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Abstract

Diagnostic problem solving involves a myriad of reasoning
tasks associated with the determination of diagnoses, the
generation and execution of tests to discriminate diagnoses,
and the determination and execution of actions to alleviate
symptoms and/or their root causes. Fundamental to diagnos-
tic problem solving is the need to reason about action and
change. In this work we explore these myriad of reasoning
tasks through the lens of artificial intelligence (AI) automated
planning. We characterize a diversity of reasoning tasks as-
sociated with diagnostic problem solving, prove properties of
these characterizations, and define correspondences with es-
tablished automated planning tasks and existing state-of-the-
art planning systems. In doing so, we characterize a class of
planning tasks with epistemic and ontic goals which we show
can be compiled into non-epistemic planning, allowing state-
of-the-art planners to compute plans for such tasks. Further-
more, we explore the effectiveness of using the conditional
planner Contingent-FF with a number of diagnostic planning
tasks.

1 Introduction
Automated diagnosis seeks to determine what is wrong with
a system, prompted by some observations of egregious be-
haviour. As our world becomes increasingly instrumented
with sensors – our street corners, our homes, our cars, and
even our bodies – and as the infrastructure that controls our
power, communication, and transportation systems grows in
complexity, we must rely on computers to monitor the state
of these systems and to oversee their operation. Unfortu-
nately, these systems can and do malfunction, resulting in
diagnostic problems of such enormous complexity that they
confound human reasoning.

Diagnostic Problem Solving (DPS) refers to the myriad of
reasoning tasks associated with the diagnosis, testing, and
repair of a system. In this work we advocate for a pur-
poseful view of diagnostic problem solving. While a naı̈ve
approach to DPS suggests that we generate candidate diag-
noses, identify a unique diagnosis through testing, and then
treat or repair, we instead observe that identifying candidate
diagnoses may be unnecessary or perhaps only necessary to
the extent that it informs an appropriate course of action to
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be selected – a course of action that may result in the realiza-
tion of further tests to discriminate diagnoses, or to alleviate
the symptoms or potential root causes, potentially without
actually identifying a unique root cause.

Example 1 Consider a run-of-the-mill flashlight that is not
emitting light. A common response is to turn the flashlight
on and off a few times. If it’s still malfunctioning, the most
likely hypothesis is that the batteries are dead, but it could
also be the case that the bulb is burned out, or that there is
a loose connection somewhere. That’s three candidate diag-
noses, and there could be more. A typical course of action
would be to open up the flashlight, take out the batteries,
put in new ones, re-assemble the flashlight and turn it on
again. If the flashlight emits light, you’ll likely be happy,
recycle the batteries and consider yourself “done.” Your
purpose was not to diagnose the flashlight, but rather to
get it working again. A more careful examination of what
went on shows that the course of action you took, together
with the happy outcome that the flashlight is now “working,”
served to eliminate the hypothesis that the bulb was burned
out, and it tightened the connection, effectively repairing the
connection regardless of whether it was faulty or not. This
changed the space of hypotheses under consideration. What
is equally interesting is that this sequence of actions neither
confirmed nor refuted the hypothesis that the batteries were
dead. The cause of the faulty behaviour could have been the
result of a loose connection which got fixed in the process of
changing the batteries. Those batteries you recycled could
still be OK! What’s also noteworthy is that if after executing
the procedure the flashlight had not emitted light, you would
still be left with the hypotheses that the original batteries
were dead or that the bulb was broken, but you would also
have the further (granted, unlikely) hypothesis that the new
batteries were also dead.

The above seemingly simple DPS scenario illustrates the
need for reasoning about action and change as well as rea-
soning about knowledge, and in particular what an agent
comes to know about aspects of the world (symptoms and
diagnoses in this case) based upon the execution of both
world-altering and sensing actions. It is also suggestive of
the somewhat subordinate role the actual candidate diag-
noses may play in the resolution of a system failure scenario.

In this paper, we explore this purposeful view of diag-
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nostic problem solving through the lens of AI automated
planning. Our motivation for doing so is pragmatic. We
are interested in characterizing the fundamental knowledge
representation and reasoning tasks that underlie DPS in its
many guises, but we wish to do so in a manner that sup-
ports establishing its correspondence with the state of the art
in AI automated planning theory and practice. There have
been tremendous advances in AI automated planning sys-
tems over the last decade and a number of highly optimized
planning systems exists. Further there have been significant
recent advances in non-classical planning such as confor-
mant or contingent planning that support planning with in-
complete information and/or with sensing. A major contri-
bution of this paper is to show that many purposeful DPS
tasks that have been heretofore unsolvable can be realized in
varying measure through recent advances in state-of-the-art
AI planning systems. Our characterization not only allows
us to solve certain problems now, but it provides the insight
and understanding that will support the realization of these
and isomorphic tasks as computational machinery in plan-
ning improves in the coming years.

Characterizing diagnostic problem solving tasks in terms
of planning builds upon a large body of research that in-
cludes research on topics as varied as reasoning about
knowledge and action (e.g., Scherl and Levesque 2003; Pet-
rick and Bacchus 2002), planning with epistemic goals (e.g.,
Herzig, Lang, and Marquis 2003; Aucher and Bolander
2013), and conformant (e.g., Palacios and Geffner 2009),
contingent (e.g., To, Pontelli, and Son 2011), and classical
(e.g., Helmert 2006) planning. We discuss this related re-
search later in the paper.

