
Automatic Methods for Continuous State Space Abstraction

Steven Loscalzo and Robert Wright
Air Force Research Laboratory Information Directorate

525 Brooks Rd.
Rome, NY, 13441

Steven.Loscalzo@rl.af.mil Robert.Wright@rl.af.mil

Abstract

Reinforcement learning algorithms are often tasked with
learning an optimal control policy in a continuous state space.
Since it is infeasible to learn the optimal action to take for
every possible observation in a continuous state space, use-
ful abstractions of the space must be constructed and subse-
quently learned on. Abstraction techniques that generalize
the space into very few abstract states must take care to avoid
creating an abstraction that prevents learning the optimal pol-
icy. Many commonly used abstractions, such as CMAC can
take considerable effort to tune to ensure a learnable abstrac-
tion is created. In this work we propose three methods that
derive state abstractions automatically, in part by making use
of the dimensionality reduction capability of the RL-SANE
algorithm. We show that abstractions derived from these au-
tomatic methods can allow a learning algorithm to converge
to the optimal policy faster than with a fixed abstraction. Ad-
ditionally, these techniques are able to break the space into
very few abstract states, further facilitating rapid learning.

Introduction

Given a Markov Decision Problem (MDP) defined over a
set of states S and actions A, reinforcement learning (RL)
algorithms seek to learn an optimal policy π∗ which selects
the appropriate action a ∈ A for each state s ∈ S to reach
some specified goal state. Typical reinforcement algorithms
learn π∗ by repeatedly experiencing states leading to the
goal state a number of times. In domains with a continuous
set of states, the probability of repeatedly visiting any state
approaches zero, preventing the learner from converging to
π∗. State space aggregation or abstraction techniques must
then be introduced to allow learning of an optimal policy by
turning the continuous space S into a discrete space S′.

State space abstraction techniques can be classified into
five categories depending on the “coarseness” of the abstrac-
tion and what components of π∗ in original state space are
to be preserved in the abstraction (Li, Walsh, and Littman
2006). In that work, Li et al. proved that the optimal policy
learned on several of the categories of abstractions (model-
irrelevance, Qπ-irrelevance, and Q∗-irrelevance) resulted in
an optimal policy in the original space. However, the two
abstraction categories that produce the sharpest reduction in

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the size of the state space are not guaranteed to learn a policy
that will converge to the optimal solution. This makes ap-
plying these powerful abstraction techniques (a∗-irrelevance
and π∗-irrelevance) dangerous in general as they might pre-
vent the learner from arriving at the optimal policy.

One of these classes of abstractions, the a∗-irrelevance
abstraction, which group two base states together if they
share the same optimal action is of particular interest. One
of the most popular types of abstraction techniques, tiling,
falls into this category. Examples of common tile based
abstractions include CMAC (Sutton 1996), and U-tile dis-
tinction (Mccallum 1996; Uther and Veloso 1998). While
tile based methods have been shown effective in a number
of situations, there are serious drawbacks to using them ef-
fectively. Engineering a tiling is typically done by hand,
and it can be very difficult to find an appropriate tiling for
a given problem, or to correctly set the parameters in meth-
ods that build a tiling during the learning process. It has
also been shown that tiling techniques cannot solve some
standard benchmark problems (Gomez, Schmidhuber, and
Miikkulainen 2006).

Here we propose and evaluate three automatic tiling
methods that efficiently learn how to abstract a space but
still allow a learner to converge to the optimal policy. These
abstractions are applied to the one dimensional state space
produced by the RL-SANE algorithm (Wright and Gemelli
2009). This allows us to focus on the partitioning meth-
ods without dealing with the dimensionality of the original
state space. Each of these methods allows the abstract states,
that are used by the learner, to be redrawn in an effort to
get the states that share the same optimal action to fall into
the same tile. This process results in smaller abstract state
spaces which as a consequence greatly improves the speed
of the learning.

