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Abstract
Agents that use Multi-Agent Forward Search (MAFS)
to do privacy-preserving planning, often repeatedly de-
velop similar paths. We describe a simple technique for
online macro generation allowing agents to reuse suc-
cessful previous action sequences. By focusing on spe-
cific sequences that end with a single public action only,
we are able to address the utility problem – our tech-
nique has negligible cost, yet provides both speedups
and reduced communication in domains where agents
have a reasonable amount of private actions. We de-
scribe two variants of our approach, both with attrac-
tive privacy preserving properties, and demonstrate the
value of macros empirically. We also show that one vari-
ant is equivalent to secure MAFS.

1 Introduction
In various settings, agents may wish to cooperate to achieve
joint goals, while concealing certain private facts. For exam-
ple, different manufacturers may want to collaborate in the
production of a good without disclosing their entire supply-
chain, inventory levels, and local processes. Similarly, the
army may want to outsource its food supply to external
caterers without revealing the location of its bases and the
number of soliders serving in each, and the caterer may wish
to keep private the number of trucks it operates.

An attractive framework for such planning problems is
privacy preserving planning (Nissim and Brafman 2014)
which has gained increasing attention in recent years. The
latest CoDMAP competition (Štolba, Komenda, and Ko-
vacs 2015) accepted numerous submissions from 10 dif-
ferent groups. While several approaches were suggested,
heuristic search algorithms (Maliah, Shani, and Stern 2015;
Štolba and Komenda 2014; Štolba, Fišer, and Komenda
2015; Maliah, Shani, and Stern 2014) seem to be the best
performers. In particular, the Multi-Agent Forward Search
algorithm (MAFS) (Nissim and Brafman 2012), combined
with strong heuristic estimates (Štolba, Fišer, and Komenda
2015) is perhaps the best performing.

Macro actions (macro operators) are a well known tech-
nique for speeding up heuristic search (Koedinger and An-
derson 1990; Botea et al. , e.g.). Macros can be identified
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offline, prior to searching, or online, while searching for sat-
isfying plans (Coles and Smith 2007; Chrpa, Vallati, and
McCluskey 2015). In online macro generation, sequences of
actions that are deemed useful during the search are stored
to be reused when needed, potentially reducing the number
of expansions, at the cost of an increased branching factor.

In MAFS, each agent plans independently in its own pri-
vate search space, until a public action has been invoked.
Then, the agent notifies all other agents about the result of
the public action, allowing them to build upon the effects of
that action. Thus, the search tree of each agent is composed
of sequences of private actions, intervened by public actions
of the planning agent or other agents. Often, such action se-
quences are heuristically preferred, causing agents to expand
identical private action sequences in similar contexts.

In this short paper we use these sequences of private
actions between pairs of public actions to define macro-
actions, providing agents with shortcuts in the search space.

By focusing on grounded sequences ending with a single
public action that lead to a state with an improved heuristic
value, we are able to address the utility problem (Minton
1988): the class of macros generated is restricted, yet useful
– the application of a useful public action typically requires
a sequence of private actions, and this combination is likely
to be required again. Moreover, macro generation is guided
by the heuristic function which determines which sequence
are encountered online, and filters out sequences that do not
improve the heuristic value.

Our macros can be used locally, by the agent that identi-
fied them, or globally, by all agents. In the latter case, the
agent must send the macro to other agents, and this may ap-
pear to disclose private information. However, it also allows
other agents to send fewer states, thus hiding their internal
search space, providing an efficient implementation of the
recent secure MAFS algorithm (Brafman 2015).

We compare the two approaches for using macros and dis-
cuss their advantages and disadvantages and provide an ex-
tensive set of experiments, showing how Macro-MAFS op-
erates better than MAFS on more complex benchmarks.

2 Background
We begin by providing background on privacy preserving
collaborative planning, the MAFS algorithm, and on macro
actions in classical planning.
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Figure 1: A logistics example, where trucks deliver packages
between logistics centers, denoted by squares. Each agent
covers a set of cities, denoted by circles, and labeled i, j
where i is the agent covering the city and j is the local city
index. The logistic centers can be entered by several agents,
serving as collaboration sites.

