving the thresholds to 1250px. Also, there is no standard across the browsers732 and no

ability for web developers to override the default thresholds provided by the browsers, yet.

728. https://github.com/andydavies/http2-prioritization-issues#current-status
729. https://andydavies.me/blog/2020/07/08/rel-equals-prefetch-and-the-importance-of-effective-http-slash-2-prioritisation/
730. https://web.dev/browser-level-image-lazy-loading/
731. https://web.dev/browser-level-image-lazy-loading/#distance-from-viewport-thresholds
732. https://github.com/whatwg/html/issues/5408

Part IV Chapter 21 : Resource Hints

540 2020 Web Almanac by HTTP Archive

https://web.dev/link-prefetch/
https://web.dev/link-prefetch/
https://github.com/andydavies/http2-prioritization-issues#current-status
https://andydavies.me/blog/2020/07/08/rel-equals-prefetch-and-the-importance-of-effective-http-slash-2-prioritisation/
https://web.dev/browser-level-image-lazy-loading/
https://web.dev/browser-level-image-lazy-loading/#distance-from-viewport-thresholds
https://github.com/whatwg/html/issues/5408

Resource hints

Based on the HTTP Archive, let’s jump into analyzing the 2020 trends, and compare the data

with the previous 2019 dataset.

Hints adoption

More and more web pages are using the main resource hints, and in 2020 we are seeing the

adoption remains consistent between desktop & mobile.

The relative popularity of dns-prefetch with 33% adoption compared with other resource

hints is unsurprising as it first appeared in 2009, and has the widest support out of all major

resource hints.

Compared to 2019733 the dns-prefetch had a 4% increase in Desktop adoption. We saw a

similar increase for preconnect as well. One key reason this was the largest growth between

all hints, is the clear and useful advice the Lighthouse audit734 is giving on this matter. Starting

from this year’s report we also introduce how the latest dataset performs against Lighthouse

recommendations.

Figure 21.1. Adoption of resource hints.

733. https://almanac.httparchive.org/en/2019/resource-hints#resource-hints
734. https://web.dev/uses-rel-preconnect/

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 541

https://almanac.httparchive.org/static/images/2020/resource-hints/adoption-of-resource-hints.png
https://almanac.httparchive.org/static/images/2020/resource-hints/adoption-of-resource-hints.png
https://almanac.httparchive.org/en/2019/resource-hints#resource-hints
https://web.dev/uses-rel-preconnect/

preload usage has had a slower growth with only a 2% increase from 2019. This could be in

part because it requires a bit more specification. While you only need the domain to use dns-
prefetch and preconnect , you must specify the resource to use preload . While dns-
prefetch and preconnect are reasonably low risk, though still can be abused, preload
has a much greater potential to actually damage performance if used incorrectly.

prefetch is used by 3% of sites on Desktop, making it the least widely used resource hint.

This low usage may be explained by the fact that prefetch is useful for improving

subsequent, rather than current, page loads. Thus, it will be overlooked if a site is only focused

on improving its landing page, or the performance of the first page viewed. In the coming years

with a more clear definition on what to measure for improving subsequent page experience, it

could help teams prioritize prefetch adoption with clear performance quality goals to reach.

Hints per page

Across the board developers are learning how to better use resource hints, and compared to

2019735 we’ve seen an improved use of preload , prefetch , and preconnect . For

expensive operations like preload and preconnect the median usage on desktop decreased

from 2 to 1. We have seen the opposite for loading future resources with a lower priority with

prefetch , with an increase from 1 to 2 in median per page.

Figure 21.2. Adoption of resource hints 2019 vs 2020.

735. https://almanac.httparchive.org/en/2019/resource-hints#resource-hints

Part IV Chapter 21 : Resource Hints

542 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/resource-hints/resource-hint-adoption-2019-vs-2020.png
https://almanac.httparchive.org/static/images/2020/resource-hints/resource-hint-adoption-2019-vs-2020.png
https://almanac.httparchive.org/en/2019/resource-hints#resource-hints

Resource hints are most effective when they’re used selectively (“when everything is

important, nothing is”). Having a more clear definition of what resources help improve critical

rendering, versus future navigation optimizations, can move the focus away from using

preconnect and more towards prefetch by shifting some of the resource prioritization

and freeing up bandwidth for what most helps the user at first.

However, this hasn’t stopped some misuse of the preload hint, since in one instance we

discovered a page dynamically adding the hint and causing an infinite loop that created over

20k new preloads.

As we create more and more automation with resource hints, be cautious when dynamically

injecting preload hints - or any elements for that matter!

The as attribute

With preload and prefetch , it’s crucial to use the as attribute to help the browser

Figure 21.3. Median number of hints per page.

Figure 21.4. The most preload hints on a single page.

20,931

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 543

https://almanac.httparchive.org/static/images/2020/resource-hints/median-number-of-hints-per-page.png
https://almanac.httparchive.org/static/images/2020/resource-hints/median-number-of-hints-per-page.png

prioritize the resource more accurately. Doing so allows for proper storage in the cache for

future requests, applying the correct Content Security Policy (CSP736), and setting the correct

Accept request headers.

With preload many different content-types can be preloaded and the full list737 follows the

recommendations made in the Fetch spec738. The most popular is the script type with 64%

usage. This is likely related to a large group of sites built as Single Page Apps that need the main

bundle as soon as possible to start downloading the rest of their JS dependencies. Subsequent

usage comes from font at 8%, style at 5%, image at 1%, and fetch at 1%.

Compared to the trend in 2019739, we’ve seen rapid growth in font and style usage with the as
attribute. This is likely related to developers increasing the priority of critical CSS and also

combining preload fonts with display:optional to improve740 Cumulative Layout Shift

(CLS741).

Be mindful that omitting the as attribute, or having an invalid value will make it harder for the

browser to determine the correct priority and in some cases, such as scripts, can even cause the

resource to be fetched twice.

Figure 21.5. Mobile as attribute values by year.

736. https://developer.mozilla.org/docs/Web/HTTP/CSP
737. https://developer.mozilla.org/docs/Web/HTML/Element/link#Attributes
738. https://fetch.spec.whatwg.org/#concept-request-destination
739. https://almanac.httparchive.org/en/2019/resource-hints#the-as-attribute
740. https://web.dev/articles/optimize-cls#web-fonts-causing-foutfoit
741. https://web.dev/articles/cls

Part IV Chapter 21 : Resource Hints

544 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/CSP
https://developer.mozilla.org/docs/Web/HTML/Element/link#Attributes
https://fetch.spec.whatwg.org/#concept-request-destination
https://almanac.httparchive.org/static/images/2020/resource-hints/mobile-as-attribute-values-by-year.png
https://almanac.httparchive.org/static/images/2020/resource-hints/mobile-as-attribute-values-by-year.png
https://almanac.httparchive.org/en/2019/resource-hints#the-as-attribute
https://web.dev/articles/optimize-cls#web-fonts-causing-foutfoit
https://web.dev/articles/cls

The crossorigin attribute

With preload and preconnect resources that have CORS enabled, such as fonts, it’s

important to include the crossorigin attribute, in order for the resource to be properly

used. If the crossorigin attribute is absent, the request will follow the single-origin policy

thereby making the use of preload useless.

The latest trends show that 16.96% of elements that preload also set crossorigin and

load in anonymous (or equivalent) modes, and only 0.02% utilize the use-credentials case.

This rate has increased in conjunction with the increase in font-preloading, as mentioned

earlier.

<link rel="preload" href="ComicSans.woff2" as="font" type="font/

woff2" crossorigin>

Be mindful that fonts preloaded without the crossorigin attribute will be fetched twice742!

The media attribute

When it’s time to choose a resource for use with different screen sizes, reach for the media
attribute with preload to optimize your media queries.

<link rel="preload" href="a.css" as="style" media="only screen and

(min-width: 768px)">

<link rel="preload" href="b.css" as="style" media="screen and (max-

width: 430px)">

Seeing over 2,100 different combinations of media queries in the 2020 dataset encourages us

to consider how wide the variance is between concept and implementation of responsive

Figure 21.6. The percent of elements with preload that use crossorigin .

16.96%

742. https://web.dev/preload-critical-assets/#how-to-implement-relpreload

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 545

https://web.dev/preload-critical-assets/#how-to-implement-relpreload

design from site to site. The ever popular 767px/768px breakpoints (as popularized by

Bootstrap amongst others) can be seen in the data.

Best practices

Using resource hints can be confusing at times, so let’s go over some quick best practices to

follow based on Lighthouse’s automated audit.

To safely implement dns-prefetch and preconnect make sure to have them in separate

links tags.

<link rel="preconnect" href="http://example.com">

<link rel="dns-prefetch" href="http://example.com">

Implementing a dns-prefetch fallback in the same <link> tag causes a bug743 in Safari that

cancels the preconnect request. Close to 2% of pages (~40k) reported the issue of both

preconnect & dns-prefetch in a single resource.

In the case of “Preconnect to required origins744” audit, we saw only 19.67% of pages passing the

test, creating a large opportunity for thousands of websites to start using preconnect or

dns-prefetch to establish early connections to important third-party origins.

Lastly, running Lighthouse’s “Preload key requests745” audit resulted in 84.6% of pages passing

the test. If you are looking to use preload for the first time, remember, fonts and critical

scripts are a good place to start.

Native Lazy Loading

Now let’s celebrate the first year of the Native Lazy Loading746 API, which at the time of

publishing already has over 72%747 browser support. This new API can be used to defer the load

Figure 21.7. The percent of pages that pass the preconnect Lighthouse audit.

19.67%

743. https://bugs.webkit.org/show_bug.cgi?id=197010
744. https://web.dev/uses-rel-preconnect/
745. https://web.dev/uses-rel-preload/
746. https://addyosmani.com/blog/lazy-loading/
747. https://caniuse.com/loading-lazy-attr

Part IV Chapter 21 : Resource Hints

546 2020 Web Almanac by HTTP Archive

https://bugs.webkit.org/show_bug.cgi?id=197010
https://web.dev/uses-rel-preconnect/
https://web.dev/uses-rel-preload/
https://addyosmani.com/blog/lazy-loading/
https://caniuse.com/loading-lazy-attr

of below-the-fold iframes and images on the page until the user scrolls near them. This can

reduce data usage, memory usage, and helps speed up above-the-fold content. Opting-in to lazy

load is as simple as adding loading=lazy on <iframe> or elements.

Adoption is still in its early days, especially with the official thresholds earlier this year being

too conservative, and only recently748 aligning with developer expectations. With almost 72% of

browsers supporting native image/source lazy loading, this is another area of opportunity

especially for pages looking to improve data usage and performance on low-end devices.

Running Lighthouse’s “Defer offscreen images749” audit resulted in 68.65% of pages passing the

test. For those pages there is an opportunity to lazy-load images after all critical resources have

finished loading.

Be mindful to run the audit on both desktop and mobile as images may move off screen when

the viewport changes.

Predictive prefetching

Combining prefetch with machine learning can help improve the performance of subsequent

page(s). One solution is Guess.js750 which made the initial breakthrough in predictive-

prefetching, with over a dozen websites already using it in production.

Predictive prefetching751 is a technique that uses methods from data analytics and machine

learning to provide a data-driven approach to prefetching. Guess.js is a library that has

predictive prefetching support for popular frameworks (Angular, Nuxt.js, Gatsby, and Next.js)

and you can take advantage of it today. It ranks the possible navigations from a page and

prefetches only the JavaScript that is likely to be needed next.

Depending on the training set, the prefetching of Guess.js comes with over 90% accuracy.

Overall, predictive prefetching is still uncharted territory, but combined with prefetching on

mouse over and Service Worker prefetching, it has great potential to provide instant

Figure 21.8. The percent of pages using native lazy loading.

4.02%

748. https://addyosmani.com/blog/better-image-lazy-loading-in-chrome/
749. https://web.dev/offscreen-images/
750. https://github.com/guess-js/guess
751. https://web.dev/predictive-prefetching/

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 547

https://addyosmani.com/blog/better-image-lazy-loading-in-chrome/
https://web.dev/offscreen-images/
https://github.com/guess-js/guess
https://web.dev/predictive-prefetching/

experiences for all users of the website, while saving their data.

HTTP/2 Push

HTTP/2 has a feature called “server push” that can potentially improve page performance when

your product experiences long Round Trip Times(RTTs752) or server processing. In brief, rather

than waiting for the client to send a request, the server preemptively pushes a resource that it

predicts the client will request soon afterwards.

HTTP/2 Push is often initiated through the preload link header. In the 2020 dataset we have

seen 1% of mobile pages using HTTP/2 Push, and of those 75% of preload header links use the

nopush option in the page request. This means that even though a website is using the

preload resource hint, the majority prefer to use just this and disable HTTP/2 pushing of that

resource.

It’s important to mention that HTTP/2 Push can also damage performance if not used correctly

which probably explains why it is often disabled.

One solution to this, is to use the PRPL Pattern753 which stands for Push (or preload) the critical

resources, Render the initial route as soon as possible, Pre-cache remaining assets, and Lazy-

load other routes and non-critical assets. This is possible only if your website is a Progressive

Web App and uses a Service Worker to improve the caching strategy. By doing this, all

subsequent requests never even go out to the network and so there’s no need to push all the

time and we still get the best of both worlds.

Service Workers

For both preload and prefetch we’ve had an increase in adoption when the page is

controlled by a Service Worker754. This is because of the potential to both improve the resource

prioritization by preloading when the Service Worker is not active yet and intelligently

prefetching future resources while letting the Service Worker cache them before they’re

Figure 21.9. The percent of HTTP/2 Push pages using preload / nopush .

75.36%

752. https://developer.mozilla.org/docs/Glossary/Round_Trip_Time_(RTT)
753. https://addyosmani.com/blog/the-prpl-pattern/
754. https://developers.google.com/web/fundamentals/primers/service-workers

Part IV Chapter 21 : Resource Hints

548 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Glossary/Round_Trip_Time_(RTT)
https://addyosmani.com/blog/the-prpl-pattern/
https://developers.google.com/web/fundamentals/primers/service-workers

needed by the user.

For preload on desktop we have an outstanding 47% rate of adoption and prefetch a 10%

rate of adoption. In both cases the data is much higher compared to average adoption without a

Service Worker.

As mentioned earlier, the PRPL Pattern755 will play a significant role in the coming years in how

we combine resource hints with the Service Worker caching strategy.

Future

Let’s dive into a couple of experimental hints. Very close to release we have Priority Hints,

which is actively experimented with in the web community. We also have the 103 Early Hints in

HTTP/2, which is still in early inception and there are a few players like Chrome and Fastly

collaborating for upcoming test trials756.