In this paper we perform an empirical study comparing
the three automatic tiling methods to the base RL-SANE al-
gorithm using a fixed tiling. The results will show the meth-
ods proposed here allow the learning algorithm to signif-
icantly improve its rate of convergence. Additionally, we
show that the automatic methods we propose here result in
very few abstract states (tiles) being used in order to learn
the test problems.

The rest of this paper is organized as follows: the next sec-
tion describes related tile encoding methods and gives back-

48

Figure 1: Overview of the RL-SANE algorithm transforming a ground state sx,y in a sample two dimensional state space S to
the abstract state s′

2
in the one dimensional abstract state space S′.

ground on the RL-SANE algorithm. The three abstraction
techniques are described in depth in the Automatic Methods
section. The methods are then applied to the two problems
given in the Experimental Setup section, and the results of
this study is given the Experimental Results section. Finally,
the paper concludes with a summary of our contributions
and possible future directions.

Background and Related Work

Here we give some necessary background on various tile en-
coding methods that have appeared in the literature, as our
methods can be interpreted as tile encodings as well. We
also provide details on the RL-SANE algorithm, the plat-
form we use to reduce the dimensionality of the given learn-
ing problems and on which we examine our proposed meth-
ods.

Tile Encoding

Many tile encoding methods exist in the literature, and sev-
eral popular mechanisms are variations on the Cerebellar
Model Articulation Controller (CMAC) algorithm (Miller,
Glanz, and Kraft 1990) which generalizes the learning of
one state to a set of nearby states and based on how the hu-
man brain is thought to respond to stimuli (Albus 1971).

In tile encoding methods, the state space can be thought
of as being broken apart into a number of tiles, and every
time one state is observed, all the other states that belong to
the same tile (or tiles, in the common event of overlapping
layers of tiles) also experience the learning rewards. The
size of the tiles controls the resolution of the abstraction.
Smaller tiles result in a finer resolution, but require more
states to be learned before the RL can find π∗. The location
in the state space where the boundaries occur in the tiling
can have a great impact on the ability of an algorithm to
learn π∗. For example, suppose in order to optimally solve a
problem, action a1 must be taken from state s1 and a2 must
be taken from s2. If s1 and s2 happen to fall on the same tile
(same abstract state) the learning algorithm will not be able
to learn an optimal policy since only one action can be taken
from the abstract state.

A fundamentally different approach to the tile encoding
problem is taken in (Mccallum 1996) with the U Tree algo-
rithm and later extensions to this work (Uther and Veloso

1998) to have it work in continuous domains. Here, the
coarseness of the abstraction is not fixed a priori by setting
a tiling, but rather, the space is viewed as a single tile and
then repeatedly split in areas where it is determined a finer
abstraction is needed. The algorithm decides to spilt a tile in
two when each of the subtiles show a different distribution
of observations than the whole tile, indicating that more in-
formation about the problem can be gained by splitting the
tile. These approaches allow for automatic construction of
a state space abstraction, however, they still suffer from a
fundamentally arbitrary splitting mechanism.

When the U Tree algorithm finds that more resolution can
differentiate observations in one area of the state space, the
algorithm simply splits the tile in two at the center of the
tile. Splitting tiles into two halves has a significant draw-
back, however. It is highly improbable that the actual deci-
sion point, where a change in action selection would result
in a better policy, occurs in the exact center of a tile. As a
consequence, many splits will need to take place before this
area achieves the necessary resolution. This causes the ab-
straction to include and subsequently to learn many unnec-
essary tiles which unnecessarily slows learning. In contrast,
the methods we propose allow the split locations to be po-
sitioned according to the needs of the problem and not in a
pre-specified location.