2.1 Privacy Preserving Planning
A MA-STRIPS problem(Brafman and Domshlak 2013) is
represented by a tuple 〈P, {Ai}ki=1, I, G〉 where:
• k is the number of agents.
• P is a finite set of primitive propositions (facts).
• Ai is the set of actions agent i can perform.
• I is the start state.
• G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and liter-
als, respectively. A state is a truth assignment over P . G is
a conjunction of facts. a(s) denotes the result of applying
action a to state s. A plan π = (a1, . . . , ak) is a solution to
a planning task iff G ⊆ ak(. . . (a1(I) . . .).

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of variables and actions as private, known only
to a single agent. privatei(P ) and privatei(A) denote the
variables and actions, respectively, that are private to agent
i. public(P ) is the set of public facts in P . publici(A), the
complement of privatei(A) w.r.t. Ai is the set of public ac-
tions of agent i. Some preconditions and effects of public
actions may be private, and the action obtained by remov-
ing these private elements is called its public projection. For
ease of exposition we assume that all goals are public.

Figure 2.1 illustrates a simple logistic example in which
the agents are trucks tasked with delivering packages. The
set of facts P represents the location of two packages and six
trucks. Each truck has three actions: move, load, and unload,
corresponding to moving between locations, loading a pack-
age and unloading it. Trucks can only drive along the edges
in Figure 2.1. Agents are heterogeneous and their range is
restricted, such that location i, j can only be reached using
truck i. The rectangles are logistic centers visited by multi-
ple trucks that load or unload packages.

Trucks are owned by different companies that do not want
to share their locations and coverage (which locations it can
reach) with other companies. Thus, all the facts represent-
ing the location of trucks are private, while the facts repre-

senting whether a package is at a logistic center are public.
Only the load/unload actions at the logistic centers are pub-
lic, whereas the move actions are private for each agent, as
well as loading and unloading at private locations.

2.2 MAFS and Secure MAFS
Multi-agent forward search (MAFS) (Nissim and Brafman
2014) is a distributed algorithm schema for forward-search
planning that also preserves privacy. In MAFS, each agent
maintains a separate search space with its own open and
closed lists. It expands the state with the minimal heuris-
tic value in its open list using its own actions only. This
means that two agents (with different action sets) expand-
ing the same state will generate different successor states. As
no agent expands all relevant search nodes, messages must
be sent between agents, informing one agent of open search
nodes expanded by other agents. Thus, agents that generate
a state using a public action send it to all other agents. These
agents, in turn, add this state to their open list.

The MAFS schema can be applied to all search algorithms
– in fact, agents can use different search algorithms and
different heuristic functions, although care is needed when
identifying solutions, especially if an optimal one is sought.

One of the key open issues in research on multi-agent
planning is that of quantifying the level of privacy afforded
by each algorithm. (Brafman 2015) distinguishes between
weak privacy, where agents never explicitly communicate
private information, and strong privacy, where agents can
never infer private information. But there is a clear need for
intermediate notions between weak and strong privacy and
proof techinques for strong privacy.

To maintain agent privacy, agents using MAFS must en-
crypt their private state and use a privacy preserving heuris-
tic function, such as one that is based on the public pro-
jection of existing actions. Since agents are not influenced
by the private state of another agent, nor do they influence
it, they can simply copy the encrypted value of the private
state of other agents when they apply their own actions. With
these restrictions, MAFS is weakly private.

Secure MAFS (SMAFS) (Brafman 2015) is a variant of
MAFS that is provably strongly private in some limited set-
tings. In SMAFS agent i will send a state s only if it never
sent a state s′ earlier, such that s and s′ assign the same val-
ues to all variables that are not private to i. This implies that
no agent will see two private states associated with the same
non-private state of agent i. To preserve completeness, agent
i must simulate the effect of the actions of other agents on
states that were not sent. By recording the transformations
other agents apply to a state s, the agent can emulate it on
any state s′ that differs from s only in the value of its private
variables. These transformations do not impact its private
statem and, as we show later, they can be captured naturally
using macros.

