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Abstract

Model counting and weighted model counting are key prob-
lems in artificial intelligence. Marginal inference can be re-
duced to model counting in many statistical-relational systems,
such as Markov Logic. One common approach used by model
counters is splitting a theory into disjoint subtheories, perform-
ing model counting on the subtheories, and then caching the
result. If an identical subtheory is encountered again in the
search, the cached result is used, greatly reducing runtime. In
this work we introduce a way to cache symmetric subtheories
compactly, which could potentially decrease required cache
size, increase cache hits, and decrease runtime of solving.

Introduction

Given a clausal propositional theory, the problem of model
counting is the problem of determining the number of as-
signments to the variables of the theory that satisfy it. In the
weighted variety of the problem, weights are assigned to the
the clauses (or predicates) of the theory, the weight of a pos-
sible world is the sum of the weights of the satisfied clauses
(or weights of the literals assigned to true), and the weighted
model counting problem is to find the sum of the weights of
the satisfying possible worlds. Model counting and its vari-
ants are #P-complete problems, as it is the counting version
of the SAT problem.

Model counting and its weighted variants are important
problems in artificial intelligence, as many important prob-
lems we want to solve can be reduced to model counting.
In probabilistic graphical models, such as Markov networks,
the problem of exact marginal inference can be reduced to
weighted model counting. Model counting can therefore also
be used to solve marginal inference for other representations
of graphical models, such as statistical-relational learning sys-
tems like Markov Logic (Richardson and Domingos 2006).

It is these systems in particular from which we draw inspi-
ration. Although model counting, as stated, is a problem over
propositional theories, it is often the case that the problems
people typically want to solve are more easily expressed in
a higher level language, such as first order logic. The input
to the model counter is created through the process of propo-
sitionalizing (or grounding) the first order representation of
the problem.
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In propositional theories, it is possible to detect and lever-
age symmetries between variables to reduce solving and
counting time. However, the number of propositional symme-
tries may be exponential, so using them effectively typically
involves heuristically choosing which symmetries to account
for. In first order theories, however, it is possible to com-
pactly represent many symmetries and exploit them. This is
the common thread that runs through many lifted inference
algorithms for both marginal and MPE inference, such as e.g.
(Mittal et al. 2014), (Singla and Domingos 2008) and many
more.

In this paper, we will focus on symmetries over terms, that
is, constants in the theory. Specifically, we will exploit the
class of term equivalent symmetries, which were introduced
in various forms in earlier works such as (Poole 2003; Bui,
Huynh, and Riedel 2013). Two terms are term equivalent
if they may be swapped without altering the theory. These
symmetries can be efficiently detected in evidence (Kopp,
Singla, and Kautz 2015), a quality that makes them especially
well-suited to the type of problems typically formulated in
systems like Markov Logic.

The main contributions of this paper are threefold: first,
we introduce a canonical form, a way of representing many
symmetric theories compactly, second we give a procedure
for putting a theory in canonical form, and lastly, we describe
a method for using the canonical form to exploit symmetries
in model counting.

Related Work

Our work has connections to research in in both the ma-
chine learning and constraint-satisfaction research commu-
nities. Developments include lifted versions of variable
elimination (Poole 2003; de Salvo Braz, Amir, and Roth
2005), belief propagation (Singla and Domingos 2008;
Singla, Nath, and Domingos 2014), and DPLL (Gogate
and Domingos 2011). The approach of defining symmetries
using group theory and detecting them by graph isomor-
phism is shared by Bui et al.’s work on lifted variational
inference (Bui, Huynh, and Riedel 2013). Niepert gives
a group-theoretic formalism of symmetries at the level of
constants (Niepert 2012; 2013), applying them to MCMC
methods. Kopp et. al. define the class of symmetries we
exploit in this work (Kopp, Singla, and Kautz 2015). Bui
notes that symmetry groups can be defined on the basis



of unobserved constants in the domain, while the symme-
tries we exploit can be explicitly found in the evidence. Two
lines of work in SRL make use of problem transformations.
First-order knowledge compilation (Van den Broeck 2013;
den Broeck, Meert, and Darwiche 2014) transforms a rela-
tional problem into a form for which MPE, marginal, and
MAP inference is tractable. Recent work on MAP inference
in Markov Logic has identified special cases where a rela-
tional formula can be transformed by replacing a quantified
formula with a single grounding of the formula (Mittal et al.
2014).

