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Abstract

Multi-relational networks are used extensively to struc-
ture knowledge. Perhaps the most popular instance,
due to the widespread adoption of the Semantic Web,
is the Resource Description Framework (RDF). One of
the primary purposes of a knowledge network is to rea-
son; that is, to alter the topology of the network accord-
ing to an algorithm that uses the existing topological
structure as its input. There exist many such reasoning
algorithms. With respect to the Semantic Web, the biva-
lent, monotonic reasoners of the RDF Schema (RDFS)
and the Web Ontology Language (OWL) are the most
prevalent. However, nothing prevents other forms of
reasoning from existing in the Semantic Web. This ar-
ticle presents a non-bivalent, non-monotonic, evidential
logic and reasoner that is an algebraic ring over a multi-
relational network equipped with two binary operations
that can be composed to execute various forms of in-
ference. Given its multi-relational grounding, it is pos-
sible to use the presented evidential framework as an-
other method for structuring knowledge and reasoning
in the Semantic Web. The benefits of this framework
are that it works with arbitrary, partial, and contradic-
tory knowledge while, at the same time, it supports a
tractable approximate reasoning process.

Knowledge structures are used to represent facts about the
world. The most common formal data structure to repre-
sent knowledge is the network. With respect to symbolic
knowledge representation, the multi-relational network (also
known as an edge labeled graph or semantic network) is
widely used. A multi-relational network is composed of a
set of vertices and a family of edge sets, where each edge
set has a different nominal, or categorical, label. Formally, a
multi-relational network can be represented as M = (V, E),
where V is the set of vertices and E = {E0, E1, . . . , Em ⊆
(V ×V )} is the family of directed edge sets. In recent years,
perhaps the most popular instance of a multi-relational data
structure for knowledge representation is the Resource De-
scription Framework (Dau 2006) of the Semantic Web ini-
tiative (Berners-Lee, Hendler, and Lassila 2001)1. An edge
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1Other formal models of RDF include a bipartite graph (Hayes
and Gutierrez 2004) and hypergraph (Morale and Serodio 2006)
representation.

in an RDF network is called a statement, or triple, as it is
composed of a subject, predicate, and object. For example,
suppose the statement (i, k, j). This statement denotes that
i is related to j by means of an k-type relationship. Given
the previous definition of M , this is equivalent to the di-
rected edge (i, j) ∈ Ek. A particular instance of a statement
is (marko, coauthor, joe). This statement denotes that
Marko has a coauthorship relationship to Joe. Languages
such as the RDF Schema (RDFS) and the Web Ontology
Language (OWL) impose a set of constructs that serve to
structure knowledge in a particular manner. The particular-
ities of such a structure are used by an RDFS or OWL rea-
soner to infer new statements that can be added to the RDF
network. The statements inferred by such reasoners are bi-
valent in that they are either true or false and moreover, their
truth value is monotonic as it does not change once it has
been asserted.

While RDFS and OWL are common languages in the
Semantic Web, the flexibility of RDF can easily sup-
port other knowledge structures and reasoning algorithms.
The purpose of this article is to present a non-bivalent,
non-monotonic, evidential logic and reasoner for multi-
relational networks that leverages many of the ideas from
Non-Axiomatic Logic (NAL) (Wang 2006) and the Non-
Axiomatic Reasoning System (NARS) (Wang 1993). The
philosophical foundation of an evidential logic is that no
statement is inherently true or false and that a statement only
maintains levels of evidence to support or negate its claim.
The notion of

experience-grounded semantics [is where] the truth value of
a judgment indicates the degree to which the judgment is
supported by the system’s experience. Defined in this way,
truth value is system-dependent and time-dependent. Differ-
ent systems may have conflicting opinions, due to their dif-
ferent experiences. (Wang 1994)

The typical metaphor in an evidential logic system is that
of an agent that perceives the world, represents its percep-
tions in an internal knowledge structure, and reasons on that
structure to infer new knowledge (Wang 2004a). Moreover,
it is assumed that this agent has limited computational re-
sources in terms of both space and time and thus, does not
maintain an objective knowledge structure nor does it nec-
essarily have the ability to reason across its entire subjective
knowledge structure. In other words, the agent has only so
much information that it can store and process at any one
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time. This notion is known as the Assumption of Insuffi-
cient Knowledge and Insufficient Resources (AIKIR). Non-
axiomatic logic is contrasted to axiomatic logic, where truth
is bivalent, is defined independent of the time and space re-
quirements necessary to derive it, can be reasoned from a fi-
nite set of premises, and where all reasoning produces true,
immutable conclusions.