In Section 2 we introduce the mathematical formalisms
upon which our work rests. In Section 3 we introduce the
notion of a diagnosis that we use here, and contrast it to
other forms of diagnosis discussed in the literature. With a
definition of diagnosis in hand, in Section 4 we present the
notion of a diagnostic plan, establish its correspondence to
known planning paradigms, and establish properties of var-
ious forms of diagnostic plans. In Section 5 we introduce
a notion of epistemic diagnostic planning – planning to de-
termine a particular diagnosis, or to discriminate diagnoses.
We define compelling classes of epistemic goals and then
show that it is possible to use state-of-the-art non-epistemic
planners to plan for such epistemic goals, by providing a
sound and complete translation of such epistemic tasks to
conditional planning. In Section 6 we turn our attention to
the realization of our newly established diagnostic planning
tasks via existing planning systems. We conclude with some
reflections on our work, its relationship to other work and
prospects for future work.

2 Preliminaries

In this section we introduce a planning language that will
allow us to define various kinds of planning tasks which we
then will show can model interesting DPS tasks. In partic-
ular, we define a common language for deterministic (clas-

sical), conformant, and conditional planning.1 The planning
language we present below builds on the ADL planning lan-
guage (Pednault 1989), and considers extensions for uncer-
tainty about the initial state and conditional plans that have
been presented in a similar way by other researchers (e.g.,
Palacios and Geffner 2006; To, Pontelli, and Son 2011).

2.1 Dynamical Systems
Dynamical systems can be formally described in many
ways. In this paper we model them as transition systems,
which we represent with a standard planning language. As
such, transitions occur as the result of actions described in
terms of preconditions and effects, and the domain is fi-
nite (i.e., there is a finite number of system configurations).
Formally, a dynamical system is a tuple Σ = (F,A,Ω, I),
where F is a finite set of fluent symbols, A is a set of deter-
ministic actions, Ω is a set of sensing actions, and I is a set
of clauses over F that defines a set of possible initial states.
If p ∈ F , then p and ¬p are fluent literals. If ` is a literal, we
denote its complement by `; thus, p = ¬p and ¬p = p. Ev-
ery action a ∈ A is defined by a precondition prec(a), which
is a conjunction of fluent literals, and eff (a), a set of condi-
tional effects of the form C → L, where C is a conjunction
of fluent literals and L is a fluent literal. We sometimes write
the unconditional effect→ L as simply L, and use true to
denote an empty precondition. Each sensing action, on the
other hand, is defined by its precondition prec(a), which is a
conjunction of fluent literals, and obs(a), which is the fluent
literal that is observed by the sensing action.

A system state s is a set of fluent symbols, which intu-
itively defines all that is true in a particular state of the dy-
namical system. For a system state s, we define Ms : F →
{true, false} as the truth assignment that assigns the truth
value true to p if p ∈ s, and assigns false to p other-
wise. We say a state s is consistent with a set of clauses
C, if Ms |= c, for every c ∈ C.

We denote by S0 the set of planning states consistent with
the clauses of the initial state I . We say a dynamical system
has a complete initial state iff |S0| = 1; i.e., I has only
one model. Σ has an incomplete initial state iff |S0| > 1.
We formalize the notion of conditional plans through action
trees as follows.

Definition 1 (Action Tree) Given a system Σ =
(F,A,Ω, I), an action tree T is:

• ε (the empty tree); or
• aT ′, where a ∈ A, and T ′ is an action tree; or
• a(T ′, T ′′), where a ∈ Ω and T ′ and T ′′ are action trees.

We denote by TΣ the set of action trees in Σ. Furthermore,
we say that an action a is executable in a state s if Ms |=

1A paradigm related to conditional planning is contingent plan-
ning. Although originally understood to define the same class of
problems as conditional planning, current research in contingent
planning frequently sees contingent planning as an incremental
process in which planning is intertwined with execution (see e.g.,
Brafman and Shani 2012). We thus stick here to conditional plan-
ning to emphasize that we are looking for a conditional plan in an
offline manner.
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prec(a). If a ∈ A is executable in a state s, we define its
successor state as δ(a, s) = (s \ Del) ∪ Add, where Add
contains a fluent f iff C → f is an effect of a and Ms |= C.
On the other hand Del contains a fluent f iff C → ¬f is an
effect of a, and Ms |= C.

Now we define how to compute the set of states that result
from executing an action tree. To that end, we define the re-
lation `Σ: TΣ × 2F such that (T, S) `Σ (T ′, S′) intuitively
means that if the agent is in any of the states in S, then per-
forming one step of T results in being in some state in S′,
with action tree T ′ remaining. Formally,
• (aT, S) `Σ (T, S′) if a is executable in every state in S,

and S′ = {δ(a, s) | s ∈ S}.
• (a(T ′, T ), S) `Σ (T, S′) if a is executable in every state

in S and S′ = {s ∈ S | Ms |= obs(a)} or S′ = {s ∈ S |
Ms 6|= obs(a)}.

We use ` instead of `Σ when the transition system is ob-
vious from the context. We denote by `∗ the reflexive and
transitive closure of `. This allows us to define what states
result from executing an action tree in the initial state of a
transition system.

Definition 2 (Resulting State) Given a transition system
Σ, state s is a resulting state from executing action tree T
in Σ iff (T, S0) `∗ (ε, S′) and s ∈ S′.
2.2 Classical, Conformant, and Conditional Planning
Below we define classes of planning tasks that have been
studied extensively by the planning community. Determinis-
tic (classical) planning is the most standard form of planning
in which there is a unique initial state, and hence knowl-
edge about the state of the world is always complete. In
conformant planning, on the other hand, there is uncertainty
but no observability, and actions that change the state of the
world are deterministic; hence solutions to these tasks are se-
quences of actions. Finally, in conditional planning,2 there
is uncertainty about the initial state and the agent may ob-
serve the world through sensing actions. The resulting plan
in this case is typically an action tree.