Priority hints

Priority hints757 are an API for expressing the fetch priority of a resource: high, low, or auto. They

Figure 21.10. Resource hint adoption on Service Worker pages.

755. https://addyosmani.com/blog/the-prpl-pattern/
756. https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
757. https://developers.google.com/web/updates/2019/02/priority-hints

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 549

https://almanac.httparchive.org/static/images/2020/resource-hints/resource-hint-adoption-onservice-worker-pages.png
https://almanac.httparchive.org/static/images/2020/resource-hints/resource-hint-adoption-onservice-worker-pages.png
https://addyosmani.com/blog/the-prpl-pattern/
https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
https://developers.google.com/web/updates/2019/02/priority-hints

can be used to help deprioritize images (e.g. inside a Carousel), re-prioritize scripts, and even

help de-prioritize fetches.

This new hint can be used either as an HTML tag or by changing the priority of fetch requests

via the importance option, which takes the same values as the HTML attribute.

<!-- We want to initiate an early fetch for a resource, but also

deprioritize it -->

<link rel="preload" href="/js/script.js" as="script"

importance="low">

<!-- An image the browser assigns "High" priority, but we don't

actually want that. -->

<img src="/img/in_view_but_not_important.svg" importance="low"

alt="I'm not important!">

With preload and prefetch , the priority is set by the browser depending on the type of

resource. By using Priority Hints we can force the browser to change the default option.

So far only 0.77% websites adopted this new hint as Chrome is still actively758 experimenting,

and at the time of this article’s release the feature is on-hold.

The largest use is with script elements, which is unsurprising as the number of JS primary and

third-party files continues to grow.

The data shows us that 83% of resources using Priority Hints use a “high” priority on mobile,

Figure 21.11. The percent of Priority Hint adoption on mobile.

0.77%

Figure 21.12. The percent of mobile resources with a hint that use the low priority.

16%

758. https://www.chromestatus.com/features/5273474901737472

Part IV Chapter 21 : Resource Hints

550 2020 Web Almanac by HTTP Archive

https://www.chromestatus.com/features/5273474901737472

but something we should pay even more attention to is the 16% of resources with “low”

priority.

Priority hints have a clear advantage as a tool to prevent wasteful loading via the “low” priority

by helping the browser decide what to de-prioritize and giving back significant CPU and

bandwidth to complete critical requests first, rather than as a tactic to try to get resources

loaded more quickly with the “high” priority.

103 Early Hints in HTTP/2

Previously we mentioned that HTTP/2 Push could actually cause regression in cases where

assets being pushed were already in the browser cache. The 103 Early Hints759 proposal aims to

provide similar benefits promised by HTTP/2 push. With an architecture that is potentially 10x

simpler, it addresses the long RTT’s or server processing without suffering from the known

worst-case issue of unnecessary round trips with server push.

As of right now you can follow the conversation on Chromium with issues 671310760, 1093693761,

and 1096414762.

Conclusion

During the past year resource hints increased in adoption, and they have become essential APIs

for developers to have more granular control over many aspects of resource prioritizations and

ultimately, user experience. But let’s not forget that these are hints, not instructions and

unfortunately the Browser and the network will always have the final say.

Sure, you can slap them on a bunch of elements, and the browser may do what you’re asking it

to. Or it may ignore some hints and decide the default priority is the best choice for the given

situation. In any case, make sure to have a playbook for how to best use these hints:

• Identify key pages for the user experience.

• Analyze the most important resources to optimize.

• Adopt the PRPL Pattern763 when possible.

• Measure the performance experience before and after each implementation.

759. https://tools.ietf.org/html/rfc8297
760. https://bugs.chromium.org/p/chromium/issues/detail?id=671310
761. https://bugs.chromium.org/p/chromium/issues/detail?id=1093693
762. https://bugs.chromium.org/p/chromium/issues/detail?id=1096414
763. https://addyosmani.com/blog/the-prpl-pattern/

Part IV Chapter 21 : Resource Hints

2020 Web Almanac by HTTP Archive 551

https://tools.ietf.org/html/rfc8297
https://bugs.chromium.org/p/chromium/issues/detail?id=671310
https://bugs.chromium.org/p/chromium/issues/detail?id=1093693
https://bugs.chromium.org/p/chromium/issues/detail?id=1096414
https://addyosmani.com/blog/the-prpl-pattern/

As a final note, let’s remember that the web is for everyone. We must continue to protect it and

stay focused on building experiences that are easy and frictionless.

We are thrilled to see that year after year we get incrementally closer to offering all the APIs

required to simplify building a great web experience for everyone, and we can’t wait to see

what comes next.

Author

Leonardo Zizzamia

@Zizzamia Zizzamia https://twitter.com/zizzamia

Leonardo is a Staff Software Engineer at Coinbase764, leading web performance and

growth initiatives. He curates the NGRome Conference765. Leo also maintains the

Perfume.js766 library, which helps companies prioritize roadmaps and make better

business decisions through performance analytics.

764. https://www.coinbase.com/
765. https://ngrome.io
766. https://github.com/Zizzamia/perfume.js

Part IV Chapter 21 : Resource Hints

552 2020 Web Almanac by HTTP Archive

https://twitter.com/Zizzamia
https://github.com/Zizzamia
https://twitter.com/zizzamia
https://www.coinbase.com/
https://ngrome.io/
https://github.com/Zizzamia/perfume.js

Part IV Chapter 22

HTTP/2

Written by Andrew Galloni, Robin Marx, and Mike Bishop
Reviewed by Lucas Pardue, Barry Pollard, and Sawood Alam
Analyzed by Greg Wolf
Edited by Rick Viscomi

Introduction

HTTP is an application layer protocol designed to transfer information between networked

devices and runs on top of other layers of the network protocol stack. After HTTP/1.x was

released, it took over 20 years until the first major update, HTTP/2, was made a standard in

2015.

It didn’t stop there: over the last four years, HTTP/3 and QUIC (a new latency-reducing,

reliable, and secure transport protocol) have been under standards development in the IETF

QUIC working group. There are actually two protocols that share the same name: “Google

QUIC” (“gQUIC” for short), the original protocol that was designed and used by Google, and the

newer IETF standardized version (IETF QUIC/QUIC). IETF QUIC was based on gQUIC, but has

grown to be quite different in design and implementation. On October 21, 2020, draft 32 of

IETF QUIC reached a significant milestone when it moved to Last Call767. This is the part of the

767. https://mailarchive.ietf.org/arch/msg/quic/ye1LeRl7oEz898RxjE6D3koWhn0/

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 553

https://mailarchive.ietf.org/arch/msg/quic/ye1LeRl7oEz898RxjE6D3koWhn0/

standardization process when the working group believes they are almost finished and

requests a final review from the wider IETF community.

This chapter reviews the current state of HTTP/2 and gQUIC deployment. It explores how well

some of the newer features of the protocol, such as prioritization and server push, have been

adopted. We then look at the motivations for HTTP/3, describe the major differences between

the protocol versions, and discuss the potential challenges in upgrading to a UDP-based

transport protocol with QUIC.

HTTP/1.0 to HTTP/2

As the HTTP protocol has evolved, the semantics of HTTP have stayed the same; there have

been no changes to the HTTP methods (such as GET or POST), status codes (200, or the

dreaded 404), URIs, or header fields. Where the HTTP protocol has changed, the differences

have been the wire-encoding and the use of features of the underlying transport.

HTTP/1.0, published in 1996, defined the text-based application protocol, allowing clients and

servers to exchange messages in order to request resources. A new TCP connection was

required for each request/response, which introduced overhead. TCP connections use a

congestion control algorithm to maximize how much data can be in-flight. This process takes

time for each new connection. This “slow-start” means that not all the available bandwidth is

used immediately.

In 1997, HTTP/1.1 was introduced to allow TCP connection reuse by adding “keep-alives”,

aimed at reducing the total cost of connection start-ups. Over time, increasing website

performance expectations led to the need for concurrency of requests. HTTP/1.1 could only

request another resource after the previous response had completed. Therefore, additional

TCP connections had to be established, reducing the impact of the keep-alive connections and

further increasing overhead.

HTTP/2, published in 2015, is a binary-based protocol that introduced the concept of

bidirectional streams between client and server. Using these streams, a browser can make

optimal use of a single TCP connection to multiplex multiple HTTP requests/responses

concurrently. HTTP/2 also introduced a prioritization scheme to steer this multiplexing; clients

can signal a request priority that allows more important resources to be sent ahead of others.

HTTP/2 Adoption

The data used in this chapter is sourced from the HTTP Archive and tests over seven million

websites with a Chrome browser. As with other chapters, the analysis is split by mobile and

Part IV Chapter 22 : HTTP/2

554 2020 Web Almanac by HTTP Archive

desktop websites. When the results between desktop and mobile are similar, statistics are

presented from the mobile dataset. You can find more details on the Methodology page. When

reviewing this data, please bear in mind that each website will receive equal weight regardless

of the number of requests. We suggest you think of this more as investigating the trends across

a broad range of active websites.

Last year’s analysis of HTTP Archive data showed that HTTP/2 was used for over 50% of

requests and, as can be seen, linear growth has continued in 2020; now in excess of 60% of

requests are served over HTTP/2.

When comparing Figure 22.3 with last year’s results, there has been a 10% increase in HTTP/2

requests and a corresponding 10% decrease in HTTP/1.x requests. This is the first year that

gQUIC can be seen in the dataset.

Figure 22.1. HTTP/2 usage by request. (Source: HTTP Archive768)

Figure 22.2. The percentage of requests that use HTTP/2.

64%

768. https://httparchive.org/reports/state-of-the-web#h2

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 555

https://httparchive.org/reports/state-of-the-web#h2
https://httparchive.org/reports/state-of-the-web#h2
https://httparchive.org/reports/state-of-the-web#h2

** As with last year’s crawl, around 4% of desktop requests did not report a protocol version. Analysis

shows these to mostly be HTTP/1.1 and we worked to fix this gap in our statistics for future crawls and

analysis. Although we base the data on the August 2020 crawl, we confirmed the fix in the October

2020 data set before publication which did indeed show these were HTTP/1.1 requests and so have

added them to that statistic in above table.

When reviewing the total number of website requests, there will be a bias towards common

third-party domains. To get a better understanding of the HTTP/2 adoption by server install, we

will look instead at the protocol used to serve the HTML from the home page of a site.

Last year around 37% of home pages were served over HTTP/2 and 63% over HTTP/1. This

year, combining mobile and desktop, it is a roughly equal split, with slightly more desktop sites

being served over HTTP/2 for the first time, as shown in Figure 22.4.

gQUIC is not seen in the home page data for two reasons. To measure a website over gQUIC,

the HTTP Archive crawl would have to perform protocol negotiation via the alternative

services header and then use this endpoint to load the site over gQUIC. This was not supported

this year, but expect it to be available in next year’s Web Almanac. Also, gQUIC is

predominantly used for third-party Google tools rather than serving home pages.

The drive to increase security and privacy on the web has seen requests over TLS increase by

over 150% in the last 4 years769. Today, over 86% of all requests on mobile and desktop are

Figure 22.3. HTTP version usage by request.

Protocol Desktop Mobile

HTTP/1.1 **34.47% 34.11%

HTTP/2 63.70% 63.80%

gQUIC 1.72% 1.71%

Figure 22.4. HTTP version usage for home pages.

Protocol Desktop Mobile

HTTP/1.0 0.06% 0.05%

HTTP/1.1 49.22% 50.05%

HTTP/2 49.97% 49.28%

769. https://httparchive.org/reports/state-of-the-web#pctHttps

Part IV Chapter 22 : HTTP/2

556 2020 Web Almanac by HTTP Archive

https://httparchive.org/reports/state-of-the-web#pctHttps

encrypted. Looking only at home pages, the numbers are still an impressive 78.1% of desktop

and 74.7% of mobile. This is important because HTTP/2 is only supported by browsers over

TLS. The proportion served over HTTP/2, as shown in Figure 22.5, has also increased by 10

percentage points from last year770, from 55% to 65%.

With over 60% of websites being served over HTTP/2 or gQUIC, let’s look a little deeper into

the pattern of protocol distribution for all requests made across individual sites.

Figure 22.6 compares how much HTTP/2 or gQUIC is used on a website between this year and

last year. The most noticeable change is that over half of sites now have 75% or more of their

requests served over HTTP/2 or gQUIC compared to 46% last year. Less than 7% of sites make

no HTTP/2 or gQUIC requests, while (only) 10% of sites are entirely HTTP/2 or gQUIC

requests.

Figure 22.5. HTTP version usage for HTTPS home pages.

Protocol Desktop Mobile

HTTP/1.1 36.05% 34.04%

HTTP/2 63.95% 65.96%

Figure 22.6. Compare the distribution of fraction of HTTP/2 requests per page in 2020 with 2019.

770. https://almanac.httparchive.org/en/2019/http#fig-5

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 557

https://almanac.httparchive.org/en/2019/http#fig-5
https://almanac.httparchive.org/static/images/2020/http/http2-h2-or-gquic-requests-per-page.png
https://almanac.httparchive.org/static/images/2020/http/http2-h2-or-gquic-requests-per-page.png

What about the breakdown of the page itself? We typically talk about the difference between

first-party and third-party content. Third-party is defined as content not within the direct

control of the site owner, providing functionality such as advertising, marketing or analytics.

The definition of known third parties is taken from the third party web771 repository.

Figure 22.7 orders every website by the fraction of HTTP/2 requests for known third parties or

first party requests compared to other requests. There is a noticeable difference as over 40% of

all sites have no first-party HTTP/2 or gQUIC requests at all. By contrast, even the lowest 5% of

pages have 30% of third-party content served over HTTP/2. This indicates that a large part of

HTTP/2’s broad adoption is driven by the third parties.

Is there any difference in which content-types are served over HTTP/2 or gQUIC? Figure 22.8

shows, for example, that 90% of websites serve 100% of third party fonts and audio over HTTP/

2 or gQUIC, only 5% over HTTP/1.1 and 5% are a mix. The majority of third-party assets are

either scripts or images, and are solely served over HTTP/2 or gQUIC on 60% and 70% of

websites respectively.

Figure 22.7. The distribution of the fraction of third-party and first-party HTTP/2 requests per page.