The evidential logic presented in this article forms an al-
gebraic ring over a multi-relational network (i.e. the knowl-
edge structure) equipped with two binary operations (i.e. the
atoms of the inferencing algorithms). Given the logic’s
multi-relational formulation, it is possible to comfortably
represent this structure in RDF and thus, on the Semantic
Web. The primary contribution of this article is the applica-
tion of evidential logics to multi-relational networks and the
formulation of an algebraic evidential reasoner.

Evidence in an Inheritance Network
With evidential logics, there does not exist an objective
boolean truth value for every question that can be asked of
the world as the world is not reasoned on directly (Wang
2004b). What is reasoned on is the agent’s internal knowl-
edge structure. For the agent, knowledge is gained as new
evidence from the world is discovered (either through direct
perception or through communication) or as knowledge is
inferred given the agent’s internal reasoning system. The
Non-Axiomatic Reasoning System (NARS) is an example
of an evidential reasoning system (Wang 1993). The data
structure proposed for NARS version 2.2 is a directed evi-
dence network denoted G = (V,E, λ), where V is a set of
vertices, E ⊆ (V × V ) is a set of directed “inheritance”
edges, and λ : E → 〈[0, 1], [0, 1]〉 maps each edge to an
evidence tuple. For example, an edge is denoted

(i, 〈w+, w−〉, j),
where i is the tail of the inheritance edge, j is the head of
the inheritance edge, and 〈w+, w−〉 is the evidence tuple for
that edge. Moreover, 〈w+, w−〉 ≡ λ(i, j). The meaning of
(i, 〈w+, w−〉, j) is that there is w+ positive evidence sup-
porting the claim that i isA j and w− negative evidence that
i isA j. Another interpretation of this edge is that, upon ex-
amination, it appears, to the agent, that i has w+ properties
in common with j and w− properties not in common with j.
This idea is also expressed as i being the intension of j and
j being the extension of i (Wang 1994).

In NARS, the evidence tuple of an edge is revised by
means of external perception or internal reasoning. The
act of perceiving i and j in the external world will return
evidence of their relationship and thus, increment w+ or
w− accordingly. With respect to internal reasoning, there
are four syllogisms that can be applied to the agent’s in-
ternal knowledge network: deduction, induction, abduction
(Patzig 1968), and exemplification. For deduction,

(i, 〈w+
1 , w−1 〉, j), (j, 〈w+

2 , w−2 〉, k) → (i, 〈w+
3 , w−3 〉, k).

For induction,

(i, 〈w+
1 , w−1 〉, j), (i, 〈w+

2 , w−2 〉, k) → (j, 〈w+
3 , w−3 〉, k).

For abduction,

(i, 〈w+
1 , w−1 〉, j), (k, 〈w+

2 , w−2 〉, j) → (i, 〈w+
3 , w−3 〉, k).

Finally, there is a less widely used fourth syllogism known
as exemplification (Bochenski 1970; Wang 1994). Exempli-
fication is defined as

(i, 〈w+
1 , w−1 〉, j), (j, 〈w+

2 , w−2 〉, k) → (k, 〈w+
3 , w−3 〉, i).

The values for 〈w+
3 , w−3 〉 depend upon the specific inference

rules of the the evidential reasoner. In (Wang 2006), it is ex-
plicitly stated that the rules presented are not set in stone, but
rather subject to revision themselves as more is understood
about the design of evidential systems.

The evidence tuple 〈w+, w−〉 of an edge can be trans-
formed into a normalized “truth value” consisting of a new
tuple 〈f, c〉 ∈ 〈∅ ∪ [0, 1], ∅ ∪ [0, 1]〉. The first component f
is the frequency of positive evidence and is defined as

f =
w+

w+ + w−
.

The second component c is the confidence in the stability of
f as k-more observations are made and is defined as

c =
w+ + w−

(w+ + w− + k)
.

The parameter k ∈ R
+
0 is a user-defined, system constant.