The literature surrounding the use of symmetries in con-
straint satisfaction and model counting is quite extensive.
Here we give just a few examples of key developments in the
field. Symmetry detection has been based either on graph iso-
morphism on propositional theories as in the original work by
by Crawford et. al (Crawford et al. 1996); by interchangeabil-
ity of row and/or columns in CSPs specified in matrix form
(Meseguer and Torras 2001); by checking for other special
cases of geometric symmetries (Sellmann and Hentenryck
2005), or by determining that domain elements for a vari-
able are exchangeable (Audemard, Benhamou, and Henocque
2006). Researchers have suggested symmetry-aware modi-
fications to backtracking CSP solvers for variable selection,
branch pruning, and no-good learning (Meseguer and Tor-
ras 2001; Flener et al. 2009). A recent survey of symmetry
breaking for CSP (Walsh 2012) described alternatives to the
lex-leader formulation of SBPs, including one based on Gray
codes.

Symmetries over terms

In this section we provide the background necessary to un-
derstand the types of symmetries we will exploit in the subse-
quent sections. Symmetry-breaking for satisfiability testing,
introduced by Crawford et. al.(Crawford et al. 1996), is based
on concepts from group theory. A permutation o is a map-
ping from a set L to itself. A permutation group is a set of
permutations that is closed under composition and contains
the identity and a unique inverse for every element. A literal
is an atom or its negation. A clause is a disjunction over liter-
als. A CNF theory 7 is a set (conjunction) of clauses. Let L
be the set of literals of 7. We consider only permutations that
respect negation, that is o(—l) = o () (I € L). The action
of a permutation on a theory, written o (7 ), is the CNF for-
mula created by applying o to each literal in 7. We say o is a
symmetry of T if it results in the same theory i.e. o(7) = 7.

A model M is a truth assignment to the atoms of a theory.
The action of o on M, written (M), is the model where
o(M)(P) = M(o(P)). The key property of o being a sym-
metry of 7 is that M = T iff o(M) |= T. The orbit of a
model M under a symmetry group X is the set of models
that can be obtained by applying any of the symmetries in 3.
A symmetry group divides the space of models into disjoint
sets, where the models in an orbit either all satisfy or all do
not satisfy the theory.

In this work, we will consider symmetries over the terms
(constants) of a first order relational theory. A relational the-
oryis atuple T = (F,E), where F is a set of first-order
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formulas and £ is a set of evidence. We restrict the formu-
las in F' to be built from predicates, variables, quantifiers,
and logical connectives, but no constants or function sym-
bols. £ is a set of ground literals; that is, literals built from
predicates and constant symbols. Universal and existential
quantification is over the set of the theory’s constants D (i.e.
the constants that appear in its evidence). Optionally, the
formulas or predicates may be weighted.

In (Kopp, Singla, and Kautz 2015), two classes of symme-
tries over terms of relational theories were formalized, and
methods to exploit the symmetries for MPE inference were
given. The first was the set of term symmetries. A term sym-
metry is a permutation o of the terms in the theory such that
o(T) = T. Note that a permutation of terms over a ground
theory induces a permutation of atoms of the theory. The
second class of symmetries over terms is a special case of the
former called term equivalent symmetries. A term equivalent
symmetry is a partitioning of the terms in the theory such that
if two terms C and C'5 appear in the same term equivalent
class, they can be permuted without changing the theory. In
other words, they define equivalence classes of terms. Both
classes of symmetries can be detected over the evidence of a
theory.