RL-SANE

The RL-SANE algorithm is a powerful reinforcement learn-
ing and state abstraction algorithm (Wright and Gemelli
2009). It combines a neuroevolution approach to construct-
ing artificial neural networks (ANN) (Stanley and Miikku-
lainen 2002) with a fixed tiling over a one dimensional ab-
stract state space to allow a learner to efficiently learn com-
plex problems by learning the optimal action for each tile in
this abstract space. An overview of this process is given in
Figure 1.

For any dimensionality of input space S the artificial neu-
ral network layer of RL-SANE takes the input measured
across m dimensions and reduces it to a single output value
z ∈ [0, 1] corresponding to a single abstract state s′ ∈ S′.
This one dimensional output space can still represent in-
finitely many states, so a tiling is applied to it. The fixed
tiling simply splits S′ into a number of equal sized tiles with
no consideration given to the exact position of where each

49

split occurs, meaning that the same problem that occurs with
the fixed tiling methods can occur here as well.

The difference between a true tile encoding technique and
the RL-SANE algorithm is the fact that if a given abstrac-
tion does not allow π∗ to be found, the neuroevolutionary
component can mutate the ANNs. Through the mutation
of ANNs, RL-SANE can escape local maximum and derive
state abstractions that preserve the discovery of optimal poli-
cies. The original RL-SANE algorithm included a user spec-
ified parameter β to determine the number of tiles to lay over
S′. Evidence displayed in (Wright and Gemelli 2009) shows
that the algorithm’s overall convergence is not very sensitive
to β however, the rate of learning can be significantly im-
pacted by a poor selection.

Automatic Methods

In this work we focus on three different types of automatic
methods that are able to redraw the abstraction boundaries
of S′ online as the learner embedded in the RL-SANE al-
gorithm is learning. Here we describe mutation, maximum
density separation, and temporal relative extrema methods
for automatic state abstraction.

Mutation

The mutation method of automatic state bound construction
makes direct use of the neuroevolution process that is at the
heart of the RL-SANE algorithm, and is the closest method
to the fixed tiling out of the three. As mentioned above,
the basic RL-SANE algorithm takes the number of abstract
states to generalize to, β, as a parameter. The mutation
method encodes β as another gene in the chromosome and
allows it to be mutated during the evolution of each neural
network. This allows the evolutionary process to automat-
ically explore different state abstraction possibilities in an
effort to find a new one that better groups similar states to-
gether based on the output of the neural network.

In this work, we experimented with two variations of this
idea, the first allows the number of abstract states to increase
or decrease by one per mutation, and the second allows the
number of states to change by a random amount up to a user
defined threshold in a single mutation. Whenever a muta-
tion to the state bound occurs, the method redistributes the
previously learned Q-values for each action in each abstract
state into the new abstract states in proportion to the over-
lap between the old and new states. For example, if there
are half as many new states as old ones, then each new state
gets initial Q-values that are the averages from the two old
states that the new one overlaps. This enables the learner
to reuse values that it had previously learned while allowing
more refined abstractions to come into existence and drive
the learner to a better solution.

This method directly improves the situation of estimating
the proper fixed number of states, achieving our goal of au-
tomatic state abstraction, however, there are still some draw-
backs that need to be addressed. While the boundaries are
redrawn according to the chance of a mutation to the neural
network, they are still arbitrarily placed over the space. This
means that each state in the abstraction all cover the same

Algorithm 1 MDS (Maximum Density Separation)

required: number of bins for frequency distribution
output: new abstract state mapping
�embedded within a reinforcement learning algorithm�
get next state s

′ by following π
∗ from state s

if s
′ != fail state

s := s
′

increment frequency distribution (s)
else if s

′ == fail state
locate relative extrema in frequency distribution

erase old partitions of S ′

partition S ′ in the center of two relative maximums
if a relative minimum occurred between them

end else if

portion of the space. There is no intuition that implies that
this is a good strategy in general. We would rather have the
smaller states be introduced where finer resolution is needed,
and broader states where a coarse abstraction would do.