In words, as more positive evidence accumulates relative
to negative evidence, f increases towards 1. As more to-
tal evidence accumulates relative to some constant k, c in-
creases towards 1. If there is no evidence, then the edge has
an f -component of ∅ which means that the relationship is
unknown. Finally, hard “truth” can be modeled with an ev-
idence tuple of 〈1, 0〉 with k = 0 and thus, an fc-tuple of
〈1, 1〉.

The contribution of this article is to extend the aforemen-
tioned evidential logic framework to multi-relational net-
works composed of both inheritance and non-inheritance
edges. Moreover, this article contributes an algebraic ring
formulation of evidential reasoning which situates the rea-
soner within well understood mathematics. From this multi-
relational foundation, evidential reasoning can be comfort-
ably executed in the RDF-rich world of the Semantic Web.

Evidential Reasoning using Path Expressions
A path algebra to map a multi-relational network to a single-
relational form was originally presented in (Rodriguez and
Shinavier 2008). The motivation behind the algebra was to
provide a formal means by which the large class of single-
relational network analysis algorithms could be applied to
multi-relational networks in a meaningful way. With respect
to this article, the binary operations of + and · are updated
so as to work with evidence tuples.

A multi-relational, evidence network is defined as M =
(V, E = {E0, E1, . . . , Em ⊆ (V × V )}, λ), where V is a
set of vertices, E is a family of edge sets, and λ : Ek →
〈[0, 1], [0, 1]〉 maps each edge in Ek : k ≤ m to an evidence
tuple. The algebraic formulation of the presented evidential
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path algebra operates on an n × n × m tensor representa-
tion of this network (Kolda, Bader, and Kenny 2005)2. The
evidence tensor A is defined as

Ak
i,j =

{
λ(i, j) if (i, j) ∈ Ek

〈0, 0〉 otherwise.

The two n dimensions represent the vertices and the sin-
gle m dimension represents the various edge labels. Thus,
there is a one-to-one mapping between a multi-relational,
evidence network and an evidence tensor. The entries of the
tensor denote the amount of positive (w+) and negative (w−)
evidence for the edge (i, j) ∈ Ek, where 〈0, 0〉 denotes no
evidence when no such edge exists. Inference on this tensor
can be accomplished through the two binary operations

+ : 〈[0, 1], [0, 1]〉 × 〈[0, 1], [0, 1]〉 → 〈[0, 1], [0, 1]〉
and

· : 〈[0, 1], [0, 1]〉 × 〈[0, 1], [0, 1]〉 → 〈[0, 1], [0, 1]〉.
The function rules of these operations are

〈w+
1 , w−1 〉 + 〈w+

2 , w−2 〉 = 〈(w+
1 + w+

2 ), (w−1 + w−2 )〉
and
〈w+

1 , w−1 〉·〈w+
2 , w−2 〉 = 〈(w+

1 ·w+
2 ), (w+

1 ·w−2 +w−1 ·w+
2 +w−1 ·w−2 )〉.

These two operations form an algebraic ring over the evi-
dence tensor (i.e. multi-relational, evidence network). The
binary operation + is associative, has an identity of 〈0, 0〉,
and is commutative. The binary operation · is associa-
tive with an identity of 〈1, 0〉. The operation + supports
the notion that evidence (from two independent experi-
ences/inferences) can be summed together (Wang 1994).
The operation · supports the notion that positive evidence
can be multiplied to form new positive evidence and that
conflicting and negative evidence accounts for negative evi-
dence.

The next subsections will formalize the various syllo-
gisms on inheritance edges in a multi-relational network and
then the following subsection will discuss the application of
these operations to any arbitrary path through an evidence
tensor. Note that what is presented is a set of operations that
will operate on n× n matrix “slices” of the evidence tensor.
In this respect, the presented operations are “global” compu-
tations and thus, are computationally inefficient and contrary
to AIKIR. However, these operations can be implemented as
“local” computations using various methods such grammar
walks (Rodriguez 2008) in specific areas of the network be-
cause evidential reasoning does not require a network-wide
computation.

Inferring Inheritance Evidence
Inheritance relations are handled as a special case situaion
when reasoning in a multi-relational network. Example in-
heritance predicates in an RDF network are rdf:type and
rdfs:subClassOf. Figure 1 presents a simple example
network that will be used to demonstrate the inference rules
of deduction, induction, abduction, and exemplification.

2The tensor representation can also be thought of as a set of m
adjacency matrix “slices”, where each matrix has its own label.

writer

author

scholar

person

journalist

isA isA

isAisA

Figure 1: An an inheritance network.