771. https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5

Part IV Chapter 22 : HTTP/2

558 2020 Web Almanac by HTTP Archive

https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5
https://almanac.httparchive.org/static/images/2020/http/http2-first-and-third-party-http2-usage.png
https://almanac.httparchive.org/static/images/2020/http/http2-first-and-third-party-http2-usage.png

Ads, analytics, content delivery network (CDN) resources, and tag-managers are

predominantly served over HTTP/2 or gQUIC as shown in Figure 22.9. Customer-success and

marketing content is more likely to be served over HTTP/1.

Figure 22.8. The fraction of known third-party HTTP/2 or gQUIC requests by content-type per
website.

Figure 22.9. The fraction of known third-party HTTP/2 or gQUIC requests by category per website.

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 559

https://almanac.httparchive.org/static/images/2020/http/http2-third-party-http2-usage-by-content-type.png
https://almanac.httparchive.org/static/images/2020/http/http2-third-party-http2-usage-by-content-type.png
https://almanac.httparchive.org/static/images/2020/http/http2-third-party-http2-usage-by-category.png
https://almanac.httparchive.org/static/images/2020/http/http2-third-party-http2-usage-by-category.png

Server support

Browser auto-update mechanisms are a driving factor for client-side adoption of new web

standards. It’s estimated772 that over 97% of global users support HTTP/2, up slightly from 95%

measured last year.

Unfortunately, the upgrade path for servers is more difficult, especially with the requirement to

support TLS. For mobile and desktop, we can see from Figure 22.10, that the majority of HTTP/

2 sites are served by nginx, Cloudflare, and Apache. Almost half of the HTTP/1.1 sites are

served by Apache.

How has HTTP/2 adoption changed in the last year for each server? Figure 22.11 shows a

general HTTP/2 adoption increase of around 10% across all servers since last year. Apache and

IIS are still under 25% HTTP/2. This suggests that either new servers tend to be nginx or it is

seen as too difficult or not worthwhile to upgrade Apache or IIS to HTTP/2 and/or TLS.

Figure 22.10. Server usage by HTTP protocol on mobile

772. https://caniuse.com/http2

Part IV Chapter 22 : HTTP/2

560 2020 Web Almanac by HTTP Archive

https://caniuse.com/http2
https://almanac.httparchive.org/static/images/2020/http/http2-server-protocol-usage.png
https://almanac.httparchive.org/static/images/2020/http/http2-server-protocol-usage.png

A long-term recommendation to improve website performance has been to use a CDN. The

benefit is a reduction in latency by both serving content and terminating connections closer to

the end user. This helps mitigate the rapid evolution in protocol deployment and the additional

complexities in tuning servers and operating systems (see the Prioritization section for more

details). To utilize the new protocols effectively, using a CDN can be seen as the recommended

approach.

CDNs can be classed in two broad categories: those that serve the home page and/or asset

subdomains, and those that are mainly used to serve third-party content. Examples of the first

category are the larger generic CDNs (such as Cloudflare, Akamai, or Fastly) and the more

specific (such as WordPress or Netlify). Looking at the difference in HTTP/2 adoption rates for

home pages served with or without a CDN, we see:

• 80% of mobile home pages are served over HTTP/2 if a CDN is used

• 30% of mobile home pages are served over HTTP/2 if a CDN is not used

Figure 22.12 shows the more specific and the modern CDNs serve a higher proportion of traffic

over HTTP/2.

Figure 22.11. Percentage of pages served over HTTP/2 by server

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 561

https://almanac.httparchive.org/static/images/2020/http/http2-h2-usage-by-server.png
https://almanac.httparchive.org/static/images/2020/http/http2-h2-usage-by-server.png

Types of content in the second category are typically shared resources (JavaScript or font

CDNs), advertisements, or analytics. In all these cases, using a CDN will improve the

performance and offload for the various SaaS solutions.

In Figure 22.13 we can see the stark difference in HTTP/2 and gQUIC adoption when a website

is using a CDN. 70% of pages use HTTP/2 for all third-party requests when a CDN is used.

Without a CDN, only 25% of pages use HTTP/2 for all third-party requests.

Figure 22.12. Percentage of HTTP/2 requests served by the first-party CDNs over mobile.

HTTP/2 (%) CDN

100%
Bison Grid, CDNsun, LeaseWeb CDN, NYI FTW, QUIC.cloud, Roast.io, Sirv CDN, Twitter, Zycada

Networks

90 - 99%
Automattic, Azion, BitGravity, Facebook, KeyCDN, Microsoft Azure, NGENIX, Netlify, Yahoo,

section.io, Airee, BunnyCDN, Cloudflare, GoCache, NetDNA, SFR, Sucuri Firewall

70 - 89%
Amazon CloudFront, BelugaCDN, CDN, CDN77, Erstream, Fastly, Highwinds, OVH CDN, Yottaa,

Edgecast, Myra Security CDN, StackPath, XLabs Security

20 - 69%
Akamai, Aryaka, Google, Limelight, Rackspace, Incapsula, Level 3, Medianova, OnApp, Singular

CDN, Vercel, Cachefly, Cedexis, Reflected Networks, Universal CDN, Yunjiasu, CDNetworks

< 20% Rocket CDN, BO.LT, ChinaCache, KINX CDN, Zenedge, ChinaNetCenter

Figure 22.13. Comparison of HTTP/2 and gQUIC usage for websites using a CDN.

Part IV Chapter 22 : HTTP/2

562 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/http/http2-cdn-http2-usage.png
https://almanac.httparchive.org/static/images/2020/http/http2-cdn-http2-usage.png

HTTP/2 impact

Measuring the impact of how a protocol is performing is difficult with the current HTTP Archive

approach. It would be really fascinating to be able to quantify the impact of concurrent

connections, the effect of packet loss, and different congestion control mechanisms. To really

compare performance, each website would have to be crawled over each protocol over

different network conditions. What we can do instead is to look into the impact on the number

of connections a website uses.

Reducing connections

As discussed earlier, HTTP/1.1 only allows a single request at a time over a TCP connection.

Most browsers get around this by allowing six parallel connections per host. The major

improvement with HTTP/2 is that multiple requests can be multiplexed over a single TCP

connection. This should reduce the total number of connections—and the associated time and

resources—required to load a page.

Figure 22.15 shows how the number of TCP connections per page has reduced in 2020

compared with 2016. Half of all websites now use 13 or fewer TCP connections in 2020

compared with 23 connections in 2016; a 44% decrease. In the same time period the median

Figure 22.14. Distribution of total number of connections per page

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 563

https://almanac.httparchive.org/static/images/2020/http/http2-total-number-of-connections-per-page.png
https://almanac.httparchive.org/static/images/2020/http/http2-total-number-of-connections-per-page.png
https://httparchive.org/reports/state-of-the-web#reqTotal

number of requests773 has only dropped from 74 to 73. The median number of requests per TCP

connection has increased from 3.2 to 5.6.

TCP was designed to maintain an average data flow that is both efficient and fair. Imagine a flow

control process where each flow both exerts pressure on and is responsive to all other flows, to

provide a fair share of the network. In a fair protocol, every TCP session does not crowd out any

other session and over time will take 1/N of the path capacity.

The majority of websites still open over 15 TCP connections. In HTTP/1.1, the six connections a

browser could open to a domain can over time claim six times as much bandwidth as a single

HTTP/2 connection. Over low capacity networks, this can slow down the delivery of content

from the primary asset domains as the number of contending connections increases and takes

bandwidth away from the important requests. This favors websites with a small number of

third-party domains.

HTTP/2 does allow for connection reuse774 across different, but related domains. For a TLS

resource, it requires a certificate that is valid for the host in the URI. This can be used to reduce

the number of connections required for domains under the control of the site author.

Prioritization

As HTTP/2 responses can be split into many individual frames, and as frames from multiple

streams can be multiplexed, the order in which the frames are interleaved and delivered by the

server becomes a critical performance consideration. A typical website consists of many

different types of resources: the visible content (HTML, CSS, images), the application logic

(JavaScript), ads, analytics for tracking site usage, and marketing tracking beacons. With

knowledge of how a browser works, an optimal ordering of the resources can be defined that

will result in the fastest user experience. The difference between optimal and non-optimal can

be significant—as much as a 50% performance improvement or more!

HTTP/2 introduced the concept of prioritization to help the client communicate to the server

how it thinks the multiplexing should be done. Every stream is assigned a weight (how much of

the available bandwidth the stream should be allocated) and possibly a parent (another stream

which should be delivered first). With the flexibility of HTTP/2’s prioritization model, it is not

altogether surprising that all of the current browser engines implemented different

prioritization strategies775, none of which are optimal776.

There are also problems on the server side, leading to many servers implementing prioritization

either poorly or not at all. In the case of HTTP/1.x, tuning the server-side send buffers to be as

773. https://httparchive.org/reports/state-of-the-web#reqTotal
774. https://tools.ietf.org/html/rfc7540#section-9.1
775. https://calendar.perfplanet.com/2018/http2-prioritization/
776. https://www.youtube.com/watch?v=nH4iRpFnf1c

Part IV Chapter 22 : HTTP/2

564 2020 Web Almanac by HTTP Archive

https://httparchive.org/reports/state-of-the-web#reqTotal
https://tools.ietf.org/html/rfc7540#section-9.1
https://calendar.perfplanet.com/2018/http2-prioritization/
https://calendar.perfplanet.com/2018/http2-prioritization/
https://www.youtube.com/watch?v=nH4iRpFnf1c

big as possible has no downside, other than the increase in memory use (trading off memory for

CPU), and is an effective way to increase the throughput of a web server. This is not true for

HTTP/2, as data in the TCP send buffer cannot be re-prioritized if a request for a new, more

important resource comes in. For an HTTP/2 server, the optimal send buffer size is thus the

minimum amount of data required to fully utilize the available bandwidth. This allows the

server to respond immediately if a higher-priority request is received.

This problem of large buffers messing with (re-)prioritization also exists in the network, where

it goes by the name “bufferbloat”. Network equipment would rather buffer packets than drop

them when there’s a short burst. However, if the server sends more data than the path to the

client can consume, these buffers fill to capacity. These bytes already “stored” on the network

limit the server’s ability to send a higher-priority response earlier, just as a large send buffer

does. To minimize the amount of data held in buffers, a recent congestion control algorithm

such as BBR should be used777.

This test suite778 maintained by Andy Davies measures and reports how various CDN and cloud

hosting services perform. The bad news is that only 9 of the 36 services prioritize correctly.

Figure 22.16 shows that for sites using a CDN, around 31.7% do not prioritize correctly. This is

up from 26.82% last year, mainly due to the increase in Google CDN usage. Rather than relying

on the browser-sent priorities, there are some servers that implement a server side

prioritization779 scheme instead, improving upon the browser’s hints with additional logic.

777. https://blog.cloudflare.com/http-2-prioritization-with-nginx/
778. https://github.com/andydavies/http2-prioritization-issues
779. https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 565

https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://github.com/andydavies/http2-prioritization-issues
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

For non-CDN usage, we expect the number of servers that correctly apply HTTP/2

prioritization to be considerably smaller. For example, NodeJS’s HTTP/2 implementation does

not support prioritization780.

Goodbye server push?

Server push was one of the additional features of HTTP/2 that caused some confusion and

complexity to implement in practice. Push seeks to avoid waiting for a browser/client to

download a HTML page, parse that page, and only then discover that it requires additional

resources (such as a stylesheet), which in turn have to be fetched and parsed to discover even

more dependencies (such as fonts). All that work and round trips takes time. With server push,

in theory, the server can just send multiple responses at once, avoiding the extra round trips.

Unfortunately, with TCP congestion control in play, the data transfer starts off so slowly that

not all the assets can be pushed781 until multiple round trips have increased the transfer rate

sufficiently. There are also implementation differences782 between browsers as the client

processing model had not been fully agreed. For example, each browser has a different

Figure 22.15. HTTP/2 prioritization support in common CDNs.

CDN
Prioritize
correctly

Desktop Mobile

Not using CDN Unknown 59.47% 60.85%

Cloudflare Pass 22.03% 21.32%

Google Fail 8.26% 8.94%

Amazon CloudFront Fail 2.64% 2.27%

Fastly Pass 2.34% 1.78%

Akamai Pass 1.31% 1.19%

Automattic Pass 0.93% 1.05%

Sucuri Firewall Fail 0.77% 0.63%

Incapsula Fail 0.42% 0.34%

Netlify Fail 0.27% 0.20%

780. https://twitter.com/jasnell/status/1245410283582918657
781. https://calendar.perfplanet.com/2016/http2-push-the-details/
782. https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

Part IV Chapter 22 : HTTP/2

566 2020 Web Almanac by HTTP Archive

https://twitter.com/jasnell/status/1245410283582918657
https://twitter.com/jasnell/status/1245410283582918657
https://calendar.perfplanet.com/2016/http2-push-the-details/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

implementation of a push cache.

Another issue is that the server is not aware of resources the browser has already cached.

When a server tries to push something that is unwanted, the client can send a RST_STREAM
frame, but by the time this has happened, the server may well have already sent all the data.

This wastes bandwidth and the server has lost the opportunity of immediately sending

something that the browser actually did require. There were proposals783 to allow clients to

inform the server of their cache status, but these suffered from privacy concerns.

As can be seen from the Figure 20.17 below, a very small percentage of sites use server push.

Looking further at the distributions for pushed assets in Figures 22.18 and 22.19, half of the

sites push 4 or fewer resources with a total size of 140 KB on desktop and 3 or fewer resources

with a size of 184 KB on mobile. For gQUIC, desktop is 7 or fewer and mobile 2. The worst

offending page pushes 41 assets over gQUIC on desktop.

Figure 22.16. Pages using HTTP/2 or gQUIC server push.

Client HTTP/2 pages HTTP/2 (%) gQUIC pages gQUIC (%)

Desktop 44,257 0.85% 204 0.04%

Mobile 62,849 1.06% 326 0.06%

Figure 22.17. Distribution of pushed assets on desktop.

Percentile HTTP/2 Size (KB) gQUIC Size (KB)

10 1 3.95 1 15.83

25 2 36.32 3 35.93

50 4 139.58 7 111.96

75 8 346.70 21 203.59

90 17 440.08 41 390.91

783. https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest-05

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 567

https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest-05

Looking at the frequency of push by content type in Figure 22.20, we see 90% of pages push

scripts and 56% push CSS. This makes sense, as these can be small files typically on the critical

path to render a page.

Given the low adoption, and after measuring how few of the pushed resources are actually

useful (that is, they match a request that is not already cached), Google has announced the

intent to remove push support from Chrome784 for both HTTP/2 and gQUIC. Chrome has also

not implemented push for HTTP/3.

Figure 22.18. Distribution of pushed assets on mobile.