Definition 3 (Classes of Planning Tasks) Given a set of
literals G, and a system Σ = (F,A,Ω, I) we define the fol-
lowing classes of planning tasks:
• (Σ, G) is a deterministic or classical planning task if I

defines a complete initial state and Ω = ∅.
• (Σ, G) is a conformant planning task if I does not define

a complete initial state and Ω = ∅.
• (Σ, G) is a conditional planning task if I does not define

a complete initial state and Ω 6= ∅.
Definition 4 (Plan) Action tree T is a plan for planning
task (Σ, G) iff for every state sf that may result from the
execution of T in Σ it holds that Msf |= G.

2Early literature in conditional planning (e.g. Pryor and Collins
1996) assumed complete observability of the world. However, the
current standard in the planning community—under which state-
of-the-art solvers are developed—is to consider sensing actions as
the only mechanism to observe the world (e.g. To, Pontelli, and
Son 2011).

When T is a plan for a deterministic task, then we say T is a
deterministic plan. Analogously, we use the terms classical
plan, conformant plan, and conditional plan.

3 Characterizing Diagnoses
Automated diagnosis has long been a problem of interest to
the AI community. Well-publicized early work focused on
expert systems approaches as exploited in the medical di-
agnosis expert systems MYCIN (Shortliffe and Buchanan
1975). In the mid-1980’s AI researchers turned their at-
tention to model-based diagnosis. Early work in this area
included Geneserth’s DART system (Genesereth 1984), as
well as GDE, the General Diagnosis Engine by de Kleer and
Williams (de Kleer and Williams 1987) among others. In
1987 Reiter published his seminal paper formalizing the no-
tion of consistency-based diagnosis and minimal diagnosis,
which were predicated on a so-called first principles model
of the normative behaviour of a system (Reiter 1987). This
characterization defined a diagnosis to be a minimal set of
components that must be designated as abnormal in order
for observations of system behaviour to be logically con-
sistent with the model (axiomatization) of the system. The
exploitation of fault models and other aspects of system be-
haviour and function necessitated a more stringent charac-
terization of diagnosis in terms of abduction (e.g., (Con-
sole and Torasso 2006), (Poole 1994)) in which faults or
other explanations were posited in order to entail or other-
wise explain observations. Such abductive diagnoses were
originally conceived to work with fault models, rather than
normative models, in order to entail faulty behaviour. de
Kleer, Mackworth, and Reiter published a follow-on to Re-
iter’s 1987 paper in 1992 that combined aspects of abductive
and consistency based diagnosis into kernel diagnoses (de
Kleer, Mackworth, and Reiter 1992). All of these charac-
terizations of diagnosis related to static systems, described
using a triple (SD,COMPS,OBS) – the system descrip-
tion, a finite set of components to be diagnosed, and an ob-
servation. There was no notion of system dynamics – just a
single state.

The systems we are concerned with in this paper include
not only these static descriptions but also a rich theory of
action that supports diagnostic planning in its many guises.
We begin with a definition of such a diagnostic system.
• SD, the system description, a set of propositional sen-

tences;
• COMPS, the components, a finite set of constants;
• OBS, the observation, a conjunction of ground literals:
• Σ = (F,A,Ω, I), a dynamical system that describes ac-

tions relevant to diagnostic problem solving tasks associ-
ated with the system described by SD.
We illustrate these with a simple example.

Example. Consider a flashlight, comprised of a battery and
a switch. If the switch is on and both the battery and switch
are operating normally, then light will be emitted. This fact
can be described by the following logical formula, which is
included in the system’s description SD:

on ∧ ¬AB(battery) ∧ ¬AB(switch) ⊃ light.
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a prec(a) Effect/Observation
turn-on ¬on on

change-battery true ¬AB(battery)
fix -switch true ¬AB(switch)
sense-light true light

Table 1: Preconditions and direct effects of the actions in our flash-
light example.

The set of system components is simply defined by
COMPS = {battery, switch}.

Now we assume the flashlight can be operated by
a human user. The available actions are: turn on
the switch, change the battery, and fix the switch.
In addition, we have the ability to observe whether
or not there is light in the room. The dynamics
of these actions is described using a transition system
Σ, where F = {on,AB(switch), AB(battery), light},
A = {turn-on, change-battery ,fix -switch}, and Ω =
{sense-light}. The effects of the actions are described using
our planning language as shown by Table 1. §

In general, the action theory described by Σ supports rea-
soning about actions to test, repair, or eradicate egregious
behaviour in a system. On the other hand, the system de-
scription describes complex interactions between the com-
ponents of the system.

Our notion of diagnostic system, which we define for-
mally below, intuitively integrates the system description
SD with the dynamics of the world described by Σ. In doing
so, we need to address the so-called ramification problem –
the problem of characterizing the indirect effects of actions.
To see why this is, in our example, observe that perform-
ing the action turn-on may have the indirect effect of light,
under the condition ¬AB(battery) ∧ ¬AB(switch).