Deductive Inheritance Deduction is defined as a two step
“walk” on the inheritance component of an evidential net-
work. A two step walk can be computed by squaring a ma-
trix. Suppose a standard square {0, 1}-matrix denoted A,
where Ai,j = 1 if there is an edge between vertex i and j,
and 0 otherwise. The 2nd power of this matrix, as defined by
ordinary matrix multiplication, AA, will yield a new ma-
trix where entry (AA)i,j denotes the total number of paths
of length 2 starting from vertex i and ending on vertex j
(Chartrand 1977). With respect to an evidence tensor, de-
termining the product of two adjacency matrix “slices”, will
yield a new adjacency matrix where the entry (i, j) denotes
the total amount of deductive evidence supporting (i, j).

Evidential matrix multiplication is defined as ordinary
matrix multiplication, but respective of the rules of · and +.
Thus, (

AkAk′)
i,j

=
∑
l∈V

Ak
i,l · Ak′

l,j : k, k′ ≤ m.

In the degenerate case where all positive evidence is 1 and
all negative evidence is 0, such that

Ak
i,j =

{〈1, 0〉 if (i, j) ∈ Ek

〈0, 0〉 otherwise,

evidential matrix multiplication will set w+ to the total num-
ber of paths from vertex i to vertex j and 0 to w−. In this
form, the evidential path algebra yields results that are iso-
morphic to the original formulation of the path algebra in
(Rodriguez and Shinavier 2008).

In Figure 2, deduction, as defined by AisAAisA, infers
four new edges. Note that the evidence tuples are not pre-
sented in order to preserve diagram clarity.

writer

author

scholar

person

journalist

isA isA

isAisA

isAisA

isA
isA

Figure 2: Deduction in an inheritance network.

Inductive Inheritance Induction is the process of gener-
alization given instances. In order to compute induction
in an inheritance region of an evidence tensor, it is impor-
tant to take the converse transpose of an adjacency matrix
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“slice”. The operation of taking a statement like “a scholar is
a writer” and reversing it to derive the statement “a writer is
a scholar” is known as taking the converse of the statement.
With respect to determining the evidence for the converse of
a statement, all positive evidence for a “scholar is a writer”
is considered positive evidence that a “writer is a scholar”.
However, all negative evidence for “a scholar is a writer”
should not be considered negative evidence for a “writer is a
scholar” as there is no evidence in the original statement for
writers not being scholars. Such statement converses can be
expressed using the evidential algebra. For standard matri-
ces, the transpose of a matrix is defined as (A�)i,j = Aj,i

and denotes reversing the direction of an edge (i.e. taking
the converse of a statement). However, for evidential edges,
the converse transpose of an evidential matrix is defined as

Âk
i,j = 〈γ+(Ak

j,i), 0〉,
where γ+ : 〈[0, 1], [0, 1]〉 → [0, 1] maps an evidence tuple to
its first component (i.e. w+ positive evidence). This opera-
tion ensures that the converse of an evidence tuple maintains
no negative evidence.

In Figure 3, induction, as defined by AisAÂisA, infers
two new isA edges between journalist and scholar.
As stated previous, and to stress the point, the negative evi-
dence for these two new evidence tuples is 0.

writer

author

scholar

person

journalist

isA isA

isAisA

isA

Figure 3: Induction in an inheritance network.

Abductive Inheritance Abduction is the reverse of induc-
tion. In Figure 4, abduction, as defined by ÂisAAisA, infers
two new isA edges between person and author. Similar
to induction, a converse transpose will generate no negative
evidence for these two new evidence tuples.

writer

author

scholar

person

journalist

isA isA

isAisA

isA

Figure 4: Abduction in an inheritance network.

Exemplative Inheritance Exemplary inheritance paths
can be determined by the multiplication of two converse
transpose matrices. In Figure 5, exemplification, as defined
by ÂisAÂisA, infers four new evidence tuples.

This subsection presented the syllogisms of deduction,
induction, abduction, and exemplification and their use

writer

author

scholar

person

journalist

isA isA

isAisA

isAisA

isA
isA

Figure 5: Exemplification in an inheritance network.

in an inheritance region of an evidence tensor. Note
that this region may account for more than a single m-
dimension as many labels can have an similar meaning to
isA (e.g. similarTo, equivalentTo, implies, etc.).
The next section will discuss reasoning using arbitrary paths
through a multi-relational evidence network and thus, for
those paths that may not necessarily contain isA edges.