Percentile HTTP/2 Size (KB) gQUIC Size (KB)

10 1 15.48 1 0.06

25 1 36.34 1 0.06

50 3 183.83 2 24.06

75 10 225.41 5 204.65

90 12 351.05 18 453.57

Figure 22.19. Percentage of pages pushing specific content types

784. https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ

Part IV Chapter 22 : HTTP/2

568 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/http/http2-pushed-content-types.png
https://almanac.httparchive.org/static/images/2020/http/http2-pushed-content-types.png
https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ

Despite all these problems, there are circumstances where server push can provide an

improvement. The ideal use case is to be able to send a push promise much earlier than the

HTML response itself. A scenario where this can benefit is when a CDN is in use785. The “dead

time” between the CDN receiving the request and receiving a response from the origin can be

used intelligently to warm up the TCP connection and push assets already cached at the CDN.

There was however no standardized method for how to signal to a CDN edge server that an

asset should be pushed. Implementations instead reused the preload HTTP link header to

indicate this. This simple approach appears elegant, but it does not utilize the dead time before

the HTML is generated unless the headers are sent before the actual content is ready. It

triggers the edge to push resources as the HTML is received at the edge, which will contend

with the delivery of the HTML.

An alternative proposal being tested is RFC 8297786, which defines an informative 103 (Early
Hints) response. This permits headers to be sent immediately, without having to wait for the

server to generate the full response headers. This can be used by an origin to suggest pushed

resources to a CDN, or by a CDN to alert the client to resources that need to be fetched.

However, at present, support for this from both a client and server perspective is very low, but

growing787.

Getting to a better protocol

Let’s say a client and server support both HTTP/1.1 and HTTP/2. How do they choose which

one to use? The most common method is TLS Application Layer Protocol Negotiation788 (ALPN),

in which clients send a list of protocols they support to the server, which picks the one it prefers

to use for that connection. Because the browser needs to negotiate the TLS parameters as part

of setting up an HTTPS connection, it can also negotiate the HTTP version at the same time.

Since both HTTP/2 and HTTP/1.1 can be served from the same TCP port (443), browsers don’t

need to make this selection before opening a connection.

This doesn’t work if the protocols aren’t on the same port, use a different transport protocol

(TCP versus QUIC), or if you’re not using TLS. For those scenarios, you start with whatever is

available on the first port you connect to, then discover other options. HTTP defines two

mechanisms to change protocols for an origin after connecting: Upgrade and Alt-Svc .

785. https://medium.com/@ananner/http-2-server-push-performance-a-further-akamai-case-study-7a17573a3317
786. https://tools.ietf.org/html/rfc8297
787. https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
788. https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 569

https://medium.com/@ananner/http-2-server-push-performance-a-further-akamai-case-study-7a17573a3317
https://tools.ietf.org/html/rfc8297
https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

Upgrade

The Upgrade header has been part of HTTP for a long time. In HTTP/1.x, Upgrade allows a

client to make a request using one protocol, but indicate its support for another protocol (like

HTTP/2). If the server also supports the offered protocol, it responds with a status 101

(Switching Protocols) and proceeds to answer the request in the new protocol. If not, the

server answers the request in HTTP/1.x. Servers can advertise their support of a different

protocol using an Upgrade header on a response.

The most common application of Upgrade is WebSockets789. HTTP/2 also defines an Upgrade
path, for use with its unencrypted cleartext mode. There is no support for this capability in web

browsers, however. Therefore, it’s not surprising that less than 3% of cleartext HTTP/1.1

requests in our dataset received an Upgrade header in the response. A very small number of

requests using TLS (0.0011% of HTTP/2, 0.064% of HTTP/1.1) also received Upgrade headers

in response; these are likely cleartext HTTP/1.1 servers behind intermediaries which speak

HTTP/2 and/or terminate TLS, but don’t properly remove Upgrade headers.

Alternative Services

Alternative Services (Alt-Svc) enables an HTTP origin to indicate other endpoints which

serve the same content, possibly over different protocols. Although uncommon, HTTP/2 might

be located at a different port or different host from a site’s HTTP/1.1 service. More importantly,

since HTTP/3 uses QUIC (hence UDP) where prior versions of HTTP use TCP, HTTP/3 will

always be at a different endpoint from the HTTP/1.x and HTTP/2 service.

When using Alt-Svc , a client makes requests to the origin as normal. However, if the server

includes a header or sends a frame containing a list of alternatives, the client can make a new

connection to the other endpoint and use it for future requests to that origin.

Unsurprisingly, Alt-Svc usage is found almost entirely from services using advanced HTTP

versions: 12.0% of HTTP/2 requests and 60.1% of gQUIC requests received an Alt-Svc
header in response, as compared to 0.055% of HTTP/1.x requests. Note that our methodology

here only captures Alt-Svc headers, not ALTSVC frames in HTTP/2, so reality might be

slightly understated.

While Alt-Svc can point to an entirely different host, support for this capability varies among

browsers. Only 4.71% of Alt-Svc headers advertised an endpoint on a different hostname;

these were almost universally (99.5%) advertising gQUIC and HTTP/3 support on Google Ads.

Google Chrome ignores cross-host Alt-Svc advertisements for HTTP/2, so many of the other

789. https://developer.mozilla.org/docs/Web/API/WebSockets_API

Part IV Chapter 22 : HTTP/2

570 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/WebSockets_API

instances would have been ignored.

Given the rarity of support for cross-host HTTP/2, it’s not surprising that there were virtually

no (0.007%) advertisements for HTTP/2 endpoints using Alt-Svc . Alt-Svc was typically

used to indicate support for HTTP/3 (74.6% of Alt-Svc headers) or gQUIC (38.7% of Alt-
Svc headers).

Looking toward the future: HTTP/3

HTTP/2 is a powerful protocol, which has found considerable adoption in just a few years.

However, HTTP/3 over QUIC is already peeking around the corner! Over four years in the

making, this next version of HTTP is almost standardized at the IETF (expected in the first half

of 2021). At this time, there are already many QUIC and HTTP/3 implementations available790,

both for servers and browsers. While these are relatively mature, they can still be said to be in

an experimental state.

This is reflected by the usage numbers in the HTTP Archive data, where no HTTP/3 requests

were identified at all. This might seem a bit strange, since Cloudflare791 has had experimental

HTTP/3 support for some time, as have Google and Facebook. This is mainly because Chrome

hadn’t enabled the protocol by default when the data was collected.

However, even the numbers for the older gQUIC are relatively modest, accounting for less than

2% of requests overall. This is expected, since gQUIC was mostly deployed by Google and

Akamai; other parties were waiting for IETF QUIC. As such, gQUIC is expected to be replaced

entirely by HTTP/3 soon.

It’s important to note that this low adoption only reflects gQUIC and HTTP/3 usage for loading

Web pages. For several years already, Facebook has had a much more extensive deployment of

IETF QUIC and HTTP/3 for loading data inside of its native applications. QUIC and HTTP/3

already make up over 75% of their total internet traffic792. It is clear that HTTP/3 is only just

getting started!

Figure 22.20. The percentage of requests that use gQUIC on desktop and mobile

1.72%

790. https://github.com/quicwg/base-drafts/wiki/Implementations
791. https://blog.cloudflare.com/experiment-with-http-3-using-nginx-and-quiche/
792. https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 571

https://github.com/quicwg/base-drafts/wiki/Implementations
https://blog.cloudflare.com/experiment-with-http-3-using-nginx-and-quiche/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/

Now you might wonder: if not everyone is already using HTTP/2, why would we need HTTP/3

so soon? What benefits can we expect in practice? Let’s take a closer look at its internal

mechanisms.

QUIC and HTTP/3

Past attempts to deploy new transport protocols on the internet have proven difficult, for

example Stream Control Transmission Protocol793 (SCTP). QUIC is a new transport protocol that

runs on top of UDP. It provides similar features to TCP, such as reliable in-order delivery and

congestion control to prevent flooding the network.

As discussed in the HTTP/1.0 to HTTP/2 section, HTTP/2 multiplexes multiple different streams

on top of one connection. TCP itself is woefully unaware of this fact, leading to inefficiencies or

performance impact when packet loss or delays occur. More details on this problem, known as

head-of-line blocking (HOL blocking), can be found here794.

QUIC solves the HOL blocking problem by bringing HTTP/2’s streams down into the transport

layer and performing per-stream loss detection and retransmission. So then we just put HTTP/2

over QUIC, right? Well, we’ve already mentioned some of the difficulties arising from having

flow control in TCP and HTTP/2. Running two separate and competing streaming systems on

top of each other would be an additional problem. Furthermore, because the QUIC streams are

independent, it would mess with the strict ordering requirements HTTP/2 requires for several

of its systems.

In the end, it was deemed easier to define a new HTTP version that uses QUIC directly and

thus, HTTP/3 was born. Its high-level features are very similar to those we know from HTTP/2,

but internal implementation mechanisms are quite different. HPACK header compression is

replaced with QPACK795, which allows manual tuning796 of the compression efficiency versus

HOL blocking risk tradeoff, and the prioritization system is being replaced by a simpler one797.

The latter could also be back-ported to HTTP/2, possibly helping resolve the prioritization

issues discussed earlier in this article. HTTP/3 continues to provide a server push mechanism,

but Chrome, for example, does not implement it.

Another benefit of QUIC is that it is able to migrate connections and keep them alive even when

the underlying network changes. A typical example is the so-called “parking lot problem”.

Imagine your smartphone is connected to the workplace Wi-Fi network and you’ve just started

downloading a large file. As you leave Wi-Fi range, your phone automatically switches to the

fancy new 5G cellular network. With plain old TCP, the connection would break and cause an

793. https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
794. https://github.com/rmarx/holblocking-blogpost
795. https://tools.ietf.org/html/draft-ietf-quic-qpack-19
796. https://blog.litespeedtech.com/tag/quic-header-compression-design-team/
797. https://blog.cloudflare.com/adopting-a-new-approach-to-http-prioritization/

Part IV Chapter 22 : HTTP/2

572 2020 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
https://github.com/rmarx/holblocking-blogpost
https://tools.ietf.org/html/draft-ietf-quic-qpack-19
https://blog.litespeedtech.com/tag/quic-header-compression-design-team/
https://blog.cloudflare.com/adopting-a-new-approach-to-http-prioritization/

interruption. But QUIC is smarter; it uses a connection ID, which is more robust to network

changes, and provides an active connection migration feature for clients to switch without

interruption.

Finally, TLS is already used to protect HTTP/1.1 and HTTP/2. QUIC, however, has a deep

integration of TLS 1.3, protecting both HTTP/3 data and QUIC packet metadata, such as packet

numbers. Using TLS in this way improves end-user privacy and security and makes continued

protocol evolution easier. Combining the transport and cryptographic handshakes means that

connection setup takes just a single RTT, compared to TCP’s minimum of two and worst case of

four. In some cases, QUIC can even go one step further and send HTTP data along with its very

first message, which is called 0-RTT. These fast connection setup times are expected to really

help HTTP/3 outperform HTTP/2.

So, will HTTP/3 help?

On the surface, HTTP/3 is really not all that different from HTTP/2. It doesn’t add any major

features, but mainly changes how the existing ones work under the surface. The real

improvements come from QUIC, which offers faster connection setups, increased robustness,

and resilience to packet loss. As such, HTTP/3 is expected to do better than HTTP/2 on worse

networks, while offering very similar performance on faster systems. However, that is if the

web community can get HTTP/3 working, which can be challenging in practice.

Deploying and discovering HTTP/3

Since QUIC and HTTP/3 run over UDP, things aren’t as simple as with HTTP/1.1 or HTTP/2.

Typically, an HTTP/3 client has to first discover that QUIC is available at the server. The

recommended method for this is HTTP Alternative Services . On its first visit to a website, a

client connects to a server using TCP. It then discovers via Alt-Svc that HTTP/3 is available,

and can set up a new QUIC connection. The Alt-Svc entry can be cached, allowing

subsequent visits to avoid the TCP step, but the entry will eventually become stale and need

revalidation. This likely will have to be done for each domain separately, which will probably

lead to most page loads using a mix of HTTP/1.1, HTTP/2, and HTTP/3.

However, even if it is known that a server supports QUIC and HTTP/3, the network in between

might block it. UDP traffic is commonly used in DDoS attacks and blocked by default in for

example many company networks. While exceptions could be made for QUIC, its encryption

makes it difficult for firewalls to assess the traffic. There are potential solutions to these issues,

but in the meantime it is expected that QUIC is most likely to succeed on well-known ports like

443. And it is entirely possible that it is blocked QUIC altogether. In practice, clients will likely

use sophisticated mechanisms to fall back to TCP if QUIC fails. One option is to “race” both a

TCP and QUIC connection and use the one that completes first.

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 573

There is ongoing work to define ways to discover HTTP/3 without needing the TCP step. This

should be considered an optimization, though, as the UDP blocking issues are likely to mean

that TCP-based HTTP sticks around. The HTTPS DNS record798 is similar to HTTP Alternative

Services and some CDNs are already experimenting with these records799. In the long run, when

most servers offer HTTP/3, browsers might switch to attempting that by default; that will take

a long time.

QUIC is dependent on TLS 1.3, which is used for around 41% of requests, as shown in Figure

22.21. That leaves 59% of requests that will need to update their TLS stack to support HTTP/3.

Is HTTP/3 ready yet?

So, when can we start using HTTP/3 and QUIC for real? Not quite yet, but hopefully soon. There

is a large number of mature open source implementations800 and the major browsers have

experimental support. However, most of the typical servers have suffered some delays: nginx is

a bit behind other stacks, Apache hasn’t announced official support, and NodeJS relies on

OpenSSL, which won’t add QUIC support anytime soon801. Even so, we expect to see HTTP/3 and

QUIC deployments rise throughout 2021.

HTTP/3 and QUIC are highly advanced protocols with powerful performance and security

features, such as a new HTTP prioritization system, HOL blocking removal, and 0-RTT

connection establishment. This sophistication also makes them difficult to deploy and use

correctly, as has turned out to be the case for HTTP/2. We predict that early deployments will

mainly be done via the early adoption of CDNs such as Cloudflare, Fastly, and Akamai. This will

probably mean that a large part of HTTP/2 traffic can and will be upgraded to HTTP/3

automatically in 2021, giving the new protocol a large traffic share almost out of the box. When

and if smaller deployments will follow suit is more difficult to answer. Most likely, we will

Figure 22.21. TLS adoption by HTTP version.