The ramification problem is a well-studied problem in the
KR community (e.g., Lin 1995; McCain and Turner 1995;
Thielscher 1995; Sandewall 1996; Pinto 1999; Strass and
Thielscher 2013) and has also been previously studied in
the specific context of DPS (e.g., McIlraith 1997; McIl-
raith 2000; McIlraith and Scherl 2000). For the purposes
of this paper, we adopt an existing solution to the rami-
fication problem that compiles the indirect effects of ac-
tions into additional direct effects of actions proposed both
by Pinto (1999) and in variation most recently by Strass
and Thielscher (2013). The solution is predicated on aug-
mentation of the constraints, SD, that additionally captures
the causal relationship between fluents. These causal re-
lationships have historically been captured via an explicit
causal relation in the constraints (e.g., Lin 1995; McCain
and Turner 1995) or by the augmentation of SD with a
causal graph structure that ranges over the literals in SD
(e.g., McIlraith 2000).

Example (continued). In our flashlight example, we con-
sider the following ramification constraint, which is ex-
tracted directly from SD.

on ∧ ¬AB(battery) ∧ ¬AB(switch) causes light.

a New Effect
turn-on ¬AB(battery) ∧ ¬AB(switch)→ light

change-battery on ∧ ¬AB(switch)→ light
fix -switch on ∧ ¬AB(battery)→ light

Table 2: Additional effects of actions in our example theory.

From there, we use Pinto’s algorithm (1999) to compute ad-
ditional effects for the actions in our theory. Some of the
resulting effects are shown in Table 2. §

Now we provide a formal definition for a diagnostic system.

Definition 5 (Diagnostic System) Given SD, COMPS,
OBS, and Σ = (F,A,Ω, I), as defined above, a diagnostic
system ΣSD is a tuple (F ′, A′,Ω, I ′) where:

• F ′ contains the elements in F and in V ars(SD), the
propositional variables in SD, and ground fluents of the
form AB(c) for every c ∈ COMPS;

• A′ contain the same actions in A but augmented, follow-
ing Pinto (1999), with conditional effects to address the
ramification problem that emerges from the integration of
Σ and SD;

• I ′ = I ∪ SD ∪OBS.

Note that the initial state I ′ contains both the system’s de-
scription and the observation. In our example, we could have
that I = {on} and thatOBS = {¬light}. By including SD
in I ′ we enforce that states consistent with I ′ have at least
one abnormal component. Note that an alternative means of
characterizing a diagnostic system is to treat ramifications
as further actions that are triggered by the direct effects of
actions.

We now formally define the notion of diagnosis, which
we borrow from de Kleer, Mackworth, and Reiter (1992)’s,
in which we posit a minimal subset of components that must
be behaving abnormally in order to account for the observa-
tion in the initial state of our dynamical system. To facilitate
explication, we appeal to a characterization of diagnosis in
terms of abnormal components; however the work in this
paper is applicable to a diversity of definitions of diagnoses
or hypotheses and need not rely on the use of distinguished
components. The generalization is straightforward. Recall
that I ′, of ΣSD, includes our observation, OBS of (poten-
tially egregious) behaviour.

Definition 6 (Diagnosis) Given a diagnostic system ΣSD,
∆ ⊆ COMPS is a diagnosis iff

I ′ ∪
⋃
c∈∆

AB(c) ∪
⋃

c′∈COMPS\∆

¬AB(c′)

is satisfiable.

Definition 7 (Minimal Diagnosis) ∆ is a minimal diagno-
sis of ΣSD if ∆ is a diagnosis and no other proper subset ∆′

of ∆ is a diagnosis.

In previous work, we examined diagnosis of dynami-
cal systems with respect to a narrative of observations that
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evolved over a period of time. We characterized the no-
tion of an explanatory diagnosis in the situation calculus
(Sohrabi, Baier, and McIlraith 2010; McIlraith 1998) and
relatedly the notion of an explanation in a planning-inspired
propositional language (Sohrabi, Baier, and McIlraith 2011).
These definitions of diagnosis and explanation conjecture a
set of zero or more assumptions together with a sequence of
actions to account for the observations. These definitions of
diagnosis and explanation are not at odds with what is pro-
posed here. Indeed, a diagnosis, ∆ would hold in the final
state of an explanatory diagnosis, with OBS as the final ob-
servation of the narrative of observations used to construct
the explanatory diagnosis. The generation of explanatory
diagnosis looks back in time to conjecture what happened
based on past observations. Observations going forward are
integrated with the diagnostic plans.

4 Diagnostic Planning
While automated diagnosis remains a well-studied area of
research, we argue for a purposeful view of diagnosis. In
particular, rather than generating candidate diagnoses and
performing tests to identify a unique diagnosis, after which a
course of action (amelioration/treatment) is determined, we
argue that the determination of a unique diagnosis is gener-
ally not an end in itself and that a pragmatic view of DPS
should focus on acting.

One argument in support of this viewpoint is that in many
settings there are a limited number of courses of action that
can achieve a particular goal. These actions/plans induce an
equivalence class of diagnoses for which a particular course
of action is relevant. For example, many families of bacte-
rial infection require treatment with the same antibiotic and
we need not completely discriminate the nature and location
of the infection before treating. Similarly, if a photocopier is
malfunctioning, despite the ability to perform an in-depth di-
agnosis, the first course of action is often to turn the machine
off and on, resolving a large family of faults simultaneously
without the need for time-consuming, and time-wasting in
this case, differential diagnosis.

All of the diagnostic planning tasks we examine take the
same general form. The dynamical model of the system,
ΣSD, is augmented with additional information about the
initial state, the goal state and some constraints that need
to be enforced throughout execution of the plan. In this
section, we provide a general formulation of a diagnostic
plan. We discuss the diversity of diagnostic tasks that can be
achieved via the specification of different initial conditions,
goals, and constraints, and the complexity of plan existence
in some of these different settings. While the types of plans
we are interested in here change the state of the world, we
are also interested in plans that are designed to change our
state of knowledge without necessarily changing (much of)
the world. In the section that follows, we look at epistemic
goals – planning to know whether or not a diagnosis is true,
to refute a diagnosis, or to discriminate a collection of can-
didate diagnoses.