Maximum Density Separation

The maximum density separation (MDS) approach takes a
different tact in determining the tiling to be used. Unlike
the mutation method, MDS can place the boundaries of a
split anywhere in the state space and can add or remove as
many abstract states at a time as the algorithm determines
necessary. This method intuitively views dense clusters of
observations as belonging to a single state, and abstracts the
state space so that these dense clusters are located on sep-
arate tiles from one another. The split between tiles occurs
at the farthest point between two dense regions of observa-
tions. This approach is principled by the idea that nearby
states will prefer the same action, however the size of each
of these groups may vary so we must use an adaptable par-
titioning solution.

An overview of the Maximum Density Separation method
is given in Algorithm 1. For a single run of the prob-
lem in a given RL algorithm, this method records the fre-
quency of observations across the state space until a failure
or the goal state is reached. On a failure, the constructed
frequency distribution is searched for relative extrema. A
soft-thresholding approach is used to prevent small fluctua-
tions in the distribution from leading to many spurious ex-
trema. Once the relative extrema have been identified, a par-
tition is placed in the space in the center of every two rela-
tive maximums, as long as a relative minimum occurred be-
tween them. The splits between abstract states are made in
this fashion in accordance with the maximum margin princi-
ple (Mitchell 1997), which seeks to minimize the structural
variance in a hypothesis. Positioning the splits as far as pos-
sible from the dense regions of observations minimizes the
risk that, in the next run of the problem, new observations
belonging to one dense region will spill into an adjacent state
and mislead the learning there.This process is linear in the
number of bins used to measure the frequency distribution,
and in practice had only a negligible impact on the running
time of each generation of the algorithm. After the new state
abstraction has been set, the Q-values that were learned on
the earlier state abstraction are transferred to the new ab-

50

straction in the same manner as described in the mutation
method.

This method effectively overcomes two of the perceived
limitations of the mutation method, abstract state partitions
can be placed anywhere in the space and the number of states
in the space does not directly depend on the previous num-
ber. The MDS method does introduce some other limita-
tions, however. It could be the case that an area of dense ob-
servations is not really homogenous in terms of preferred ac-
tion, but were coincidentally grouped together by the ANN.
In this case, the abstract states might still become successful
if the ANN adapts and separates these states into two differ-
ent clusters in a later evolutionary stage. Another limitation
of MDS is that it has no notion of the series of observa-
tions that led to the failure. These observations may easily
be grouped with other observations with similar values but
should be separated and allowed to pursue other actions as
soon as possible. The MDS method makes no provision for
this possibility and relies on the ANN to separate out the
other states in a later generation. The next method addresses
these shortcomings.

Temporal Relative Extrema

As the name implies, the Temporal Relative Extrema (TRE)
method creates an abstraction by incorporating the order in
which observations are generated and not just their values as
in the MDS method. Like the MDS, TRE is capable of parti-
tioning S′ into as many abstract states as necessary, and can
place partitions between states anywhere in the space. Dur-
ing preliminary studies, we noticed that the observations in
S′ frequently followed a periodic function, much like a sine
curve. The TRE approach was created to encourage more
exploration in the learner and break away from the periodic
repetition of known states to get the learner to visit new and
possibly more beneficial states.

The TRE method is summarized in Algorithm 2. All of
the observations are recorded for a single run of the problem
until a failure is encountered. At this point, the algorithm
iterates through each stored observation and identifies rela-
tive maxima and minima as those places are associated with
restarting the next period of observations. Each relative ex-
trema is compared to the rest and if they are within a user
defined threshold t away from each other then they are con-
sidered to be the same extrema and are merged together. For
minima, the greatest (innermost) observation is stored after
the merge, and for maxima, the smallest (again innermost)
observation is stored. The state space S′ is then partitioned
at each of the final extrema locations and becomes the new
abstraction for the next generation. The initial Q-values of
the new abstraction are taken from the previous abstraction
in the same manner as the mutation and MDS methods. The
time complexity of the TRE method is linear in the num-
ber of observations for each run of the problem, and since
the observations must be generated anyway, there is no no-
ticeable effect on the overall running time of the learning
algorithm.