HTTP/1.x HTTP/2

TLS version Desktop Mobile Desktop Mobile

unknown 4.06% 4.03% 5.05% 7.28%

TLS 1.2 26.56% 24.75% 23.12% 23.14%

TLS 1.3 5.25% 5.11% 35.78% 35.54%

798. https://tools.ietf.org/html/draft-ietf-dnsop-svcb-https
799. https://blog.cloudflare.com/speeding-up-https-and-http-3-negotiation-with-dns/
800. https://github.com/quicwg/base-drafts/wiki/Implementations
801. https://github.com/openssl/openssl/pull/8797

Part IV Chapter 22 : HTTP/2

574 2020 Web Almanac by HTTP Archive

https://tools.ietf.org/html/draft-ietf-dnsop-svcb-https
https://blog.cloudflare.com/speeding-up-https-and-http-3-negotiation-with-dns/
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/openssl/openssl/pull/8797

continue to see a healthy mix of HTTP/3, HTTP/2, and even HTTP/1.1 on the web for years to

come.

Conclusion

This year, HTTP/2 has become the dominant protocol, serving 64% of all requests, having

grown by 10 percentage points during the year. Home pages have seen a 13% increase in HTTP/

2 adoption, leading to an even split of pages served over HTTP/1.1 and HTTP/2. Using a CDN to

serve your home page pushes HTTP/2 adoption up to 80%, compared with 30% for non-CDN

usage. There remain some older servers, Apache and IIS, that are proving resistant to upgrading

to HTTP/2 and TLS. A big success has been the decrease in website connection usage due to

HTTP/2 connection multiplexing. The median number of connections in 2016 was 23 compared

to 13 in 2020.

HTTP/2 prioritization and server push have turned out to be way more complex to deploy at

large. Under certain implementations they show clear performance benefits. There is, however,

a significant barrier to deploying and tuning existing servers to use these features effectively.

There are still a large proportion of CDNs who do not support prioritization effectively. There

have also been issues with consistent browser support.

HTTP/3 is just around the corner. It will be fascinating to follow the adoption rate, see how

discovery mechanisms evolve, and find out which new features will be deployed successfully.

We expect next year’s Web Almanac to see some interesting new data.

Authors

Andrew Galloni

@dot_js dotjs

Andrew works at Cloudflare802 helping to make the web faster and more secure. He

spends his time deploying, measuring and improving new protocols and asset

delivery to improve end-user website performance.

802. https://www.cloudflare.com/

Part IV Chapter 22 : HTTP/2

2020 Web Almanac by HTTP Archive 575

https://twitter.com/dot_js
https://github.com/dotjs
https://www.cloudflare.com/

Robin Marx

@programmingart rmarx http://internetonmars.org

Robin is a web protocol and performance researcher at Hasselt University,

Belgium803. He has been working on getting QUIC and HTTP/3 ready to use by

creating tools like qlog and qvis804.

Mike Bishop

MikeBishop

Editor of HTTP/3 with the QUIC Working Group805. Architect in Akamai806’s

Foundry group.

803. https://www.uhasselt.be/edm
804. https://github.com/quiclog
805. https://quicwg.org/
806. https://www.akamai.com/

Part IV Chapter 22 : HTTP/2

576 2020 Web Almanac by HTTP Archive

https://twitter.com/programmingart
https://github.com/rmarx
http://internetonmars.org/
https://www.uhasselt.be/edm
https://www.uhasselt.be/edm
https://github.com/quiclog
https://github.com/MikeBishop
https://quicwg.org/
https://www.akamai.com/

Appendix A

Methodology

Overview

The Web Almanac is a project organized by HTTP Archive807. HTTP Archive was started in 2010

by Steve Souders with the mission to track how the web is built. It evaluates the composition of

millions of web pages on a monthly basis and makes its terabytes of metadata available for

analysis on BigQuery808.

The Web Almanac’s mission is to become an annual repository of public knowledge about the

state of the web. Our goal is to make the data warehouse of HTTP Archive even more

807. https://httparchive.org
808. https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data

Appendix A : Methodology

2020 Web Almanac by HTTP Archive 577

https://httparchive.org/
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data

accessible to the web community by having subject matter experts provide contextualized

insights.

The 2020 edition of the Web Almanac is broken into four parts: content, experience, publishing,

and distribution. Within each part, several chapters explore their overarching theme from

different angles. For example, Part II explores different angles of the user experience in the

Performance, Security, and Accessibility chapters, among others.

About the dataset

The HTTP Archive dataset is continuously updating with new data monthly. For the 2020

edition of the Web Almanac, unless otherwise noted in the chapter, all metrics were sourced

from the August 2020 crawl. These results are publicly queryable809 on BigQuery in tables

prefixed with 2020_08_01 .

All of the metrics presented in the Web Almanac are publicly reproducible using the dataset on

BigQuery. You can browse the queries used by all chapters in our GitHub repository810.

Please note that some of these queries are quite large and can be expensive811 to run yourself, as

BigQuery is billed by the terabyte. For help controlling your spending, refer to Tim Kadlec’s post Using

BigQuery Without Breaking the Bank812.

For example, to understand the median number of bytes of JavaScript per desktop and mobile

page, see 01_01b.sql813:

#standardSQL

01_01b: Distribution of JS bytes by client

SELECT

 percentile,

 _TABLE_SUFFIX AS client,

 APPROX_QUANTILES(ROUND(bytesJs / 1024, 2),

1000)[OFFSET(percentile * 10)] AS js_kbytes

FROM

809. https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
810. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020
811. https://cloud.google.com/bigquery/pricing
812. https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
813. https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2019/javascript/01_01b.sql

Appendix A : Methodology

578 2020 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020
https://cloud.google.com/bigquery/pricing
https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2019/javascript/01_01b.sql

 `httparchive.summary_pages.2019_07_01_*`,

 UNNEST([10, 25, 50, 75, 90]) AS percentile

GROUP BY

 percentile,

 client

ORDER BY

 percentile,

 client

Results for each metric are publicly viewable in chapter-specific spreadsheets, for example

JavaScript results814. Scroll to the bottom of each chapter for links to their queries, results, and

comments from readers.

Websites

There are 7,546,709 websites in the dataset. Among those, 6,347,919 are mobile websites and

5,593,642 are desktop websites. Most websites are included in both the mobile and desktop

subsets.

HTTP Archive sources the URLs for its websites from the Chrome UX Report. The Chrome UX

Report is a public dataset from Google that aggregates user experiences across millions of

websites actively visited by Chrome users. This gives us a list of websites that are up-to-date

and a reflection of real-world web usage. The Chrome UX Report dataset includes a form factor

dimension, which we use to get all of the websites accessed by desktop or mobile users.

The August 2020 HTTP Archive crawl used by the Web Almanac used the most recently

available Chrome UX Report release for its list of websites. The 202006 dataset was released

on July 14, 2020 and captures websites visited by Chrome users during the month of June.

There was was a 20-30% growth in the number of websites analyzed compared to those in the

2019 Web Almanac. This increase has been analyzed by Paul Calvano in his Growth of the Web

in 2020815 post.

Due to resource limitations, the HTTP Archive can only test one page from each website in the

Chrome UX report. To reconcile this, only the home pages are included. Be aware that this will

814. https://docs.google.com/spreadsheets/d/1kBTglETN_V9UjKqK_EFmFjRexJnQOmLLr-I2Tkotvic/edit?usp=sharing
815. https://paulcalvano.com/2020-09-29-growth-of-the-web-in-2020/

Appendix A : Methodology

2020 Web Almanac by HTTP Archive 579

https://docs.google.com/spreadsheets/d/1kBTglETN_V9UjKqK_EFmFjRexJnQOmLLr-I2Tkotvic/edit?usp=sharing
http://127.0.0.1:8080/en/2019/methodology#websites
https://paulcalvano.com/2020-09-29-growth-of-the-web-in-2020/
https://paulcalvano.com/2020-09-29-growth-of-the-web-in-2020/

introduce some bias into the results because a home page is not necessarily representative of

the entire website.

HTTP Archive is also considered a lab testing tool, meaning it tests websites from a datacenter

and does not collect data from real-world user experiences. All pages are tested with an empty

cache in a logged out state, which may not reflect how real users would access them.

Metrics

HTTP Archive collects thousands of metrics about how the web is built. It includes basic metrics

like the number of bytes per page, whether the page was loaded over HTTPS, and individual

request and response headers. The majority of these metrics are provided by WebPageTest,

which acts as the test runner for each website.

Other testing tools are used to provide more advanced metrics about the page. For example,

Lighthouse is used to run audits against the page to analyze its quality in areas like accessibility

and SEO. The Tools section below goes into each of these tools in more detail.

To work around some of the inherent limitations of a lab dataset, the Web Almanac also makes

use of the Chrome UX Report for metrics on user experiences, especially in the area of web

performance.

Some metrics are completely out of reach. For example, we don’t necessarily have the ability to

detect the tools used to build a website. If a website is built using create-react-app, we could

tell that it uses the React framework, but not necessarily that a particular build tool is used.

Unless these tools leave detectible fingerprints in the website’s code, we’re unable to measure

their usage.

Other metrics may not necessarily be impossible to measure but are challenging or unreliable.

For example, aspects of web design are inherently visual and may be difficult to quantify, like

whether a page has an intrusive modal dialog.

Tools

The Web Almanac is made possible with the help of the following open source tools.

Appendix A : Methodology

580 2020 Web Almanac by HTTP Archive

WebPageTest

WebPageTest816 is a prominent web performance testing tool and the backbone of HTTP

Archive. We use a private instance817 of WebPageTest with private test agents, which are the

actual browsers that test each web page. Desktop and mobile websites are tested under

different configurations:

Desktop websites are run from within a desktop Chrome environment on a Linux VM. The

network speed is equivalent to a cable connection.

Mobile websites are run from within a mobile Chrome environment on an emulated Moto G4

device with a network speed equivalent to a 3G connection. Note that the emulated mobile

User Agent self-identifies as Chrome 65 but is actually Chrome 84 under the hood.

There are two locations from which tests are run: California and Oregon USA. HTTP Archive

maintains its own test agent hardware located in the Internet Archive818 datacenter in

California. Additional test agents in Google Cloud Platform819’s us-west-1 location in Oregon are

added as needed.

HTTP Archive’s private instance of WebPageTest is kept in sync with the latest public version

and augmented with custom metrics820. These are snippets of JavaScript that are evaluated on

each website at the end of the test. Thanks to the contributions821 of many data analysts,

Config Desktop Mobile

Device Linux VM Emulated Moto G4

User Agent

Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/

84.0.4147.105 Safari/537.36

PTST/200805.230825

Mozilla/5.0 (Linux; Android 6.0.1; Moto G

(4) Build/MPJ24.139-64) AppleWebKit/

537.36 (KHTML, like Gecko) Chrome/

65.0.3325.146 Mobile Safari/537.36

PTST/200815.130813

Location
Redwood City, California, USA

The Dalles, Oregon, USA

Redwood City, California, USA

The Dalles, Oregon, USA

Connection Cable (5/1 Mbps 28ms RTT) 3G (1.600/0.768 Mbps 300ms RTT)

Viewport 1024 x 768px 512 x 360px

816. https://www.webpagetest.org/
817. https://docs.webpagetest.org/private-instances/
818. https://archive.org
819. https://cloud.google.com/compute/docs/regions-zones/#locations
820. https://github.com/HTTPArchive/custom-metrics
821. https://github.com/HTTPArchive/legacy.httparchive.org/commits/master/custom_metrics

Appendix A : Methodology

2020 Web Almanac by HTTP Archive 581

https://www.webpagetest.org/
https://docs.webpagetest.org/private-instances/
https://archive.org/
https://cloud.google.com/compute/docs/regions-zones/#locations
https://github.com/HTTPArchive/custom-metrics
https://github.com/HTTPArchive/legacy.httparchive.org/commits/master/custom_metrics

especially the herculean efforts822 of Tony McCreath, the 2020 edition of the Web Almanac

greatly expanded the capabilities of HTTP Archive’s test infrastructure with over 3,000 lines of

new code.

The results of each test are made available as a HAR file823, a JSON-formatted archive file

containing metadata about the web page.

Lighthouse

Lighthouse824 is an automated website quality assurance tool built by Google. It audits web

pages to make sure they don’t include user experience antipatterns like unoptimized images

and inaccessible content.

HTTP Archive runs the latest version of Lighthouse for all of its mobile web pages — desktop

pages are not included because of limited resources. As of the August 2020 crawl, HTTP

Archive used the 6.2.0825 version of Lighthouse.

Lighthouse is run as its own distinct test from within WebPageTest, but it has its own

configuration profile:

For more information about Lighthouse and the audits available in HTTP Archive, refer to the

Lighthouse developer documentation826.

Wappalyzer

Wappalyzer827 is a tool for detecting technologies used by web pages. There are 64 categories828

of technologies tested, ranging from JavaScript frameworks, to CMS platforms, and even

Config Value

CPU slowdown 1x/4x

Download throughput 1.6 Mbps

Upload throughput 0.768 Mbps

RTT 150 ms

822. https://github.com/HTTPArchive/legacy.httparchive.org/pulls?q=is%3Apr+author%3ATiggerito+sort%3Acreated-asc
823. https://en.wikipedia.org/wiki/HAR_(file_format)
824. https://developers.google.com/web/tools/lighthouse/
825. https://github.com/GoogleChrome/lighthouse/releases/tag/v6.2.0
826. https://developers.google.com/web/tools/lighthouse/
827. https://www.wappalyzer.com/
828. https://www.wappalyzer.com/technologies

Appendix A : Methodology

582 2020 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/legacy.httparchive.org/pulls?q=is%3Apr+author%3ATiggerito+sort%3Acreated-asc
https://en.wikipedia.org/wiki/HAR_(file_format)
https://developers.google.com/web/tools/lighthouse/
https://github.com/GoogleChrome/lighthouse/releases/tag/v6.2.0
https://developers.google.com/web/tools/lighthouse/
https://www.wappalyzer.com/
https://www.wappalyzer.com/technologies

cryptocurrency miners. There are over 1,400 supported technologies.

HTTP Archive runs the latest version of Wappalyzer for all web pages. As of August 2020 the

Web Almanac used the 6.2.0 version829 of Wappalyzer.

Wappalyzer powers many chapters that analyze the popularity of developer tools like

WordPress, Bootstrap, and jQuery. For example, the Ecommerce and CMS chapters rely heavily

on the respective Ecommerce830 and CMS831 categories of technologies detected by Wappalyzer.

All detection tools, including Wappalyzer, have their limitations. The validity of their results will

always depend on how accurate their detection mechanisms are. The Web Almanac will add a

note in every chapter where Wappalyzer is used but its analysis may not be accurate due to a

specific reason.