Definition 8 (Diagnostic Plan) Given a diagnostic plan-
ning task (ΣSD, Init,Φ, G) where

• ΣSD = (F,A,Ω, I), is the diagnostic system;
• Init, is a set of logical formulae that provide additional

information about the initial state;
• Φ, is a logical formula representing additional state con-

straints that must be enforced throughout the plan; and
• G, is a set of literals that prescribe the diagnostic plan-

ning goal,
and where Init ∪ I ∪ Φ is satisfiable.

Action tree T is a diagnostic plan for the diagnostic plan-
ning task ((F,A,Ω, I ∪ Init), G) under the constraint of Φ
iff T is a plan for the planning task ((F,A,Ω, I ∪ Init), G),
and for every S such that (T, S0) `∗ (T ′, S) it holds that
Ms |= Φ, for every s ∈ S.

4.1 Properties of Diagnostic Plans
As evident from the definition presented, our characteriza-
tion of a diagnostic plan is coupled to our previously defined
classes of planning tasks. These classes differ with respect
to the completeness of their initial states and whether they
exploit sensing of any form. Such characteristics have im-
plications with respect to the complexity of planning.

The following are the complexity classes of the decision
problem for the different planning tasks.

Theorem 1 (Diagnostic Planning w/ Complete Info.)
Given a diagnostic planning problem (ΣSD, Init,Φ, G), if
I ∪ Init ∪ Φ defines a complete initial state and if Ω = ∅
then this is a classical planning task and deciding whether
there exists such a plan is PSPACE-complete.

This result follows from Bylander’s result on the com-
plexity of deterministic planning (Bylander 1994).

Theorem 2 (Diagnostic Planning without Sensing)
Given a diagnostic planning problem (ΣSD, Init,Φ, G), if
Ω = ∅ but I ∪ Init ∪ Φ does not define a complete initial
state then this is a conformant planning problem and decid-
ing whether there exists such a plan is EXPSPACE-complete.

This follows from Haslum’s result on the complexity of
conformant planning (Haslum and Jonsson 1999). Finally,

Theorem 3 (Diagnostic Planning with Sensing)
Given a diagnostic planning problem (ΣSD, Init,Φ, G), if
I∪Init∪Φ does not define a complete initial state and Ω 6=
∅ then this is a conditional planning problem and deciding
whether there exists such a plan is 2-EXPTIME-complete.

This follows from Rintanen’s results on the complexity of
conditional planning (Rintanen 2004).

4.2 The Many Guises of Diagnostic Planning
Our characterization of a diagnostic plan encompasses a di-
versity of DPS scenarios. Here we informally explore some
of these varied scenarios in order to illustrate the broad util-
ity of our characterization. Each scenario is realized by vary-
ing the Init and G and can be performed with or without
sensing as the scenario necessitates, and with commensurate
implications regarding the type of planner.

Eradicate egregious behaviour By setting Init = ∅ and
G = ¬OBS we can plan to eradicate behaviour without
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first explicitly computing a diagnosis. If sensing is per-
mitted, sufficient information will be garnered to select
an appropriate course of action. Such information may or
may not entail a unique diagnosis as illustrated in some
of the previous examples. Without sensing, a conformant
plan will be generated (where possible) that will work re-
gardless of what is wrong with the system.

Fix the system, given a diagnosis Given a diagnosis ∆,
Init = {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMPS \
∆} and G =

∧
c∈∆ ¬AB(c). When a unique diagno-

sis has been determined, this can be added to the initial
state and a plan generated accordingly. In such a case I
may transform or be transformable into a classical plan-
ning problem, greatly diminishing the computational ef-
fort involved in generating a plan. Init may also be used
to capture the set of candidate diagnoses. (E.g., The car
won’t start because it’s either out of gas or the battery is
dead.) Even in a scenario such as this one, the best plan
may require no sensing since this candidate diagnosis set
may dictate the same “fix” – call for road-side assistance.

Assume a diagnosis and fix it or eradicate behaviour
We can also use the planner to do what-if planning.
Whereas the previous scenario used Init to add facts
to the initial state, it is often compelling to assume a
particular likely diagnosis and generate a plan that will
work predicated on the assumption being correct. (E.g.,
Assume the battery is dead and fix it.) A subset of
candidate diagnoses may similarly be assumed.

Discriminate between different diagnoses Given two di-
agnoses ∆1 and ∆2, return a plan to determine which one
of ∆1 or ∆2 may be causing the egregious behaviour. We
require a notion of epistemic goals, which we define be-
low, to formalize this as a planning problem.
Our definition of diagnostic plan also supports the en-

forcement of (safety) constraints. There are a number of
compelling uses for such constraints, particularly in cases
where a diagnosis is being assumed. In such a scenario, the
user may wish to prescribe avoidance of things that would
be fatal should the assumptions be flawed (e.g., giving peni-
cillin to a patient with allergies). Constraints of this form can
often be compiled away so as not to add to the difficulty of
planning. Finally, the user can exercise flexibility in elim-
inating sensing actions to generate conformant rather than
contingent plans, or to enforce Φ by eliminating the actions
that would result in its violation.