2.3 Macro Actions
Macro actions have been widely studied in automated plan-
ning. A macro action is a sequence of actions that was iden-
tified as useful, typically appearing in many branches of the
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search tree. A macro action is represented like any other ac-
tion, using its preconditions and effects. The preconditions
of the macro action are all the preconditions of actions in the
sequence that are not achieved by earlier actions in the se-
quence. Its effects are the effects of actions in the sequence
that are not destroyed by later actions in the sequence.

Macro actions can speed up search by moving deeper
into the search tree with a single decision. However, each
added macro increases the branching factor of the search
tree. Hence, adding too many macros may increase planning
time. This is known as the utility problem (Minton 1988).

Many existing macro learning methods such as
MacroFF (Botea et al. ), Wizard (Newton et al. 2007),
and MUM (Chrpa, Vallati, and McCluskey 2014) use offline
learning. That is, examples of problems and their solutions
are analyzed to discover useful action sequences that are
good candidates for macros.

Other methods, including OMA (Chrpa, Vallati, and
McCluskey 2015), MacroPlanner (Jonsson 2007), and
CAP (Asai and Fukunaga 2015), are semi-online. They an-
alyze the given domain and problem instance before search
commences, without using knowledge from similar domains
or problems, but also without utlizing information from the
search. For example, MacroPlanner and CAP generate and
solve subproblems that contain fewer variables. Then, plan-
ning commences with the richer operator set.

Marvin (Coles and Smith 2007) is the only truely online

Algorithm 1: MAFS for agent i
1 MAFS(i)
2 Insert I into open list
3 while solution not found do
4 foreach message m call process-message(m)
5 s ← extract-min(open list)
6 expand(s)

7 process-message(m = 〈s, gj(s), hj(s)〉)
8 if s is not in open or closed list ∨ gi(s) > gj(s)

then
9 add s to open list and calculate hi(s)

10 gi(s) ← gj(s), hi(s) ← max(hi(s), hj(s))

11 alg:expand
12 expand(s)
13 move s to closed list
14 if s is a goal state then
15 broadcast s to all agents
16 if s has been broadcasted by all agents then
17 return s as the solution

18 if the last action leading to s was public then
19 send s to all relevant agents
20 apply i’s successor operators to s
21 foreach successors s′ do
22 if s′ is not in closed list or it’s heuristic value

has improved then
23 add s′ to open list

macro-learning system we are aware of. It addresses a spe-
cific issue encountered by enforced hill climbing planners:
overcoming plateaus and local minima. It caches useful ac-
tion sequences that helped it escape from them in the past in
the hope that they will be useful when future plateaus and lo-
cal minima are encountered. While our method is not geared
to a particular search method, it is focused on exploiting the
particular features of multi-agent forward search and the ex-
changeability of private action sequences executed by dif-
ferent agents. And whereas most of the above methods seek
generally applicable macros, trying to lift them, our macros
are fully grounded, thus restricting their applicability, and
controlling the branching factor.

3 Online Macro Generation in MAFS
We generate macros online during the search for a solution
plan, adding them to our action set, as we go. We first explain
macro identification, and then consider two variants.

In MAFS, each agent progresses its own private search by
executing private actions, but the collaborative search pro-
cess is expedited when agents execute public actions. In-
deed, branches in the search tree consist of a sequence of
subsequences consisting of zero or more private actions fol-
lowed by a public action, all by the same agent. These action
”blocks” make excellent candidates for macro actions, to be
reused later in the search.