The heuristic of partitioning the state space based on
where the learner begins to repeat observations for the same
problem is quite distinct from the previous approaches men-

Algorithm 2 TRE (Temporal Relative Extrema)

required: similarity threshold t for comparing extrema
output: new abstract state mapping
�embedded within a reinforcement learning algorithm�
get next state s

′ by following π
∗ from state s

if s
′ != fail state

s := s
′

record s

else if s
′ == fail state

for each relative extrema
merge extrema if closer than t from an existing extrema
otherwise store the extrema

end for each

erase old partitions of S ′

partition S ′ on the inside each stored extrema
end else if

tioned here. In effect, this groups the heavily repeated ob-
servations into the same abstract state while allowing for the
relative extrema to more easily find their own preferred ac-
tions, which can lead to an improved learning rate. If the
extrema prefer the same action as the other heavily repeated
observations then there is not much harm done by separat-
ing them, as their initial Q-values will be shared according
to the previous abstraction anyway and should not hurt the
overall learning rate. The similarity parameter t does not
need to be significantly tuned. It suffices to set it small com-
pared to the range of possible values for an observation. If
t is very small (s.t. |zi − zj | > t for nearly all observations
zi, zj ∈ S′ near relative extrema, with i �= j), many abstract
states will be created near the extrema. But, this has little
real impact on the learning since they will generally share
the same Q-values over successive generations.

Experimental Setup

Here we compare the performance of the automatic state
abstraction techniques proposed above, namely small mu-
tation, large mutation, MDS, and TRE. In addition to mea-
suring the techniques against one another, we also compare
them to the base RL-SANE algorithm with a fixed abstrac-
tion over the input space, which has been shown to be a very
capable learner (Wright and Gemelli 2009). The compari-
son examines the rates of convergence of each of the meth-
ods as well as the number of states that are used in their final
abstractions on two benchmark RL problems, the mountain
car and double pole balance. It is thought that the automatic
abstractions will enable a faster convergence to the optimal
policy by selecting a reasonable number of abstract states to
learn on.

The mountain car problem (Boyan and Moore 1995) con-
sists of a car trying to escape a valley. The car’s engine is
too weak to provide enough power to simply drive over the
hill in front of it, and instead must build up momentum by
driving partially up the hill behind it before moving forward
towards the goal. To escape the learner must learn a policy
of repeating a back-and-forth motion several times before
building up the requisite power.

This problem is described by two perceptions: the posi-
tions of the car, and the velocity of the car. Time is dis-

51

Figure 2: The performance of the four automatic abstraction methods and the Fixed abstraction on the Mountain Car and
Double Pole Balance problems.

cretized into small intervals and the learner can choose one
of two actions in each time step: drive forward or backward.
The only reward that is assigned is -1 for each each action
that is taken before the car reaches the goal of escaping the
valley. Since RL algorithms seek to maximize the reward
the optimal policy is the one that enables the car to escape
the valley as quickly as possible.

The double inverted pole balancing problem (Gomez and
Miikkulainen 1999) is a very difficult RL benchmark prob-
lem. In this problem, the learner must balance two poles
of different length and mass which are attached to a moving
cart. The problem is further complicated by maintaining that
the cart must stay within a certain small stretch of track. If
the learner is able to prevent the poles from falling over af-
ter a specified amount of time then the problem is considered
solved.

This is a higher dimensional problem than the mountain
car problem, with six perceptions being given to the learner:
the position of the cart, the velocity of the cart, the angle
each beam makes with the cart, and the angular velocities of
the beams. Once again, time is discretized into small inter-
vals, and during any such interval the learner can choose to
push the cart to the left or right or to leave it alone. In our
experiment, the only signal the learner receives is a negative
reward, -1, for dropping either pole or exceeding the bounds
of the track. The goal is to balance the poles for 100000 time
steps without dropping them or exceeding the bounds.