Consider a relational theory that models allocation of com-
putational resources to distributed computing tasks. The do-
main might have a type for CPUs in a cluster, cores on a
CPU, and computational tasks. It may have predicates that
describe properties of the computational resources, as well
as the requirements of the tasks. We might want to determine
the best (MPE) allocation of resources to tasks, or we might
use the theory to describe a stochastic scheduling algorithm,
and be interested in the (marginal) probability of a task being
mapped to a particular core. In this domain, all of the cores
that belong to the same CPU belong to the same term equiv-
alent symmetry group. Furthermore, if two CPUs have the
same number and types of cores, then there are term sym-
metries that permute the CPUs while also permuting their
respective cores.

The methods for exploiting these symmetries involved
adding clauses to the theory that restricted the search space
while guaranteeing that at least one assignment in each orbit
was left in the space. For model counting, this technique
cannot be applied straightforwardly, since reducing the search
space will reduce the number of models. In this work, we
leverage the class of term equivalent symmetries in a way that
does not directly modify the search space, and is therefore
suitable for model counting.

A canonical form for symmetric theories

We introduce the notion of a canonical form for ground first-
order clausal theories under a set of symmetries, and define a
particular canonical form for such theories under term equiv-
alent symmetries.

Let 7 be a ground, first-order clausal theory, and let 3
be a set of symmetries over terms, literals, or clauses in 7.
Let there be an ordering on all of the possible theories. We
say that another theory 7' is symmetric to 7 under term
partition Z if there is a permutation o that respects > such
that o(7) = T'. A theory T is in canonical form if for every



T that is symmetric to 7 under X, 7 comes before 7 in the
ordering.

First we will precisely define an ordering on ground the-
ories. There are many possible orderings, here we give just
one.

Put an ordering on the constants of the theory: C1, ..., C),.
Put an ordering on the predicates of the theory and their
negations: Py, P, ..., Py, 7 Ps. This induces an ordering
on the literals of the theory: a literal L comes before L’ in
the ordering if the predicate of L comes before that of L’
in the ordering of predicates. If they are the same, then L
comes before L' if, when considering the arguments in order,
the first differing argument of L comes before that of L’ in
the ordering of constants. When considering the literals of a
clause in turn, we always do so according to this order.

Now we define an ordering on clauses, which is actually
a hierarchy of orderings. A level of the hierarchy is only
considered if the comparison criteria of the above levels are
equal for the clauses to be compared. The highest ordering is
the ordering of weights: A clause C' comes before C” in the
ordering if the weight of C is less than the weight of C” i.e.
w(C) < w(C").If the theory does not have weighted clauses,
this level is omitted. The next ordering is the ordering on
clause lengths. A clause C' comes before C” in the ordering if
w(C) = w(C") and C has fewer literals than C’, i.e. I(C) <
1(C"). The final ordering is the ordering on literals. A clause
C' comes before C’ in the ordering if w(C) = w(C"),1(C) =
[(C"), and the first differing literal of C' comes before that of
C’ in the ordering of literals.

Finally we define the ordering on theories. Given two
theories, we consider each clause of the theories in the order
defined above. A theory T comes before 7 in the ordering
if the first differing clause of 7 comes before that of 7' in
the ordering of clauses.

Now that we have an ordering on the theories, we define a
canonical form for term equivalent symmetries. Let 7 be a
ground, first-order clausal theory, and Z be a term equivalent
partition of the constants in 7. We say that 7 is in canonical
form if for every 7~ that is symmetric to 7 under Z, T comes
before 7 in the ordering of theories.

A procedure for canonicalization

Now that we have a precisely defined canonical form for the-
ories under term equivalent partitions, we give a procedure
for converting a theory 7 to canonical form under term equiv-
alent partition Z. First, for each clause C in T, we reorder
the literals of C' so that they appear in the ordering of literals
defined in the previous section. If the length of the clause
is 1(C), then this takes time O(I(C) log(1(C))). Let [ be the
length of the longest clause, and |T'| be the number of clauses
in the theory. To complete this step for each clause in the
theory, it takes time O(|T'| - I log(l)). Next, we reorder the
clauses of 7 according to the ordering of clauses defined in
the previous section. This takes time O(|T'| log(|T)).