Macro reuse can be very helpful in our settings. Consider
for example our running logistics problem (Figure 2.1). The
planning process begins with agent 1 bringing package p1 to
location A. Concurrently, agent 2 brings package p2 to loca-
tion B. Thus, agents 1,2,3 (as well as the other agents) are
aware of two different public states, one where at(p1, A) and
the p2 is at its initial location, and one where at(p2, B) and
p1 is at its initial location. Agent 1 must now start searching
from the latter (at(p2, B)), planning again to bring p1 to A.
If agent 1 could reuse a macro for bringing p1 to A, it could
immediately publish a new public state where both at(p1, A)
and at(p2, B) hold. Then, agent 3 can start planning from a
state where both packages are within its reach.

Thus, identifying macros is simple — whenever an agent
executes a public action apub, it generates a macro. This
macro contains all private actions that were executed imme-
diately prior to apub followed by apub itself and is saved only
if the heuristic value of the current (end) state is smaller than
the heuristic value of the state before the first private action
was executed. We make no attempt to lift this macro.

We consider two methods for using the identified macros.
In the ”private” variant, a macro is known only to the agent
that identified it, and it is added to its list of actions. The
public projection of the macro is identical to the final public
action in the macro. In the ”published” variant, the macro
generated is sent to other agents, allowing them, in essence,
to apply public actions of the generating agent.

”Private” macros do not impact privacy, as each macro
serves as a shortcut to a sequence of expansions that would
be carried out anyways. Moreover, as a macro contains a
single public action only at its end, it does not alter the mes-
sages sent. The preconditions of the macro are all the public
preconditions of actions in the macro that are not supplied
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by an earlier action, and the entire private state of the agent.
The latter choice reduces the generality of the macro, but
also the effective branching factor. ”Public” macros are gen-
erated similarly, but to maintain privacy, the agent replaces
its private state in the preconditions with an encrypted pri-
vate state value. This macro is sent to all other agents. To
farther generalize, an agent can treat macros received as pri-
vate actions for the purpose of its own macro generation.
This allows for the generation of longer macros.

At a first glance, the published macros appear to carry
some privacy cost, revealing information about parent-child
relationship in the process. However, they also allows other
agents to send less information because, sometimes, instead
of sending a state to another agent, the agent can simply ap-
ply that other agent’s macros directly.

In fact, with minor modifications, we can use the ”pub-
lished” variant to implement SMAFS. The key property of
SMAFS is that agents never send two states that differ only
in the value of their private variables. Macros make it easy to
achieve this property while maintaining completeness. This
requires modifying the algorithm as follows: 1. Each agent
maintains the list of states sent so far. Whenever MAFS re-
quires the agent to send a state s, it will not send s if some
state s′ sent earlier is identical to s, except, possibly, for the
agent’s private state. 2. States not sent for this reason must
be kept in a special closed list. 3. Whenever an agent re-
ceives a new macro from another agent, it must apply that
macro to every state in its special closed list (in addition to
adding it to its action list). 4. For completeness, macros must
be generated even if they do not lead to a state with an im-
proved heuristic value. However, it is sufficient to apply such
macros only in case 3 above.

Technically, the only difference between this implementa-
tion of SMAFS and (Brafman 2015) is that in the latter agents
must essentially identify the two end states of the macro –
the state in which the action sequence is applied, and the re-
sulting state, and copy the transformation to similar states.
The macro that we send is slightly more general (as it refers
only to the sending agent’s private state), but in principle, the
same macro could be deduced by an agent from the informa-
tion obtained in the original version. Moreover, the proofs
are not affected by these differences.

4 Empirical Evaluation
We conduct an empirical analysis of our macro variants. We
experiment with a set of benchmarks from the CoDMAP
competition (Štolba, Komenda, and Kovacs 2015), and
two more complicated domains — MA-Blocks and MA-
Logistics, where a larger number of private actions need
to be executed between two consecutive public actions, and
agents choose between several paths for achieving goals.

Table 1 compares MAFS without macros (denoted None),
MAFS with private macros, and MAFS with published
macros. The algorithms are compared on the number of ac-
tions in the final plan, runtime, the number of sent messages,
and the number of state expansions.