5 Epistemic Diagnostic Planning
In the previous section we examined tasks to achieve some
state of the world. Here we wish to generate plans to achieve
epistemic goals. For example, we may wish to generate
a plan to know a particular diagnosis (E.g., I know Ralph
has meningitis.), to discriminate between diagnoses (E.g., I
know Ralph has one and only one of meningitis, strep-A, or
influenza.), or to eliminate a diagnosis (E.g, I’ve eliminated
the possibility that Ralph has strep-A.).

The notion of planning and reasoning to achieve a state
of knowledge dates back to work by Moore (1985). Scherl
and Levesque (2003) later integrated Moore’s approach with

Reiter’s solution to the frame problem (1991). More re-
cently, epistemic planning has been discussed in the context
of dynamic epistemic logic (e.g, (Herzig, Lang, and Marquis
2003; Andersen, Bolander, and Jensen 2012).

Currently, there are no competitive planning systems that
implement the possible world semantics. There are a few
systems that however implement the idea of knowledge-level
planning (Demolombe and Pozos Parra 2000; Petrick and
Bacchus 2002), in which the knowledge of the agent is ex-
plicitly represented as propositions of the language (e.g., us-
ing a fluent KF to represent that the agent knows F ). These
planners are capable of carrying out a limited, but still rea-
sonably expressive form of reasoning about knowledge. A
few systems like PKS (Petrick and Bacchus 2002) and the
web-service composition planner by Pistore et al. (2005)
adopt the approach of planning at the knowledge level to im-
plement these ideas. Planning at the knowledge level may
achieve good performance in many planning benchmarks
however, their ability to reason about knowledge is lim-
ited. Along the same lines, Palacios and Geffner (2009) pro-
posed a compilation technique that maps contingent plan-
ning into knowledge-level deterministic tasks. As expected,
their translation is compact, sound, and complete for only a
certain class of problems (Palacios and Geffner 2009).

While many simple epistemic diagnostic planning tasks
can indeed be mapped into knowledge-level planning do-
mains we propose an alternative compilation into condi-
tional planning with sensing actions. Our motivation is prac-
tical since this enables computing diagnoses with a variety
of existing planning systems.

Our translation still takes a somewhat impoverished view
of the world, choosing not to appeal to rich modal theories
of knowledge and belief in favour of adopting the stance of
planning at the so-called belief level. In this view, the state
of the system captures the agent’s beliefs about the world.
Specifically, in the initial state, we assume that the agent
knows any formula φ that is such that for every s consistent
with I it holds that Ms |= φ. Similarly, when the agent
performs actions, the agent knows all formulae that hold in
all states that it could reach. Formally, given a set of states
S, and a formula φ, we say that:

K(φ, S) iff Ms |= φ for each s ∈ S,
where the intuitive meaning of K(φ, S) is that the agent
knows φ when the set of states it is possibly in is S.

With this definition in hand we are ready to define our
notion of planning with epistemic goals.

Definition 9 (Epistemic Plan) Let Σ = (F,A,Ω, I) be a
transition system and S0 be the set of all plan states consis-
tent with I . Then,
• T is a plan for Know(φ) iff for every S such that

(T, S0) `∗ (ε, S) it holds that K(φ, S),
• T is a plan for KnowWhether(φ) iff for every S such that

(T, S0) `∗ (ε, S) it holds either K(φ, S) or K(¬φ, S),
and

• T is a plan for Discriminate(φ, ψ) iff for every S such
that (T, S0) `∗ (ε, S) it holds either K(φ ∧ ¬ψ, S) or
K(¬φ ∧ ψ, S).
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Under this definition it is simple to prove that T is a plan
for φ if and only if T it is an epistemic plan for Know(φ).
This is compatible with our notion of planning at the belief
level: the knowledge of the agent is captured by the set of
states the agent is at. This also means that if one wants a plan
for Know(φ), then one can obtain such a plan by querying
a regular conditional planner for the goal φ. However, it is
not immediately straightforward how to obtain plans for the
other types of epistemic goals using a conditional planner.
For example, using the non-epistemic goal φ ∨ ¬φ instead
of KnowWhether(φ) would not work since φ ∨ ¬φ is tauto-
logical and therefore achieved by every action tree.

Interestingly, it is possible to treat all types of epistemic
goals as ontic planning. Below we propose a simple com-
pilation which maps our notion of planning with epistemic
goals to ontic conditional planning.

5.1 From Epistemic Planning to Conditional Planning
Given an epistemic goal of the form KnowWhether(φ), the
main idea underlying this compilation is to add an additional
fluent kw-φ that can be used to replace the epistemic goal
KnowWhether(φ).

To simplify the presentation we will assume, for now, that
the goal is KnowWhether(L), where L is a literal, and that
as usual Σ = (F,A,Ω, I) is the transition system. The com-
piled planning problem is Σ′ = (F ′, A′,Ω, I), and F ′ and
A′ are generated by performing the following steps:

1. Let F ′ be F ∪ {kw-L}.
2. Add to A′ all actions in A plus actions kw-act-pos-L and
kw-act-neg-L, whose preconditions are, respectively, L
and L. Both actions have a single effect, kw-L.

3. For each action a in A′ that contains either C → L or
C → L as a conditional effect, for some C different from
{true}, we add the unconditional effect ¬kw-L to a.
Note that Step 2 generates actions that add the fact kw-L.