Chrome UX Report

The Chrome UX Report832 is a public dataset of real-world Chrome user experiences.

Experiences are grouped by websites’ origin, for example https://www.example.com . The

dataset includes distributions of UX metrics like paint, load, interaction, and layout stability. In

addition to grouping by month, experiences may also be sliced by dimensions like country-level

geography, form factor (desktop, phone, tablet), and effective connection type (4G, 3G, etc.).

For Web Almanac metrics that reference real-world user experience data from the Chrome UX

Report, the August 2020 dataset (202008) is used.

You can learn more about the dataset in the Using the Chrome UX Report on BigQuery833 guide

on web.dev834.

Third Party Web

Third Party Web835 is a research project by Patrick Hulce, author of the 2019 Third Parties

chapter, that uses HTTP Archive and Lighthouse data to identify and analyze the impact of third

party resources on the web.

Domains are considered to be a third party provider if they appear on at least 50 unique pages.

The project also groups providers by their respective services in categories like ads, analytics,

and social.

829. https://github.com/AliasIO/Wappalyzer/releases/tag/v6.2.0
830. https://www.wappalyzer.com/categories/ecommerce
831. https://www.wappalyzer.com/categories/cms
832. https://developers.google.com/web/tools/chrome-user-experience-report
833. https://web.dev/chrome-ux-report-bigquery
834. https://web.dev/
835. https://www.thirdpartyweb.today/

Appendix A : Methodology

2020 Web Almanac by HTTP Archive 583

https://github.com/AliasIO/Wappalyzer/releases/tag/v6.2.0
https://www.wappalyzer.com/categories/ecommerce
https://www.wappalyzer.com/categories/cms
https://developers.google.com/web/tools/chrome-user-experience-report
https://web.dev/chrome-ux-report-bigquery
https://web.dev/
https://www.thirdpartyweb.today/
https://almanac.httparchive.org/en/2019/third-parties

Several chapters in the Web Almanac use the domains and categories from this dataset to

understand the impact of third parties.

Rework CSS

Rework CSS836 is a JavaScript-based CSS parser. It takes entire stylesheets and produces a

JSON-encoded object distinguishing each individual style rule, selector, directive, and value.

This special purpose tool significantly improved the accuracy of many of the metrics in the CSS

chapter. CSS in all external stylesheets and inline style blocks for each page were parsed and

queried to make the analysis possible. See this thread837 for more information about how it was

integrated with the HTTP Archive dataset on BigQuery.

Rework Utils

This year’s CSS chapter led by Lea Verou took a significantly more detailed look at the state of

CSS, spread over 100+ queries838. For perspective, that’s 2.5x more queries than in 2019. To

make this scale of analysis feasible, Lea open sourced the Rework Utils839. These utilities take the

JSON data from Rework to the next level by providing helpful scripts to more easily extract CSS

insights. Most of the stats you see in the CSS chapter are powered by these scripts.

Parsel

Parsel840 is a CSS selector parser and specificity calculator, originally written by CSS chapter lead

Lea Verou and open sourced as a separate library. It is used extensively in all CSS metrics that

relate to selectors and specificity.

Analytical process

The Web Almanac took about a year to plan and execute with the coordination of more than a

hundred contributors from the web community. This section describes why we chose the

chapters you see in the Web Almanac, how their metrics were queried, and how they were

interpreted.

836. https://github.com/reworkcss/css
837. https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
838. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020/css
839. https://github.com/LeaVerou/rework-utils
840. https://projects.verou.me/parsel/

Appendix A : Methodology

584 2020 Web Almanac by HTTP Archive

https://github.com/reworkcss/css
https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020/css
https://github.com/LeaVerou/rework-utils
https://projects.verou.me/parsel/

Planning

The 2020 Web Almanac kicked off in June 2020841, later than the 2019 timeline due to the

unrest related to COVID-19 and the social justice protests. These and other events of 2020

were an undercurrent throughout the entire production process and put a lot of additional

strain on our contributors beyond the stresses of a fast-paced project like this.

As we stated in last year’s Methodology:

To that end, this year we’ve made systematic changes to the way that we seek and select

authors:

• Previous authors were specifically discouraged from writing again to make room for

different perspectives.

• Everyone endorsing 2020 authors were asked to be especially conscious not to

nominate people who all look or think alike.

• Many 2019 authors were Google employees and this year we tried to get a greater

balance of perspectives from the broader web community. We believe that the

voices in the Web Almanac should be a reflection of the community itself, and not

skewed towards any specific company to avoid creating echo chambers.

• The project leads reviewed all of the author nominations and made an effort to

select authors who will bring new perspectives and amplify the voices of

underrepresented groups in the community.

We hope to iterate on this process in the future to ensure that the Web Almanac is a more

diverse and inclusive project with contributors from all backgrounds.

Finally, in July 2020, after rounds of brainstorming and nominations, 22 chapters were

solidified and we formed content teams for each chapter tasked with writing, reviewing, and

analysis.

Analysis

In July and August 2020, with the stable list of metrics and chapters, data analysts triaged the

One explicit goal for future editions of the Web Almanac is to encourage even

more inclusion of underrepresented and heterogeneous voices as authors and

peer reviewers. "

841. https://twitter.com/rick_viscomi/status/1273135952848977920

Appendix A : Methodology

2020 Web Almanac by HTTP Archive 585

https://twitter.com/rick_viscomi/status/1273135952848977920
http://127.0.0.1:8080/en/2019/methodology#brainstorming

metrics for feasibility. In some cases, custom metrics842 were created to fill gaps in our analytic

capabilities.

Throughout August 2020, the HTTP Archive data pipeline crawled several million websites,

gathering the metadata to be used in the Web Almanac.

The data analysts began writing queries to extract the results for each metric. In total, hundreds

of queries were written by hand! You can browse all of the queries by year and chapter in our

open source query repository843 on GitHub.

Interpretation

Authors worked with analysts to correctly interpret the results and draw appropriate

conclusions. As authors wrote their respective chapters, they drew from these statistics to

support their framing of the state of the web. Peer reviewers worked with authors to ensure

the technical correctness of their analysis.

To make the results more easily understandable to readers, web developers and analysts

created data visualizations to embed in the chapter. Some visualizations are simplified to make

the points more clearly. For example, rather than showing a full distribution, only a handful of

percentiles are shown. Unless otherwise noted, all distributions are summarized using

percentiles, especially medians (the 50th percentile), and not averages.

Finally, editors revised the chapters to fix simple grammatical errors and ensure consistency

across the reading experience.

Looking ahead

The 2020 edition of the Web Almanac is the second in what we hope to continue as an annual

tradition in the web community of introspection and a commitment to positive change. Getting

to this point has been a monumental effort thanks to many dedicated contributors and we hope

to leverage as much of this work as possible to make future editions even more streamlined.

If you’re interested in contributing to the 2021 edition of the Web Almanac, please fill out our

interest form844. Let’s work together to track the state of the web!

842. https://github.com/HTTPArchive/custom-metrics
843. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020
844. https://forms.gle/VRBFegGAP7d99Bhp7

Appendix A : Methodology

586 2020 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/custom-metrics
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020
https://forms.gle/VRBFegGAP7d99Bhp7

Appendix B

Contributors

The Web Almanac has been made possible by the hard work of the web community. 129 people

have volunteered countless hours in the planning, research, writing and production phases of

the 2020 Web Almanac.

Abby Tsai
AbbyTsai

Analyst, Developer, and Translator

Aditya Pandey
@adityapandey98

adityapandey1998

adityapandey98
Developer

Adrian Roselli
@aardrian

aardrian

https://adrianroselli.com/
Reviewer

Ahmad Awais
@MrAhmadAwais

ahmadawais

https://AhmadAwais.com
Author

Alan Dávalos
@AlanGDavalos

alangdm
Translator

Alan Kent
@akent99

alankent

https://alankent.me
Reviewer

Alberto Medina
@iAlbMedina

amedina
Reviewer

Alex Denning
@AlexDenning

alexdenning

https://getellipsis.com/
Author

Alex Tait
@at_fresh_dev

alextait1

https://atfreshsolutions.com
Author

Alexey Pyltsyn
lex111

https://lex111.ru/
Developer, Editor, and Translator

Aleyda Solis
@aleyda

aleyda

https://www.aleydasolis.com/en/
Author

Andrew Galloni
@dot_js

dotjs
Author

Appendix B : Contributors

2020 Web Almanac by HTTP Archive 587

https://github.com/AbbyTsai
https://twitter.com/adityapandey98
https://github.com/adityapandey1998
https://www.linkedin.com/in/adityapandey98
https://twitter.com/aardrian
https://github.com/aardrian
http://127.0.0.1:8080/en/2020/aardrian
https://twitter.com/MrAhmadAwais
https://github.com/ahmadawais
http://127.0.0.1:8080/en/2020/MrAhmadAwais
https://twitter.com/AlanGDavalos
https://github.com/alangdm
https://twitter.com/akent99
https://github.com/alankent
http://127.0.0.1:8080/en/2020/akent99
https://twitter.com/iAlbMedina
https://github.com/amedina
https://twitter.com/AlexDenning
https://github.com/alexdenning
http://127.0.0.1:8080/en/2020/AlexDenning
https://twitter.com/at_fresh_dev
https://github.com/alextait1
http://127.0.0.1:8080/en/2020/at_fresh_dev
https://github.com/lex111
https://twitter.com/aleyda
https://github.com/aleyda
http://127.0.0.1:8080/en/2020/aleyda
https://twitter.com/dot_js
https://github.com/dotjs

Andy Bell
@hankchizljaw

hankchizljaw

https://hankchizljaw.com/
Reviewer

Andy Pan
andy0130tw

Translator

Antoine Eripret
antoineeripret

Analyst

Artem Denysov
@denar90_

denar90
Analyst and Reviewer

Barry Pollard
@tunetheweb

tunetheweb

tunetheweb

https://www.tunetheweb.com
Analyst, Author, Developer, Editor,
Project Lead, and Reviewer

Ben Seymour
@bseymour

bseymour

benseymour

https://benseymour.com
Author

Bharat Agarwal
agarwalbharat

https://iambharat.me
Developer

Boris Schapira
@boostmarks

borisschapira

https://boris.schapira.dev
Developer, Reviewer, and Translator

Brian Kardell
@briankardell

bkardell

https://bkardell.com
Reviewer

Brian Rinaldi
@remotesynth

remotesynth

https://remotesynthesis.com/
Analyst

Caleb Queern
@httpsecheaders

cqueern
Reviewer

Carlos Castro
@mxcarloscastro

carloscastromx

https://carloscm.me/en/
Translator

Catalin Rosu
@catalinred

catalinred

https://catalin.red/
Author, Developer, and Reviewer

Cheng Xi
chengxicn

Translator

Chris Lilley
@svgeesus

svgeesus

https://svgees.us
Author and Reviewer

Christian Liebel
@christianliebel

christianliebel

https://christianliebel.com
Author

Colin Bendell
@colinbendell

colinbendell
Reviewer

Dave Crossland
@davelab6

davelab6

https://fonts.google.com
Reviewer

Appendix B : Contributors

588 2020 Web Almanac by HTTP Archive

https://twitter.com/hankchizljaw
https://github.com/hankchizljaw
http://127.0.0.1:8080/en/2020/hankchizljaw
https://github.com/andy0130tw
https://github.com/antoineeripret
https://twitter.com/denar90_
https://github.com/denar90
https://twitter.com/tunetheweb
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb
http://127.0.0.1:8080/en/2020/tunetheweb
https://twitter.com/bseymour
https://github.com/bseymour
https://www.linkedin.com/in/bseymour
http://127.0.0.1:8080/en/2020/bseymour
https://github.com/agarwalbharat
https://twitter.com/boostmarks
https://github.com/borisschapira
http://127.0.0.1:8080/en/2020/boostmarks
https://twitter.com/briankardell
https://github.com/bkardell
http://127.0.0.1:8080/en/2020/briankardell
https://twitter.com/remotesynth
https://github.com/remotesynth
http://127.0.0.1:8080/en/2020/remotesynth
https://twitter.com/httpsecheaders
https://github.com/cqueern
https://twitter.com/mxcarloscastro
https://github.com/carloscastromx
http://127.0.0.1:8080/en/2020/mxcarloscastro
https://twitter.com/catalinred
https://github.com/catalinred
http://127.0.0.1:8080/en/2020/catalinred
https://github.com/chengxicn
https://twitter.com/svgeesus
https://github.com/svgeesus
http://127.0.0.1:8080/en/2020/svgeesus
https://twitter.com/christianliebel
https://github.com/christianliebel
http://127.0.0.1:8080/en/2020/christianliebel
https://twitter.com/colinbendell
https://github.com/colinbendell
https://twitter.com/davelab6
https://github.com/davelab6
http://127.0.0.1:8080/en/2020/davelab6