Next, we iterate over the arguments of the predicates of
the theory in order, building a permutation . For each ar-
gument C; we encounter we do the following: If C; has not
been encountered before, we find the first constant C’Zf in the
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ordering that is term equivalent to C; under Z, add C; — C/
to o, and delete C/ from Z. If C; was encountered before
(or equivalently, if C; appears on the left hand side of o),
it is skipped. Note that because we delete C; from Z, no
constant will appear on the right hand side of ¢ more than
once. Likewise, because we skip constants that have already
been considered, no constant will appear on the left hand
side of o more than once. The procedure ends when either
all of the arguments have been iterated over, or when every
constant in the theory appears on both sides of 0.

If we store the term equivalent partitions in sorted arrays,
we can use a simple pointer to make the lookup and deletion
of C! a constant time operation. Thus, if the number of argu-
ments appearing in the theory is a, then this step takes time
O(a).

Finally, to return the canonical form, we simply apply the
permutation we built to the input theory, i.e. T/ = o(T).
This takes time proportional to the number of terms in the
theory, so O(a). Applying the permutation can actually be
done in-place while computing it.

Theorem 1. The theory T’ found by the above procedure is
the canonical form of T under Z.

Proof. This proof takes two parts. First we will prove that 7"
is equivalent to 7 under Z, then we will prove that 7~ is the
first such equivalent theory. By construction, the permutation
o produced by the above procedure only permutes a term to
a term that appears in the same term equivalent partition de-
fined by Z. Furthermore, o is one-to-one and onto. Therefore
applying o yields a term equivalent theory under Z.

Next we show that 77 is the first such theory in the ordering.
Suppose not. Suppose there was a theory 70 that was term
equivalent with 7 and appeared before 7" in the ordering. By
symmetry, 7 is equivalent to 7" under Z. Furthermore, by
symmetry, the clauses of 77 and 7° have the same weights
and predicate signatures. By the definition of the ordering,
the first pair of terms that differ between 7° and 77, C° and
C' respectively, must be such that C° comes before C’ in
the ordering. However, if that were true, then we must have
chosen a term from a partition of Z that was not least in the
ordering when building 7. This is not how the procedure is
defined. Contradiction. Therefore 7~ is the first theory in the
ordering that is equivalent to 7 under Z.

Therefore 7" is the canonical form of 7. O

Next we give a worked example. We apply the given pro-
cedure to two symmetric theories, and find that they have the
same canonical form.

Example 1 Suppose that after detecting term equivalent
symmetries from evidence, we found the term equivalent
partitiontobe Z = {{A, B,C}, {X,Y, Z}}.

P(A) v Q(Y)
Q%)
P(C)VQ(X)V P(2Z)

P(B)VQ(X)
QYY)
P(A)vQ(Z2)V P(Y)

Let the ordering on terms and predicates be alphabetical. We



first rewrite the theory according to the induced ordering.
Q(2) Q(Y)
P(A) v Q(Y) P(B) Vv Q(X)
PC)VP(Z)VQ(X) PA)VPY)VQZ)

We will perform the permutation in place. We iterate over the

terms in the theory. On the left, we have Z — X, and on the

right, Y — X. We apply this partial symmetry to the first
term.

Qx)
P(A)V Q(Y) P(B)V Q(X)
P(C)VP(Z)VQ(X)  P(A)V P(Y)VQ(Z)

We continue to the next term. On the left, it is already the
least term, so we have A — A. On the right, B — A.

Q(X) Q(X)
P(A)vQ(Y) P(A) vV Q(X)
PC)VP(Z)VQ(X) PAVPY)VQ2Z)
On the left, Y is already the least term, so we have Y — Y.
On the right, X = Y.
Q(X)
P(A)VQ(Y) P(A)VQ(Y)
P(C)VP(Z)VQ(X) PA)VPY)VQ(Z)
Next term, C' — B on the left and A — B on the right.
Q(X) Q(X)
P(A)vQ(Y) P(A)vQ(Y)
P(B)VP(Z)VQ(X) P(B)VPY)VvQ(2)

Next term, we apply the Z — X from before on the left, and
the Y — X from before on the right.