These actions can only be performed if the set of states
the agent believes it is in, say, S, is such that K(L, S) or
K(¬L, S) (i.e., the agent knows whether L is true). Step 3
handles the case in which there may be “loss of knowledge”
due to a conditional effect of an action. To see this, imagine
a system with a single action A which is always executable
and which has conditional effect p → L. Assume I is such
that the set of states consistent with I is {{p}, {}}. Even
though the agent knows whether L in the states of I , it is
not the case anymore after performing A, since the set of
resulting states is {{p, L}, {}}.

We now prove that our proposed translation is sound and
complete, in the senses defined below.

Theorem 4 (Completeness) Let Σ = (F,A,Ω, I) be a
transition system, and let Σ′ be defined as above. If T is
a plan for (Σ,KnowWhether(L)) then there exists a plan
T ′ for (Σ′, kw-L) which differs from T only in that it con-
tains actions of the form kw-act-pos-L or kw-act-neg-L at
the end of each of T ′’s branches.

Proof. We note that if there exists an action tree T that
is a plan for (Σ,KnowWhether(L)) then we can construct
a plan T ′ for (Σ′, kw-L) by simply adding an additional

kw-act-pos-L or kw-act-neg-L as the final action in each
branch of the tree. Such actions are executable at that point
since it holds that K(L, S) or K(¬L, s), where S is the set
of states reached by that branch. �

Theorem 5 (Soundness) Let Σ = (F,A,Ω, I) be a transi-
tion system, and let Σ′ be defined as above. If T is a plan
for (Σ′, kw-L) then, by removing all actions of the form
kw-act-pos-L or kw-act-neg-L from T we obtain an ac-
tion tree that is a plan for (Σ,KnowWhether(L)).

Proof. Let T be a plan for kw-L. Take any Sf that re-
sults from the execution of a branch of T ; i.e., such that
(T, S0) `∗ (ε, Sf ). Observe that kw-L ∈ Sf . Now let
(kT ′, S) be the configuration visited by the execution of the
branch in which kwL is added for the last time (here k is ei-
ther kw-act-pos-L or kw-act-neg-L). In other words, let S
be such that (T, S0) `∗ (kT ′, S) ` (T1, S1) ` (T2, S2) `∗
(Tn, Sn), with Tn = ε, Sn = Sf , and such that for all
i ∈ {1, . . . , n}, kw-L ∈ Si. Because k is executable in
S, either K(L, S) or K(¬L, S) holds. Furthermore, be-
cause S and S1 differ in at most kw-L, it also holds that
either K(L, S1) or K(¬L, S1) holds. Now assume that it
holds that K(L, Si) or K(¬L, Si) for some i ≥ 1. Since
kwL ∈ Si+1 the action that was performed in Si to yield
Si+1 was either an action that does not change the truth
value of L or changes it unconditionally (in other words,
it is not an action modified by Step 3 of the compilation). In
either case it holds either K(L, Si+1) or K(¬L, Si+1). We
conclude that K(L, Sn) or K(¬L, Sn), which means that T
achieves KnowWhether(L). We observe now that if we re-
move all occurrences of kw-act-pos-L or kw-act-neg-Lwe
obtain a plan that also achieves KnowWhether(L). �

Now consider the epistemic goal Discriminate(L1, L2),
where L1 and L2 are literals. The compilation follows the
same intuitions from above. We generate a new transition
system Σ′ = (F ′, A′,Ω, I), where and F ′ and A′ are com-
puted by performing the following steps:

1. Let F ′ be F ∪ {disc-L1-L2}.
2. Add to A′ all actions in A plus actions disc-act-1-L1-L2

and disc-act-2-L1-L2, whose preconditions are {L1, L2}
and {L1, L2}, respectively. Both actions have a single
effect, disc-L1-L2.

3. For each action a in A′ that contains C → L1, C → L1,
C → L2, or C → L2 as a conditional effect, for some C,
we add the unconditional effect ¬disc-L1-L2 to a.
This translation is also sound and complete. The proofs

are similar to the ones presented above.

Theorem 6 (Completeness) Let Σ = (F,A,Ω, I) be a
transition system, and let Σ′ be defined as above. If T
is a plan for (Σ,Discriminate(L1, L2))) then there exists
a plan T ′ for (Σ′, disc-L1-L2) which differs from T only
in that it contains actions of the form disc-act-1-L1-L2 or
disc-act-2-L1-L2 at the end of each of T ′’s branches.

Theorem 7 (Soundness) Let Σ = (F,A,Ω, I) be a tran-
sition system, and let Σ′ be defined as above. If T is a
plan for (Σ′,Discriminate(L1, L2)) then, by removing all
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actions of the form disc-act-1-L1-L2 or disc-act-2-L1-L2

from T we obtain an action tree that is a plan for
(Σ,Discriminate(L1, L2)).

Extending the Compilation to Formulae We have dis-
cussed how to compile goals of the form KnowWhether(L)
and Discriminate(L1, L2), for the case of literals. To ex-
tend our compilation to general formulae we can use a pre-
compilation step in which, for each formula φ involved in
the epistemic goal, we generate the ramification constraints
φ causes Lφ and ¬φ causes ¬Lφ. Then we apply the com-
pilation we described above. Soundness and completeness
now follows from the theorems above together with sound-
ness of the compilation of ramifications into effect axioms.

6 Computing Diagnostic Plans
The purpose of this paper was largely to define the theoret-
ical underpinnings that support the exploitation of state-of-
the-art AI planning systems for diagnostic problem solving.
As such, our translation can be exploited by any planning
system capable of handling conditional effects and sensing
actions; in particular it can be used along with conditional
planners such as Contingent-FF (Hoffmann and Brafman
2005), POND (Bryce, Kambhampati, and Smith 2006), and
the CNF- and DNF-based conditional planners by To, Pon-
telli, and Son (2011).