For all of our experiments we averaged 25 separate runs
over the problem sets using different random seeds. The
mountain car problem set consists of 100 preset initial start
states, and for the double pole balance the problem set con-
sists of 20 random initial start states. It should be noted that
the mutation methods and the fixed RL-SANE all have a sig-
nificant dependency on the initial number of abstract states,
while the MDS and TRE methods do not. To account for
this in the presented results the mutation methods and fixed
RL-SANE values are the averages of each of the problem
sets starting with 10, 20, . . . , 100 initial abstract states; in
other words, the average of 250 problem set runs for both

problems. For the fixed RL-SANE algorithm, these initial
states did not change for the duration of the learning process,
while the mutation methods are free to alter them over time.
Prior experiments have shown that the fixed RL-SANE algo-
rithm achieves the best learning rate with 50 abstract states
in mountain car and 10 in double pole balance, both of which
are included in the abstract state ranges that were tested on.

The RL-SANE algorithm was set to use a pool of 100
neural networks per generation, with a maximum of 200
generations of learning. We used the Sarsa(λ) learning al-
gorithm with all learning and neuroevolution parameters set
as in (Wright and Gemelli 2009). We allowed the large mu-
tation method to alter the number of states by up to 5 per
generation. For MDS the density of the observations in the
state space was estimated using 1000 evenly spaced areas
to collect observations. The exact value of this parameter
is unimportant as long as it is significantly larger than the
number of expected abstracted states in the solution. TRE
considered two extrema in its results different if they were
at least 0.1 apart (i.e. t = 0.1).

Experimental Results

Figure 2 shows the average fitness over each of the prob-
lem sets for the mountain car and double pole balance do-
mains. The mountain car problem shows all five methods
performing very similarly. All methods rapidly converge to
a policy that takes on average approximately 50 time steps
to navigate the car from the valley. Both of the more sophis-
ticated methods, MDS and TRE, lag behind the top perform-
ers somewhat. This result indicates that this problem can be
easily learned without complicated abstract state repartition-
ing. These results do serve to show that using automatically
repartitioning of the abstract state space does not hurt the
overall convergence of the learner on simple reinforcement
learning problems even when the problem is simple enough
that a fixed abstraction is sufficient.

Examining the fitness curves of the double pole balance
problem shows several trends. The most obvious conclusion
that can be drawn is that the automatic methods are all able

52

Mountain Car Double Pole Balance

MDS 3.36 ± 1.25 13.5 ± 5.93

TRE 63.64 ± 23.57 58.13 ± 13.48
Large 14.77 ± 8.6 24.51 ± 15.59

Small 14.82 ± 8.7 24.48 ± 15.43
Fixed 50 10

Table 1: Average number of final abstract states ± stdev and
optimal number of states for the fixed abstraction.

to converge towards the optimal policy at a greater rate than
the fixed RL-SANE algorithm. If the number of abstract
states are tuned, the fixed RL-SANE method can find the
optimal policy at a similar rate as the other algorithms. How-
ever, if a range of possible good parameters are used instead
the algorithm does not do nearly as well. Whereas, the muta-
tion methods, both small and large, are able to overcome the
arbitrary initial parameters and efficiently repartition the ab-
stract state space to allow the learner to quickly converge to
the optimal policy. The MDS and TRE methods started out
near the fixed method but rapidly improved due to the mu-
tation methods. Towards the end of the reported generations
the MDS method shows the best performance overall, vali-
dating the idea that allowing a more specialized partition of
the state space can lead to improved convergence properties
of the learner. TRE proves to be an able abstraction method
as well, and the performance of that algorithm is notewor-
thy early on in the learning process. We can see that it ex-
periences an almost immediate jump in fitness, which may
be due to its heuristic which favors separating those obser-
vations which may be able to reach previously unexplored
areas of the state space if they are able to follow actions that
are not preferred by other nearby observations.