Dave Smart
@davewsmart

dwsmart

https://tamethebots.com
Reviewer

Dave Sottimano
@dsottimano

dsottimano

https://opensourceseo.org/
Reviewer

David Fox
@theobto

foxdavidj

https://www.lookzook.com
Analyst, Editor, Project Lead, and
Reviewer

Doug Sillars
@dougsillars

dougsillars

https://dougsillars.com
Reviewer

Durga Prasad Sadhanala
@dsadhanala

dsadhanala
Developer

Dustin Montgomery
@DustinMontSEO

en3r0

https://dustinmontgomery.com/
Reviewer

Edmond W. W. Chan
edmondwwchan

https://edmondwwchan.github.io/
Reviewer

Elika Etemad aka fantasai
@fantasai

fantasai

http://fantasai.inkedblade.net/
Reviewer

Emanuel Gonçalves Santana de

Souza
@emanuelgsouza

emanuelgsouza

emanuelgsouza

https://emanuelgsouza.dev/
Translator

Eric Bailey
@ericwbailey

ericwbailey

https://ericwbailey.design/
Reviewer

Eric Portis
@etportis

eeeps

https://ericportis.com
Author

Estelle Weyl
@estellevw

estelle

http://standardista.com
Reviewer

Fatma Badri
fatmabadri

fatmabadri

https://fatmabadri.github.io/
Translator

Giovanni Puntil
@giovannipuntil

giopunt
Reviewer and Translator

Gokulakrishnan Kalaikovan
gokulkrishh

Reviewer

Greg Brimble
@gregbrimble

GregBrimble

https://gregbrimble.com/
Analyst

Greg Wolf
gregorywolf

Analyst

Hemanth HM
@gnumanth

hemanth

http://h3manth.com
Author

Appendix B : Contributors

2020 Web Almanac by HTTP Archive 589

https://twitter.com/davewsmart
https://github.com/dwsmart
http://127.0.0.1:8080/en/2020/davewsmart
https://twitter.com/dsottimano
https://github.com/dsottimano
http://127.0.0.1:8080/en/2020/dsottimano
https://twitter.com/theobto
https://github.com/foxdavidj
http://127.0.0.1:8080/en/2020/theobto
https://twitter.com/dougsillars
https://github.com/dougsillars
http://127.0.0.1:8080/en/2020/dougsillars
https://twitter.com/dsadhanala
https://github.com/dsadhanala
https://twitter.com/DustinMontSEO
https://github.com/en3r0
http://127.0.0.1:8080/en/2020/DustinMontSEO
https://github.com/edmondwwchan
https://twitter.com/fantasai
https://github.com/fantasai
http://127.0.0.1:8080/en/2020/fantasai
https://twitter.com/emanuelgsouza
https://github.com/emanuelgsouza
https://www.linkedin.com/in/emanuelgsouza
http://127.0.0.1:8080/en/2020/emanuelgsouza
https://twitter.com/ericwbailey
https://github.com/ericwbailey
http://127.0.0.1:8080/en/2020/ericwbailey
https://twitter.com/etportis
https://github.com/eeeps
http://127.0.0.1:8080/en/2020/etportis
https://twitter.com/estellevw
https://github.com/estelle
http://127.0.0.1:8080/en/2020/estellevw
https://github.com/fatmabadri
https://www.linkedin.com/in/
https://twitter.com/giovannipuntil
https://github.com/giopunt
https://github.com/gokulkrishh
https://twitter.com/gregbrimble
https://github.com/GregBrimble
http://127.0.0.1:8080/en/2020/gregbrimble
https://github.com/gregorywolf
https://twitter.com/gnumanth
https://github.com/hemanth
http://127.0.0.1:8080/en/2020/gnumanth

Henri Helvetica
@HenriHelvetica

henrihelvetica
Author

Huang Shuo-Han
ArvinH

Translator

Huli
aszx87410

Translator

Ian Devlin
@iandevlin

iandevlin

https://iandevlin.com
Author

Jad Joubran
@JoubranJad

jadjoubran

https://learnjavascript.online/
Reviewer

Jamie Indigo
@Jammer_Volts

fellowhuman1101

https://not-a-robot.com
Author

Jason Haralson
jrharalson

Analyst and Author

Jason Pamental
@jpamental

jpamental

https://rwt.io
Author

Jens Oliver Meiert
@j9t

j9t

https://meiert.com/en/
Author and Reviewer

Jessica Nicolet
@jessica_nicolet

jessnicolet

https://www.jessicanicolet.com/
Reviewer

Jonathan Wold
@sirjonathan

sirjonathan

https://jonathanwold.com
Reviewer

Julia Yang
@Jules_Yang

jzyang

yangzhe
Reviewer

Jyrki Alakuijala
@jyzg

jyrkialakuijala
Author

Karolina Szczur
@fox

thefoxis
Author

Kate Tymoshkina
tymosh

tymosh
Translator

Katie Hempenius
@katiehempenius

khempenius
Analyst

Laurent Devernay
@ldevernay

ldevernay

https://ldevernay.github.io/
Reviewer

Lea Verou
@leaverou

LeaVerou

https://lea.verou.me/
Analyst and Author

Appendix B : Contributors

590 2020 Web Almanac by HTTP Archive

https://twitter.com/HenriHelvetica
https://github.com/henrihelvetica
https://github.com/ArvinH
https://github.com/aszx87410
https://twitter.com/iandevlin
https://github.com/iandevlin
http://127.0.0.1:8080/en/2020/iandevlin
https://twitter.com/JoubranJad
https://github.com/jadjoubran
http://127.0.0.1:8080/en/2020/JoubranJad
https://twitter.com/Jammer_Volts
https://github.com/fellowhuman1101
http://127.0.0.1:8080/en/2020/Jammer_Volts
https://github.com/jrharalson
https://twitter.com/jpamental
https://github.com/jpamental
http://127.0.0.1:8080/en/2020/jpamental
https://twitter.com/j9t
https://github.com/j9t
http://127.0.0.1:8080/en/2020/j9t
https://twitter.com/jessica_nicolet
https://github.com/jessnicolet
http://127.0.0.1:8080/en/2020/jessica_nicolet
https://twitter.com/sirjonathan
https://github.com/sirjonathan
http://127.0.0.1:8080/en/2020/sirjonathan
https://twitter.com/Jules_Yang
https://github.com/jzyang
https://www.linkedin.com/in/Jules_Yang
https://twitter.com/jyzg
https://github.com/jyrkialakuijala
https://twitter.com/fox
https://github.com/thefoxis
https://github.com/tymosh
https://www.linkedin.com/in/
https://twitter.com/katiehempenius
https://github.com/khempenius
https://twitter.com/ldevernay
https://github.com/ldevernay
http://127.0.0.1:8080/en/2020/ldevernay
https://twitter.com/leaverou
https://github.com/LeaVerou
http://127.0.0.1:8080/en/2020/leaverou

Leonardo Digiorgio
@simdigiorgio

chefleo

https://chefleo.dev/
Translator

Leonardo Zizzamia
@Zizzamia

Zizzamia

https://twitter.com/zizzamia
Author and Reviewer

Luca Versari
veluca93

Author

Lucas Pardue
@SimmerVigor

LPardue

https://lucaspardue.com
Reviewer

Lyubomir Angelov
@angelovcode

Super-Fly
Developer

Maedah Batool
@maedahbatool

MaedahBatool

https://maedahbatool.com/
Reviewer

Mandy Michael
@Mandy_Kerr

mandymichael

https://mandymichael.com/
Reviewer

Manuel Matuzović
@mmatuzo

matuzo

https://www.matuzo.at/
Reviewer

Max Ostapenko
@themax_o

max-ostapenko

https://maxostapenko.com
Analyst and Developer

Michael DiBlasio
mdiblasio

Author

Michael King
@IPullRank

ipullrank
Author

Michelle O'Connor
Designer

Miguel Carlos Martínez Díaz
@mcmd

mcmd

miguelcarlosmartinezdiaz
Translator

Mike Bishop
MikeBishop

Author

Minko Gechev
@mgechev

mgechev

https://blog.mgechev.com/
Reviewer

Miriam Suzanne
@MiriSuzanne

mirisuzanne

https://miriamsuzanne.com/
Reviewer

Moritz Firsching
mo271

https://mo271.github.io/
Author

Nate Dame
@seonate

natedame
Reviewer

Appendix B : Contributors

2020 Web Almanac by HTTP Archive 591

https://twitter.com/simdigiorgio
https://github.com/chefleo
http://127.0.0.1:8080/en/2020/simdigiorgio
https://twitter.com/Zizzamia
https://github.com/Zizzamia
http://127.0.0.1:8080/en/2020/Zizzamia
https://github.com/veluca93
https://twitter.com/SimmerVigor
https://github.com/LPardue
http://127.0.0.1:8080/en/2020/SimmerVigor
https://twitter.com/angelovcode
https://github.com/Super-Fly
https://twitter.com/maedahbatool
https://github.com/MaedahBatool
http://127.0.0.1:8080/en/2020/maedahbatool
https://twitter.com/Mandy_Kerr
https://github.com/mandymichael
http://127.0.0.1:8080/en/2020/Mandy_Kerr
https://twitter.com/mmatuzo
https://github.com/matuzo
http://127.0.0.1:8080/en/2020/mmatuzo
https://twitter.com/themax_o
https://github.com/max-ostapenko
http://127.0.0.1:8080/en/2020/themax_o
https://github.com/mdiblasio
https://twitter.com/IPullRank
https://github.com/ipullrank
https://twitter.com/mcmd
https://github.com/mcmd
https://www.linkedin.com/in/mcmd
https://github.com/MikeBishop
https://twitter.com/mgechev
https://github.com/mgechev
http://127.0.0.1:8080/en/2020/mgechev
https://twitter.com/MiriSuzanne
https://github.com/mirisuzanne
http://127.0.0.1:8080/en/2020/MiriSuzanne
https://github.com/mo271
https://twitter.com/seonate
https://github.com/natedame

Navaneeth Krishna
@Navanee55755217

Navaneeth-akam
Reviewer

Nicolas Goutay
@Phacks

phacks

https://phacks.dev/
Reviewer

Nicolas Hoizey
@nhoizey

nhoizey

https://nicolas-hoizey.com/
Reviewer

Nikita Dubko
@dark_mefody

MeFoDy

https://mefody.dev/
Translator

Noah van der Veer
@noah_aaron_vdv

noah-vdv
Translator

Noam Rosenthal
@nomsternom

noamr
Reviewer

Nurullah Demir
@nrllah

nrllh

https://www.internet-sicherheit.de/

team/demir-nurullah.html
Analyst and Author

Olu Niyi-Awosusi
@oluoluoxenfree

oluoluoxenfree

https://olu.online/
Author

Pascal Birchler
@swissspidy

swissspidy

swissspidy
Developer

Pascal Schilp
thepassle

Reviewer

Patrick Meenan
@patmeenan

pmeenan

https://www.webpagetest.org/
Reviewer

Paul Calvano
@paulcalvano

paulcalvano

https://paulcalvano.com
Analyst, Developer, Project Lead, and
Reviewer

Pearl Latteier
@pblatteier

pearlbea
Reviewer

Pokidov N. Dmitry
@otherpunk

dooman87

https://pixboost.com
Analyst

Praveen Pal
@PraveenPal4232

PraveenPal4232

https://praveenpal4232.github.io
Translator

Rachel Andrew
@rachelandrew

rachelandrew

https://rachelandrew.co.uk
Author

Raghu Ramakrishnan
raghuramakrishnan71

Analyst and Author

Raph Levien
@raphlinus

raphlinus

https://levien.com
Author

Appendix B : Contributors

592 2020 Web Almanac by HTTP Archive

https://twitter.com/Navanee55755217
https://github.com/Navaneeth-akam
https://twitter.com/Phacks
https://github.com/phacks
http://127.0.0.1:8080/en/2020/Phacks
https://twitter.com/nhoizey
https://github.com/nhoizey
http://127.0.0.1:8080/en/2020/nhoizey
https://twitter.com/dark_mefody
https://github.com/MeFoDy
http://127.0.0.1:8080/en/2020/dark_mefody
https://twitter.com/noah_aaron_vdv
https://github.com/noah-vdv
https://twitter.com/nomsternom
https://github.com/noamr
https://twitter.com/nrllah
https://github.com/nrllh
http://127.0.0.1:8080/en/2020/nrllah
https://twitter.com/oluoluoxenfree
https://github.com/oluoluoxenfree
http://127.0.0.1:8080/en/2020/oluoluoxenfree
https://twitter.com/swissspidy
https://github.com/swissspidy
https://www.linkedin.com/in/swissspidy
https://github.com/thepassle
https://twitter.com/patmeenan
https://github.com/pmeenan
http://127.0.0.1:8080/en/2020/patmeenan
https://twitter.com/paulcalvano
https://github.com/paulcalvano
http://127.0.0.1:8080/en/2020/paulcalvano
https://twitter.com/pblatteier
https://github.com/pearlbea
https://twitter.com/otherpunk
https://github.com/dooman87
http://127.0.0.1:8080/en/2020/otherpunk
https://twitter.com/PraveenPal4232
https://github.com/PraveenPal4232
http://127.0.0.1:8080/en/2020/PraveenPal4232
https://twitter.com/rachelandrew
https://github.com/rachelandrew
http://127.0.0.1:8080/en/2020/rachelandrew
https://github.com/raghuramakrishnan71
https://twitter.com/raphlinus
https://github.com/raphlinus
http://127.0.0.1:8080/en/2020/raphlinus

Renee Johnson
@reneesoffice

ernee

https://reneesvirtualoffice.com
Reviewer

Rick Viscomi
@rick_viscomi

rviscomi

https://rviscomi.dev/
Analyst, Developer, Editor, Project Lead,
and Reviewer

Robin Marx
@programmingart

rmarx

http://internetonmars.org
Author

Rockey Nebhwani
@rnebhwani

rockeynebhwani

rockeynebhwani
Analyst and Author

Rod Sheeter
rsheeter

Reviewer

Roel Nieskens
@PixelAmbacht

RoelN

http://pixelambacht.nl
Reviewer

Rory Hewitt
@roryhewitt3

roryhewitt

roryhewitt

https://romche.com
Author

Sakae Kotaro
@beltway7

ksakae1216

https://ksakae1216.com/
Translator

Sami Boukortt
sboukortt

Author

Saptak Sengupta
@Saptak013

saptaks

https://saptaks.website/
Developer

Sawood Alam
@ibnesayeed

ibnesayeed

https://www.cs.odu.edu/~salam/
Developer and Reviewer

Shane Exterkamp
@Shane_Exterkamp

exterkamp
Editor and Reviewer

Shubhie Panicker
@shubhie

spanicker
Author

Simon Hearne
@simonhearne

simonhearne

https://simonhearne.com
Author

Simon Pieters
@zcorpan

zcorpan
Reviewer

Stefan Matei
@smatei

smatei

https://www.advancedwebranking.com/
Analyst

Sudheendra chari
@itsmesudheendra

sudheendrachari

sudheendrachari
Developer

Tamas Piros
@tpiros

tpiros

https://tamas.io
Author

Appendix B : Contributors

2020 Web Almanac by HTTP Archive 593

https://twitter.com/reneesoffice
https://github.com/ernee
http://127.0.0.1:8080/en/2020/reneesoffice
https://twitter.com/rick_viscomi
https://github.com/rviscomi
http://127.0.0.1:8080/en/2020/rick_viscomi
https://twitter.com/programmingart
https://github.com/rmarx
http://127.0.0.1:8080/en/2020/programmingart
https://twitter.com/rnebhwani
https://github.com/rockeynebhwani
https://www.linkedin.com/in/rnebhwani
https://github.com/rsheeter
https://twitter.com/PixelAmbacht
https://github.com/RoelN
http://127.0.0.1:8080/en/2020/PixelAmbacht
https://twitter.com/roryhewitt3
https://github.com/roryhewitt
https://www.linkedin.com/in/roryhewitt3
http://127.0.0.1:8080/en/2020/roryhewitt3
https://twitter.com/beltway7
https://github.com/ksakae1216
http://127.0.0.1:8080/en/2020/beltway7
https://github.com/sboukortt
https://twitter.com/Saptak013
https://github.com/saptaks
http://127.0.0.1:8080/en/2020/Saptak013
https://twitter.com/ibnesayeed
https://github.com/ibnesayeed
http://127.0.0.1:8080/en/2020/ibnesayeed
https://twitter.com/Shane_Exterkamp
https://github.com/exterkamp
https://twitter.com/shubhie
https://github.com/spanicker
https://twitter.com/simonhearne
https://github.com/simonhearne
http://127.0.0.1:8080/en/2020/simonhearne
https://twitter.com/zcorpan
https://github.com/zcorpan
https://twitter.com/smatei
https://github.com/smatei
http://127.0.0.1:8080/en/2020/smatei
https://twitter.com/itsmesudheendra
https://github.com/sudheendrachari
https://www.linkedin.com/in/itsmesudheendra
https://twitter.com/tpiros
https://github.com/tpiros
http://127.0.0.1:8080/en/2020/tpiros