Our translation could also be used with the latest contin-
gent online planning systems CLG (Albore, Palacios, and
Geffner 2009), CLG+ (Albore and Geffner 2009), and the
SDR planner by (Brafman and Shani 2012), even though
some of these systems may not return a complete conditional
plan. However, for our experiments we wished to generate
offline conditional plans and we opted to use Contingent-FF.

We developed 8 diagnostic planning problem scenarios
in the following domains: an extension of the light-switch-
battery domain given in the example presented in Section 3,
an agent moving between rooms fixing light bulbs to com-
plete a circuit, and embedded computer chips. We varied the
complexity of the problems and ran them with Contingent-
FF using a PC with an Intel Xeon 2.66 GHz processor with
4GB RAM running Linux. The simple problems generated
reasonable plans, requiring from under 0.01 seconds to 0.03
seconds to complete. The more complex problems resulted
in poor quality plans that favoured conformant rather than
contingent solutions. We attribute much of this poor qual-
ity to the general effectiveness of the planner and how it’s
underlying heuristics interact with our approach to handling
ramification constraints. We also experimented with encod-
ing ramifications as additional actions rather than compiling
them into effects. In future work, we will explore different
representations for our ramification constraints across differ-
ent planners.

An interesting result came from the problems created for
the embedded computer chips domain, which consists of
a collection of computer chips which themselves contain
chips, and so forth, where all chips must be working nor-
mally for the output to be displayed. When allowing the
planner to sense the status of and replace any chip, the re-
sulting plan was always to replace the top level chips. This

supports the notion of taking a purposeful view of diagnosis
– it can be much faster to simply repair the issue than to de-
termine the unique diagnosis. More generally, selecting the
best course of purposeful actions can be informed by many
factor including the cost of actions (sensing and world alter-
ing), time-criticality of a response, and issues of specificity
or generality with respect to how a grouping of related faults
should be addressed (e.g., fix them individually vs. doing a
more general fix). The tradeoff between reasoning and act-
ing, and the value of information has been addressed by a
variety of researchers, notably Horvitz and Seiver (1997).

7 Related Work and Concluding Remarks
In addition to the literature on model-based diagnosis cited
in Section 3, there is a body of previous work that relates
diagnosis to theories of action in some guise. The relation-
ship between actions and diagnoses was observed sometime
ago by (e.g., Cordier and Thiébaux 1994; McIlraith 1994),
while Sampath et al. (1995) were the first to present com-
prehensive results diagnosing discrete event systems via fi-
nite state automata. Thielscher (1997), McIlraith (1998),
and subsequently Iwan (2001) and Baral, McIlraith, and
Son (2000) cast the diagnosis problems in terms of an AI
theory of action and change. More recently Grastien et
al. (2007), Sohrabi, Baier, and McIlraith (2010), Lamperti
and Zanella (2011) and Yu, Wen, and Liu (2013) have all
addressed aspects of dynamical diagnosis.

Specifically in the area of diagnostic and repair planning,
the most notable related work is that of Baral, McIlraith, and
Son (2000) who introduced the notion of diagnostic and re-
pair plans as conditional plans, and who have a treatment of
causality and sensing. That work shares a number of intu-
itions with the work presented here, but without the focus on
planning for epistemic goals, and the correspondence to con-
formant and contingent planning. Also of note is the work
of Kuhn et al. (2008) who introduce the notion of pervasive
diagnosis which produces diagnostic production plans that
achieve production goals while coincidentally uncovering
additional information about system health. The notion of
combining diagnosis with repair has been addressed in vary-
ing fashion by Sun and Weld (1993) and by Friedrich, Gott-
lob, and Nejdl (1992) among others. Thiébaux et al. (1996),
in this and later work, discuss the challenges of diagnosis
and repair in the context of a power supply restoration prob-
lem, identifying the task as problem of planning with uncer-
tainty. These works share intuitions with the approach advo-
cated here, but do not reflect the advances in our collective
understanding of the representational and computational is-
sues associated with planning and sensing. Finally, outside
the area of diagnostic problem solving there has been a vari-
ety of work looking at planning with some form of sensing.
Of particular note is the work of Brenner and Nebel (2009)
on MAPL, a continual planning system that interleaves plan-
ning with acting and sensing. This paradigm of planning and
sensing is also one that is very amenable to diagnostic prob-
lem solving.

In this paper we have argued for and explored a purpose-
ful view of diagnostic problem solving, examining the prob-
lem through the lens of AI automated planning. We have
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characterized diagnostic planning with both ontic and epis-
temic goals, and established properties of these diagnos-
tic planning tasks, including both complexity results and
an understanding of their relationship to classical, confor-
mant, and conditional planning systems. Of particular note
was the characterization of diagnostic epistemic goals such
as Discriminate and KnowWhether and their translation
into planning problems with ontic goals. The correspon-
dence with existing planning paradigms enables diagnostic
planning to leverage ongoing advances in the development
of non-classical planners. We discuss the exploitation of
such planners, outlining our experience addressing diagnos-
tic problem solving with Contingent-FF. Results to date are
guardedly encouraging but expose the need for further inves-
tigation of the nuances of these planners as a complement to
the results of this paper.

Beyond diagnostic problem solving, the work presented
is relevant to a diversity of problems that involve generating
hypotheses to conjecture system state, and sensing and act-
ing in the world to discriminate those hypotheses or to pur-
posefully effect change in response to observed behaviour.
Some such problems include active vision applications, ac-
tivity recognition, and goal recognition.
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