Q(X) Q(X)

P(A)vQ(Y) P(A) v Q(Y)

P(B)VP(X)VQX) P(B)VP(X)VQ2)
Last term, X — Z on the left, and Z — Z on the right.

Q(X) Q(X)

P(A)vQ(Y) P(A) vQ(Y)

P(B)VP(X)VQ(Z) P(B)VP(X)VQ(Z)

Q(X)

Q(X)

We see that the two different theories have the same canonical
form. By inspection, we see that they are equivalent under
the set of term symmetries.

Applying canonical form in model counting

Exact model counters such as RelSAT (Bayardo Jr. and
Schrag 1997) and Cachet (Sang et al. 2004) leverage a
caching procedure to count models more efficiently. Con-
sider an arbitrary place in the search space, consisting of a
partial assignment to the variables and a simplified version
of theory. In a systematic search, the algorithm will count the
number of models in this simplified theory, then backtrack to
explore other parts of the search space. It is possible that, at a
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different point in the search space, the simplified theory will
be identical to the simplified theory we previously counted
the models of. Thus, these algorithms, upon counting the
models in a simplified theory, will cache the simplified the-
ory and the number (or weight) of models it has in a lookup
table. Then, if it is encountered again, the value can be reused
without performing the counting again.

This technique is even more effective when used in con-
junction with theory decomposition. These systematic search
algorithms will, at a given point in the search space, detect
if the simplified theory can be split into two or more dis-
joint subtheories. A theory 7 can be partitioned in such a
way if it contains two or more disjoint subsets of it’s clauses
Ti,-- ., Tk such that none of the 7; share any variables. Since
they share no variables, their models can be counted indepen-
dently. In a caching algorithm, it is the disjoint subtheories
and their counts that are stored in the lookup table.

One problem with this method is knowing which subthe-
ories to cache. If we cache every subtheory, our cache will
take up too much memory. If too few, we may do redundant
computation. Furthermore, algorithms that are not aware of
symmetries will perform model counting on subtheories that
are symmetrical, despite the fact that the result will be the
same. We propose a method of leveraging canonical form to
reduce the number of symmetrical subtheories that are recom-
puted. Furthermore, the technique will reduce the memory
needed to cache many subtheories.

With the foundation provided in the previous section, the
technique is actually very simple. We detect the term equiva-
lent partition once before we begin the search. Each time a
theory is split into disjoint subtheories, we convert the sub-
theories into canonical form with respect to the partition. If
the canonical form of the subtheory does not appear in the
cache we compute the number of models and cache the result
with the canonical form as the key. If it does appear in the
cache, that means the original subtheory is identical to or
term equivalent to a subtheory that we saw previously. We
save space in the cache because each cached theory is ac-
tually representative of every theory symmetric to it under
the term equivalent partition. Furthermore, we reduce redun-
dant computations because when we count the number of
models in a subtheory, we reuse the value for every theory
that is symmetric to it under the term equivalent partition,
rather than just subtheories that are exactly identical to it. It
is hypothesized that leveraging this technique will result in
significant speedups in high-symmetry domains.

Conclusion and future work

We have provided a canonical form for ground first order
CNF theories under a term equivalent partitioning, as well
as an efficient procedure for converting a theory to canonical
form. We then described a simple technique to increase the
solving efficiency of exact model counters by leveraging this
canonical form.

Short term future work includes implementing this system
by modifying an existing exact model counter, and compar-
ing the technique with the stock version, as well as other
algorithms that leverage these types of symmetries. Longer
term goals include creating a canonical form and efficient



procedure that canonicalizes theories under a set of term
symmetries, a class of symmetries of which term equivalent
symmetries are a special case.
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