Inferring Non-Inheritance Evidence
A multi-relational network may be composed of various
types of relationships. Figure 6 diagrams an example multi-
relational network that will be referred to in the examples of
this subsection3.

this_article

nars_article

joe

path_article

marko

wrote wrote

citescites

wrote

Figure 6: A multi-relational knowledge network.

The network in Figure 6 is composed of a reference to
this article, the denoted authors of this article, and two cita-
tions from this article to other articles. In a bivalent logic,
these statements are true because they exist. However, in
scholarly publishing it is rare, nearly impossible, for two
people to “equally” write an article together. While ideas
are shared and drafts are written, read, and edited, the arti-
cle’s final form is always a biased reflection of the approach
of some authors over others. With respect to the statements
diagrammed in Figure 6, what is the evidence for these state-
ments? The following descriptions are provided to expose,
for each edge presented above, how much supporting or de-
tracting evidence there is for i’s m-type relationship to j:
(marko,wrote,this article):

• w+: notation, writing style, diagram style, american spelling
• w−: logic, reasoning, citations, philosophy

(marko,wrote,path article):

• w+: notation, writing style
• w−: algebra, no diagrams

(joe,wrote,this article):

• w+: logic, reasoning, citations, philosophy, rings

3There is nothing that prevents the network in Figure 1 to be
merged with the network in Figure 6 (e.g. marko and joe are both
scholars). However, for diagram clarity, this is not represented.
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• w− : notation, writing style, diagram style, american spelling

(this article,cites,path article):

• w+: (Rodriguez and Shinavier 2008) citation, rings
• w−: graph notation, philosophy, only a single algebra citation

(this article,cites,nars article):

• w+: (Wang 1993) citation, evidential notation, syllogisms
• w−: path expressions, semantic web, rdf, owl, rdfs

The presented positive and negative evidence “metadata”
(e.g. writing style, american spelling, citation patterns, etc.)
can be represented in a multi-relational network. From this
multi-relational encoding, it is possible, through automated
means, to infer new evidence or revise existing evidence
in the network with prescribed path expressions. In other
words, a region of the network can provide further support-
ing and/or detracting evidence for another region of the net-
work. In order to demonstrate two examples of this, the
multi-relational network in Figure 6 will be used in this sec-
tion to
1. infer new independent evidence supporting the claims that

marko and joe wrote this article according to the
notion that self-citations are positive evidence supporting
authorship, and

2. infer new evidence that marko and joe have a
coauthorship edge between them.

Self-Citation Paths Suppose that the article citation evi-
dence in Figure 6 was experienced by the agent (e.g. a repos-
itory feed) and added to its existing internal network. At the
point of insertion, it is possible to revise the evidence tu-
ple for wrote based upon the idea that self-citations in an
article are considered evidence for authorship of that arti-
cle (Rodriguez, Bollen, and Van de Sompel 2009). Further-
more, in order to ensure independent evidence, assume that
the current evidence for wrote in Figure 6 was not deter-
mined using self-citation information4. Given this scenario,
the following inference rule will update all wrote evidence
according to inferred self-citation evidence:

Awrote
(t+1) =

((
c(Awrote

(t) )Acites
(t) Awrote

(t)
�)

◦ I
)

+ Awrote
(t) ,

where t ∈ N
+
0 is the current time step, c(Awrote) “clips” the

evidence in Awrote, ◦ is the entry-wise Hadamard multipli-
cation operation5, and I is the evidential identity matrix

Ii,j =
{〈1, 0〉 if i = j

〈0, 0〉 otherwise.

In words, the self-citation inference rule states that evidence
for Awrote can be modulated by the total evidence for the
path that goes from an author, to their written articles, to the

4Refer to (Wang 1993) for the definition and importance of in-
dependent evidence in evidential logics.

5For review, Hadamard entry-wise multiplication is defined as

A ◦B =

2
6664

A1,1 ·B1,1 · · · A1,j ·B1,j

...
. . .