Table 1 contains the average final number of abstract
states for each automatic abstraction method as well as op-
timal number of states for the fixed tiling. We can immedi-
ately see that the optimal number of states for the fixed RL-
SANE algorithm is not the number of states that each of the
automatic methods tend to; only TRE on mountain car and
MDS on double pole balance are similar. TRE tends to break
up the space into many more states than the other methods,
while MDS leads the abstraction towards fewer states. This
implies that there are relatively few clusters of observations
in the abstract space, but there are many repetitive substruc-
tures in these clusters when the order of observations are
considered. Both of the mutation methods converge to sim-
ilar low numbers of states in the final abstractions, which
explains why their fitness measures in Figure 2 are also very
similar.

Conclusions and Future Directions

We have presented three types of automatic state abstraction
techniques; mutation methods that make use of ANNs to ab-
stract the space, Maximum Distance Separation which seeks
to partition a space based on dense regions of observations,
and Temporal Relative Extrema which builds abstract states
by separating observations that lead to previously seen areas

of the state space. Each of these methods has been shown to
improve the learning rate as compared to using a fixed ab-
straction, and they make use of only a small number of states
while doing so.

One future direction of this work is to experiment with the
techniques on higher dimensional state spaces, instead of re-
stricting them to the one dimensional abstract space at work
in the RL-SANE algorithm. Another interesting possibility
is to relax the current abstraction conceptualization and not
require that a partition of the space be determined; instead
only focus on those areas that need increased resolution.

References

Albus, J. S. 1971. A theory of cerebellar functions. Mathe-
matical Biosciences 10:25–61.

Boyan, J. A., and Moore, A. W. 1995. Generalization in re-
inforcement learning: Safely approximating the value func-
tion. In Advances in Neural Information Processing Systems
7, 369–376. MIT Press.

Gomez, F. J., and Miikkulainen, R. 1999. Solving non-
markovian control tasks with neuroevolution. In In Proceed-
ings of the 16th International Joint Conference on Artificial
Intelligence, 1356–1361. Morgan Kaufmann.

Gomez, F.; Schmidhuber, J.; and Miikkulainen, R. 2006.
Efficient non-linear control through neuroevolution. In Pro-
ceedings of the European Conference on Machine Learning,
654–662.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a uni-
fied theory of state abstraction for mdps. In Proceedings of
the Ninth International Symposium on Artificial Intelligence
and Mathematics, 531–539.

Mccallum, A. K. 1996. Reinforcement learning with selec-
tive perception and hidden state. Ph.D. Dissertation, The
University of Rochester. Supervisor-Ballard, Dana.

Miller, W.T., I.; Glanz, F.; and Kraft, L.G., I. 1990. Cmas: an
associative neural network alternative to backpropagation.
Proceedings of the IEEE 78(10):1561 –1567.

Mitchell, T. 1997. Machine Learning. McGraw Hill.

Stanley, K. O., and Miikkulainen, R. 2002. Efficient rein-
forcement learning through evolving neural network topolo-
gies. In GECCO ’02: Proceedings of the Genetic and Evo-
lutionary Computation Conference, 569–577.

Sutton, R. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Advances in Neural Information Processing Systems, vol-
ume 8, 1038–1044. MIT Press.

Uther, W. T. B., and Veloso, M. M. 1998. Tree based dis-
cretization for continuous state space reinforcement learn-
ing. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth na-
tional/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, 769–774. Menlo Park,
CA, USA: American Association for Artificial Intelligence.

Wright, R., and Gemelli, N. 2009. State aggregation for re-
inforcement learning using neuroevolution. In ICAART 2009
- Proceedings of the International Conference on Agents and
Artificial Intelligence, 45–52.

53