MAFS without macros produces slightly shorter plans.
As we use a best first search mechanism, macros may be

Domain None Private Published
Actions

MA-Blocks 28.1 28.2 28.2
MA-Logistics 236 236.3 242.5
rover 42.5 48.3 47.2
logistics 50 50 52.8
elevator 56 56 60.7
zenotravel 26.8 29.3 32.8

State expansions
MA-Blocks 99.8 72.2 82.7
MA-Logistics 3512.4 2345.5 2546.3
rover 425.8 301.3 439.6
logistics 205.7 203.5 212.7
elevator 761.1 753.2 751.5
zenotravel 171.5 163.1 153.1

Time (secs)
MA-Blocks 467.9 297.4 364.2
MA-Logisitcs 90.7 59.3 83.6
rover 27.3 19.8 30.2
logistics 2.7 2.8 3.9
elevetor 48.6 48.5 47.6
zenotravel 32.3 27.4 17.8

Messages
MA-Blocks 258.8 244.9 202.7
MA-Logisitcs 6072.8 4829.5 5435.5
rover 859.1 882.9 807.4
logistics 1867.1 1852.7 1825.1
elevetor 3145.4 3145.5 2989.2
zenotravel 957.8 1097.6 727.5

Table 1: Comparing the performance of macro variants.

Private Published
Domain Count Length Portion Count Length Portion
MA-Blocks 3.76 2.038 0.26 5.04 2.29 0.32
MA-Logistics 16.26 4.09 0.44 15.51 3.70 0.40
logistics 3.8 2.23 0.17 6.9 2.11 0.25
elevators 4 2.28 0.16 8.34 2.20 0.33
rovers 2.85 2.18 0.15 7.75 2.28 0.38
zenotravel 2.3 1.7 0.14 5.1 2.20 0.29

Table 2: Macro use in the solution plan

used where shorter sequences of actions might do just as
well. This is also reflected in the number of state expan-
sions, which is largest for MAFS without macros. Not us-
ing macros also results in more planning time (except for
the easiest domain — logistics). As expected, when publish-
ing macros, agents can imitate the search process of other
agents, avoiding the need for other agents to publish the re-
vised states. Thus, the number of messages when publishing
macros is lower on almost all domains.

Table 2 sheds some light on macro usage. We report how
many macros appear on average in the solution plan, their
average length, and the portion of actions in the plan that
originates from macros. While the lengths of the macro are
almost identical for both variants, more macro actions were
used in the final plan when publishing macros. This may be
because when multiple agents can use a macro, it is more
likely that one of them will insert it into the final plan.

Table 3 shows the impact of macros on the search: how
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Domain Generated Applied Applied per state
Private Macros

MA-Blocks 15 10 0.13
MA-Logistics 216.78 351.825 0.16
logistics 55.25 22.26 0.11
elevator 72.8 61.27 0.081
rover 42.64 28.28 0.094
zenotravel 32.77 20.88 0.13

Public Macros
MA-Blocks 77 / 107 15.13 0.18
MA-Logistics 975 / 7321 849.19 0.33
logistics 468 / 2567 86.65 0.41
elevator 203 / 4829 84.45 0.11
rover 149 / 968 486.71 1.1
zenotravel 72 / 648 26.56 0.17

Table 3: Impact of published macros on search

many macros were generated, applied in total, and applied
per state. For published macros the generated macros distin-
guish between macros added to the action set, and macros
required to maintain completeness (see Section 3). We see
that in the case of private macros, the impact on the branch-
ing factor is minimal. Even for published macros, the in-
crease in branching factor is almost always less than half,
except for Rovers.

5 Conclusion
We show how macro actions can be identified and used in
the MAFS algorithm. We demonstrate that macros speed up
MAFS, reducing the number of sent messages. We explain
how identifying and publishing macros preserves privacy,
resulting in privacy guarantees equivalent to Secure MAFS.

In the future we intend to study macros in the context of
other privacy preserving algorithms such as GPPP(Maliah,
Shani, and Stern 2014), as well as study additional methods
for identifying useful macros. Another interesting direction
is to explore the combinations of macros and pruning
techniques.
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