...
Ai,1 ·Bi,1 · · · Ai,j ·Bi,j

3
7775 .

articles that those articles cite, and then finally, to the authors
of those cited articles. However, in order to ensure that those
cited authors are the original author from the start of the path
(i.e. self-citation), it is important to filter on the identity ma-
trix I. Hadamard entry-wise multiplication is used to apply
a matrix filter to a path. Note that the transpose of an evi-
dence matrix, not the converse transpose of the evidence ma-
trix, is used when taking the converse of a non-inheritance
statement. The reason for this is that the positive and neg-
ative evidence for the statement “marko wrote this article”
is the same for “this article was written by marko”. Next,
inferred evidence for wrote must be independent of the ev-
idence used to calculate it. Thus, Awrote is mapped to a
(〈1, 0〉, 〈0, 0〉)-matrix using the clip c operation, where

c(Ak)i,j =
{〈1, 0〉 if Ak

i,j �= 〈0, 0〉
〈0, 0〉 otherwise.

Finally, the total evidence for the self-citation path is
summed with the current evidence for the wrote edge.
Thus, the agent has used self-citations as further, revising
evidence for wrote.

Coauthorship Paths Two people are considered coau-
thors if they have both written an article together. The ev-
idence for coauthorship is determined by the total evidence
across all their jointly written articles. In its algebraic form,
the evidence for coauthor can be determined by

Acoauthor
(t+1) =

((
Awrote

(t) Awrote
(t)

�)
◦ n(I)

)
+ Acoauthor

(t) ,

where n(I) “nots” the evidential identity matrix such that
such that every 〈1, 0〉 is a 〈0, 0〉 and every 〈0, 0〉 is a 〈1, 0〉.
The reason for the n(I) filter is that to represent a coauthor
path from a person to their authored papers and then to other
authors of those papers, the path must exclude the original
author as an author is not a coauthor of themselves. In other
words, it must filter out the identity evidence matrix. The
two inferred coauthor edges between marko and joe are
diagrammed in Figure 7.

this_article

nars_article

joe

path_article

marko

wrote wrote

citescites

wrote

coauthor

Figure 7: Coauthoring in an inheritance network.

The article (Rodriguez and Shinavier 2008) provides an
in-depth review of different inferences that can be made with
arbitrary paths, various filters, and how the theorems of the
general path algebra can be applied to derive equivalent, yet
more computationally efficient paths. The examples pre-
sented in (Rodriguez and Shinavier 2008) can be applied to
an evidence tensor as long as the definitions of + and ·, as
defined in this article, are respected.
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Conclusion
Reasoning with axiomatic logics is computationally expen-
sive (Donini 2002; Fensel and van Harmelen 2007). With
respect to the Semantic Web, and with the integration ca-
pabilities brought forth by the Linked Data initiative, such
reasoning is intractable. The original assumption driving
the development of NARS is the Assumption of Insuffi-
cient Knowledge and Insufficient Resources (AIKIR) (Wang
1993). Given space and time constraints, an agent cannot
reason over the entire Semantic Web, and potentially, not
even over its entire internal knowledge network. The ben-
efit of the inheritance-based syllogisms are that they do not
require a global analysis of the knowledge network, can be
executed independently of each other, and at the their core,
are very simple and computationally efficient. With respect
to inferencing with arbitrary path expressions, the efficiency
is dependent on the length of the path and the number of ap-
plied filters. It is important to note that the matrix formalism
presented in this article is very much intractable as the best
known algorithm to compute ordinary matrix multiplication
is approximately O(|V |2.807) (Strassen 1969). As stated
previously, this matrix model can be approximated using
various techniques such as grammar walk algorithms which
do not compute the inferences over the entire network, but
instead, on local subgraphs (i.e. paths starting from particu-
lar vertices) (Rodriguez 2008). With evidential logic, such
walks can be executed when resources are available and only
in those areas of the knowledge network where it is deemed
necessary (e.g. f ∼ 0.5 and/or low c areas).

Finally, to actually represent a multi-relational, evidence
network in RDF and on the Semantic Web, some form of
reification can be used. A popular technique is the quad-
form of a “triple” where a statement maintains a fourth
component known as a named graph (Carroll et al. 2005).
With reification, statements can be attached to statements
and thus, a 〈w+, w−〉 evidence tuple can be assigned to an
RDF statement.

This article presented a non-axiomatic evidential logic
that can be implemented within the constructs of RDF and
thus, can be used as an evidential reasoning system in the
Semantic Web. The benefit of this system is that it works
with arbitrary, partial, and contradictory knowledge while,
at the same time, in a non-matrix implementation, supports
a tractable approximate reasoning process.
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