Thomas Steiner
@tomayac

tomayac

https://blog.tomayac.com/
Analyst and Reviewer

Tim Kadlec
@tkadlec

tkadlec

https://timkadlec.com/
Author

Tom Van Goethem
@tomvangoethem

tomvangoethem

https://tom.vg/
Analyst and Author

Tony McCreath
@TonyMcCreath

Tiggerito

https://websiteadvantage.com.au/
Analyst

William Sandres
@hakacode

HakaCode

https://hakacode.github.io
Translator

Yana Dimova
ydimova

Analyst and Author

Zuckjet
@Zuckjet

Zuckjet
Translator

cybai
@_cybai

CYBAI
Translator

notwillk
notwillk

Reviewer

Appendix B : Contributors

594 2020 Web Almanac by HTTP Archive

https://twitter.com/tomayac
https://github.com/tomayac
http://127.0.0.1:8080/en/2020/tomayac
https://twitter.com/tkadlec
https://github.com/tkadlec
http://127.0.0.1:8080/en/2020/tkadlec
https://twitter.com/tomvangoethem
https://github.com/tomvangoethem
http://127.0.0.1:8080/en/2020/tomvangoethem
https://twitter.com/TonyMcCreath
https://github.com/Tiggerito
http://127.0.0.1:8080/en/2020/TonyMcCreath
https://twitter.com/hakacode
https://github.com/HakaCode
http://127.0.0.1:8080/en/2020/hakacode
https://github.com/ydimova
https://twitter.com/Zuckjet
https://github.com/Zuckjet
https://twitter.com/_cybai
https://github.com/CYBAI
https://github.com/notwillk

	2020Web Almanac
	HTTP Archive’s annualstate of the web report

	Table of Contents
	Introduction
	Part I. Page Content
	Part II. User Experience
	Part III. Content Publishing
	Part IV. Content Distribution
	Appendices

	Foreword
	CSS
	Introduction
	Methodology
	Usage
	Selectors and the cascade
	Class names
	IDs
	!important
	Specificity and classes
	Attribute selectors
	Pseudo-classes and pseudo-elements

	Values and units
	Lengths
	Calculations
	Global keywords and all

	Color
	Gradients
	Layout
	Flexbox and Grid adoption
	Usage of different Grid layout techniques
	Multiple-column layout
	Box sizing

	Transitions and animations
	Visual effects
	Blend modes
	Filters
	Masks
	Clipping paths

	Responsive design
	Which media features are people using?
	Common breakpoints
	Properties used inside media queries

	Custom properties
	Naming
	Usage by type
	Complexity

	CSS and JS
	Houdini
	CSS-in-JS

	Internationalization
	Direction
	Logical vs physical properties

	Browser support
	Vendor prefixes
	Feature queries

	Meta
	Declaration repetition
	Shorthands and longhands
	Shorthands before longhands
	font
	background
	Margins and paddings
	Flex
	Grid

	CSS mistakes
	Syntax errors
	Nonexistent properties
	Longhands before shorthands

	Sass
	Conclusion
	Authors

	JavaScript
	Introduction
	How much JavaScript do we use?
	module and nomodule
	Request count

	Where does it come from?
	How do we load our JavaScript?
	Resource hints

	How do we serve JavaScript?
	Compression

	What do we use?
	Libraries
	Frameworks
	What it all means

	What’s the impact?
	Correlating JavaScript use to Lighthouse scoring
	Security vulnerabilities

	Conclusion
	Author

	Markup
	Introduction
	General
	Doctypes
	Document size
	Document language
	Comments
	Conditional comments

	Script use
	Script types

	Elements
	Element diversity
	Top elements
	details and summary

	Probability of element use
	Custom elements
	Obsolete elements
	isindex

	Proprietary and made-up elements
	Headings

	Attributes
	Top attributes
	Attributes on pages
	data-* attributes

	Miscellaneous
	viewport specifications
	Favicons
	Button and input types
	Link targets
	Links in new windows

	Conclusion
	Authors

	Fonts
	Introduction
	Where are web fonts being used?
	Serving with a service
	Not all services have the same service
	Self-hosting isn’t always better
	Local isn’t always better

	Racing to first paint
	Resource hints

	Home on the (Unicode) range
	Formats and MIME types
	Popular fonts
	Color fonts
	Variable fonts
	Conclusion
	Authors

	Media
	Introduction
	Images
	Responsive HTML markup for images
	Srcset
	Srcset: quantity of image candidates
	Srcset: descriptors

	Sizes
	Picture
	Picture: format switching
	Picture: media art direction
	Picture: orientation switching

	Effective leveraging of image formats
	MIME types vs extensions
	Progressive JPEGs

	Microbrowsers
	Usage of rel=preconnect
	Usage of data: URLs
	SEO & Accessibility
	Usage of alt text
	Figure & Figcaption

	Videos
	The <video> element
	Sources (or not), and total usage
	JavaScript players
	Type attributes
	Video preload
	Autoplay and Muted

	Conclusion
	Authors

	Third Parties
	Introduction
	Definitions
	“Third Party”
	Provider categories
	Caveats

	Prevalence
	Content-types
	Third-party domains

	Page weight impact
	Heaviest third-parties
	Cacheability
	Large redirects

	Early-loaders
	CPU impact
	timing-allow-origin prevalence
	Repercussions
	Conclusion
	Author

	SEO
	Introduction
	Fundamentals
	Crawlability and indexability
	robots.txt
	Meta robots
	Canonicalization

	Content
	Rendered versus non-rendered text content
	Headings
	Structured data
	Rendered versus non-rendered structured data
	Most prevalent structured data objects

	Metadata
	Titles
	Meta descriptions

	Images

	Links
	Outgoing links
	Text versus image links
	Mobile versus desktop links
	rel=nofollow, ugc, and sponsored attributes usage

	Advanced
	Mobile friendliness
	Viewport meta tag
	CSS media queries
	Vary: User-Agent

	Web performance
	Core Web Vitals experiences per device
	Core Web Vitals experiences per country

	Internationalization
	hreflang
	Content-Language

	Security
	HTTPS usage

	AMP
	Single-page applications

	Conclusion
	Authors

	Accessibility
	Introduction
	Ease of reading
	Color contrast
	Zooming and scaling
	Language identification

	Media on the web
	Images and their text alternatives
	Images with title attributes
	Other facts about alt text

	Video on the web
	Captions
	Autoplaying video

	Ease of page navigation
	Headings
	Skip links
	Tables
	Table captions
	Presentational tables

	Document titles
	Tabindex

	Assistive technologies on the web
	Introduction to ARIA
	The five rules of ARIA
	ARIA roles
	Just use a button!
	Navigation
	Dialog modals
	Tabs
	Presentation

	ARIA attributes
	Labeling and describing elements with ARIA
	Hiding content
	Screen reader only text
	Announcing dynamically rendered content

	Accessibility of form controls
	Form validation
	Form labels
	Placeholder text

	Conclusion
	Potential accessibility responsibilities by role

	Authors

	Performance
	Introduction
	Lighthouse Performance Score
	Core Web Vitals: Largest Contentful Paint
	LCP by device
	LCP by geographic location
	LCP by connection type

	Core Web Vitals: Cumulative Layout Shift
	CLS by device
	CLS by geographic location
	CLS by connection type

	Core Web Vitals: First Input Delay
	FID by device
	FID by geographic location
	FID by connection type

	First Contentful Paint
	FCP by device
	FCP by geographic location
	FCP by connection type

	Time to First Byte
	TTFB by device
	TTFB by geographic location
	TTFB by connection type

	Performance Observer usage
	Conclusion
	Author

	Privacy
	Introduction
	Online tracking
	Third-party trackers
	Cookies
	Fingerprinting

	Consent Management Platforms
	IAB Europe’s Transparency Consent Framework

	Privacy Policies
	Conclusion
	Author

	Security
	Introduction
	Methodology

	Transport security
	Protocol versions
	Cipher suites
	Certificate Authorities
	Browser enforcement
	HTTP Strict Transport Security

	Cookies
	Content inclusion
	Content Security Policy
	Subresource integrity
	Feature policy
	Iframe sandbox

	Thwarting attacks
	Security mechanism adoption
	Preventing XSS attacks through CSP
	Defending against XS-Leaks with Cross-Origin Policies
	Web Cryptography API
	Utilizing bot protection services

	Relationship between the adoption of security headers and various factors
	Country of a website’s visitors
	Technology stack
	Co-occurrence of other security headers

	Software update practices
	WordPress
	jQuery
	nginx

	Malpractices on the web
	Conclusion
	Authors

	Mobile Web
	Introduction
	Data sources

	Mobile web & desktop traffic trends
	Page loads in Chrome (Chrome data source)
	Page loads across origins ranked by popularity
	Traffic to a site from mobile versus desktop (CrUX)
	Trend conclusions

	The user journey
	1. Acquisition
	SEO
	Responsive web design

	Loading performance
	Largest Contentful Paint
	Images

	2. Engagement
	Shifting content
	Cumulative Layout Shift

	Design elements
	Landing pages
	Color and contrast
	Tap targets
	Search input
	A/B testing

	3. Conversion
	Form semantics
	Sign up, sign in and checkout

	4. Retention
	Installability with PWA
	A seamless experience across devices

	Conclusion
	Authors

	Capabilities
	Introduction
	Async Clipboard API
	Read Access
	Write Access

	StorageManager API
	Estimate the available storage
	Opt-in to persistent storage

	New Notification APIs
	Badging API
	Notification Triggers API

	Screen Wake Lock API
	Idle Detection API
	Periodic Background Sync API
	Register for periodic sync
	Respond to a periodic sync interval

	Integration with native app stores
	Content Indexing API
	New Transport APIs
	Backpressure for WebSockets
	Make it QUIC

	Conclusion
	Author

	PWA
	Introduction
	Service workers
	Service worker usage

	Lighthouse insights
	Service worker events
	Web app manifests
	Manifest Properties
	Top Manifest display values
	Top manifest categories
	Manifests preferring native
	Top manifest icon sizes
	Top manifest orientations

	Service worker libraries
	Popular import scripts
	Workbox usage

	Conclusion
	Author

	CMS
	Introduction
	Why use a CMS in 2020?
	CMS adoption
	Top CMSs
	WordPress usage

	CMS user experience
	Chrome User Experience Report
	Largest Contentful Paint
	First Input Delay
	Cumulative Layout Shift

	Lighthouse scores
	SEO
	Accessibility

	Environmental impact
	Conclusion
	Author

	Ecommerce
	Introduction
	Platform detection
	Limitations

	Ecommerce platforms
	Top ecommerce platforms
	Top enterprise ecommerce platforms

	COVID-19 impact on ecommerce
	Page weight and requests
	Page weight by resource type
	HTML payload size
	Image usage
	Popular image formats

	Third-party requests and bytes

	Ecommerce user experience
	Chrome User Experience Report
	Largest Contentful Paint
	First Input Delay
	Cumulative Layout Shift
	Core Web Vitals overall

	Tools
	Analytics
	Tag Managers
	Consent Management Platforms
	Accessibility solutions
	AMP adoption
	Web Push notifications

	Future analysis opportunities
	Conclusion
	Authors

	Jamstack
	Introduction
	Adoption of Jamstack
	Jamstack frameworks
	Framework adoption changes

	Environmental impact
	Page weight
	Image formats
	Third-party bytes

	User experience
	Largest Contentful Paint
	First Input Delay
	Cumulative Layout Shift

	Conclusion
	Author

	Page Weight
	Introduction
	#PageWeightStillMatters
	Bandwidth
	Assets
	Intricate and interactive

	Analysis
	Page weight
	Requests
	File formats
	Image bytes

	COVID-19
	A not so distant future
	Conclusion
	Author

	Compression
	Introduction
	What type of content should we compress?
	How to use HTTP compression?
	Current state of HTTP compression
	First-party vs third-party compression
	How to analyze compression on your sites
	Conclusion
	Authors

	Caching
	Introduction
	Caching guiding principles
	Cache as much as you can
	Static content
	Dynamic content

	Cache for as long as you can
	Cache as close to end users as you can

	Some terminology
	Overview of browser caching
	Cache-Control vs Expires
	Cache-Control directives
	Cache-Control: no-store, no-cache and max-age=0
	Conditional requests and revalidation
	Last-Modified
	Entity Tag (ETag)

	Validity of date strings
	The Vary header
	Setting cookies on cacheable responses
	Service workers
	What type of content are we caching?
	How do cache TTLs compare to resource age?
	Identifying caching opportunities
	Conclusion
	Authors

	Resource Hints
	Introduction
	dns-prefetch
	preconnect
	preload
	prefetch
	Native lazy loading

	Resource hints
	Hints adoption
	Hints per page
	The as attribute
	The crossorigin attribute
	The media attribute
	Best practices
	Native Lazy Loading

	Predictive prefetching
	HTTP/2 Push
	Service Workers
	Future
	Priority hints
	103 Early Hints in HTTP/2

	Conclusion
	Author

	HTTP/2
	Introduction
	HTTP/1.0 to HTTP/2

	HTTP/2 Adoption
	Server support

	HTTP/2 impact
	Reducing connections
	Prioritization
	Goodbye server push?

	Getting to a better protocol
	Upgrade
	Alternative Services

	Looking toward the future: HTTP/3
	QUIC and HTTP/3
	Deploying and discovering HTTP/3
	Is HTTP/3 ready yet?

	Conclusion
	Authors

	Methodology
	Overview
	About the dataset
	Websites
	Metrics

	Tools
	WebPageTest
	Lighthouse
	Wappalyzer
	Chrome UX Report
	Third Party Web
	Rework CSS
	Rework Utils
	Parsel

	Analytical process
	Planning
	Analysis
	Interpretation

	Looking ahead

	Contributors

