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Abstract 
Over the course of our studies of how intelligence analysis 
professionals perform their work, we have observed that the 
perceived utility of technosocial models varies with the 
degree that analysts could create and/or adapt a model to a 
particular problem or situation. Analysts failed to trust 
models (a form of validity) that were created outside of their 
community of practice. In this paper, we present relevant 
results from our studies as they pertain to how analysts 
might create or adapt technosocial models. In particular, we 
define a number of significant concerns and challenges that 
must be overcome to enable any sort of user-created or user-
adaptable modeling approach. We present a set of tools and 
techniques that have emerged from our own experiences 
developing model-based analysis and decision-support 
systems to illustrate the core challenges and suggest some 
potential solutions. 

Introduction & Background   
The utility of a technosocial model that enables predictive 
analysis is constrained by the degree to which users 
consider it valid. From a user standpoint, validity might be 
defined as: generalizability across applications; the 
amount/accuracy of underlying data used to generate the 
model; adherence to empirically proven underlying 
theories (Munson & Hulin 2000); proven ability to 
replicate human performance in particular domains or 
situations, as in the AMBR studies (Gluck & Pew 2005); 
or the degree to which a model represents the real world 
from the perspective of its intended use (Campbell & 
Bolton 2005; U.S. Department of Defense 2001). 
 Over the course of our studies of how intelligence 
analysis professionals perform their work, we have 
observed that validity is strongly linked to the user’s 
understanding and acceptance of the composition of the 
model (e.g., the amount/accuracy of underlying data used 
to generate the model, the ability to communicate its 
internal structures and reasoning processes (Young & 
Harper 2005; Tor et al. 2004)). Enabling end users to 
verify, modify, and/or create a model’s structure increases 
users’ trust in the model, which increases its utility. To 
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fulfill this need, we have developed several techniques that 
increase model transparency to non-expert users, and that 
allow these users to adapt and create models. 
 In addition to increasing trust, easily understood and 
adapted models double as methods to elicit, capture, and 
communicate reasoning. Modeling methods can then serve 
as a direct method of knowledge elicitation, and the 
resultant models—being easily understood—double as a 
knowledge representation that can be used for 
dissemination and as an interactive visualization of 
reasoning. Easily shared interactive representations of 
reasoning, in turn, support collaborative modeling. 
  In this paper, we present the results of our analyses 
across end-user communities, domains, and applications, 
allowing us to identify certain commonalities. A key 
concern of end-users in these domains was the degree to 
which a particular technosocial model could be either 
adapted to a current application (e.g., how a model of 
personality factors could be tied to a mission to influence 
an adversary leader’s decision to use chemical weapons) or 
created specifically for a given situation (i.e., how a model 
could be created on the fly to capture key situational 
knowledge as inputs and outputs, and define relevant 
internal model constructs—for example, using known 
intelligence about the frequency of violence in a region, 
gang participation in that violence, themes in adversary 
propaganda, and theories of group behavior to create a 
model of the gangs and forecast their response to increased 
police action). For a significant number of users, a model 
would not be considered valid unless it was created by 
trusted members of the community and adhered to 
community practices and terminology. This led us to 
identify a number of challenges and concerns with any 
approaches to user-created and user-adapted models.  
 In addition to the results of our analyses, we present the 
challenges associated with user creation and adaptation of 
models in the domains we studied and components of in-
house modeling tools that we have designed to support 
varying degrees of end-user model creation/adaptation. 
These components are not intended to represent a 
generalized solution, but rather to illustrate our approach, 
particular challenges, and the range of potential solutions.  
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Approach 
Our approach to analyzing the application of modeling 
techniques and technologies is grounded in Cognitive 
Systems Engineering (CSE) practices. CSE represents a 
principled approach to the design and development of 
systems based on an analysis of users engaged in work and 
on an iterative design, implementation, and evaluation 
cycle (Roth et al. 2002; Woods & Roth 1988; Norman 
1986). There are a variety of different methods within CSE 
(e.g., Cognitive Task Analysis (Schraagen et al. 2000), 
Cognitive Work Analysis (Vicente 1999), Knowledge 
Elicitation methods (Cooke 1994)) that share a 
commitment to understanding the characteristics of the 
users and the context of work to drive the specification of 
the entire system design, not just the front-end, user 
interface components. 
 In the context of developing systems that employ 
predictive models, we follow the iterative, user-centric 
approach represented in Figure 1. While systems 
employing predictive models can range significantly in 
their purpose (e.g., decision support, training, acquisition, 
intelligence analysis), the general process of analyzing 
end-user needs and iterating on a model and system 
development remains the same.  
 Of particular interest within this approach is the need to 
define the model validity requirements based on an 
analysis of the end-user. While the validity of a model is 
defined by the application (i.e., the model must be 
sufficient for the application), that application is in part 
determined by how users perform their work. For example, 
developing a model to embed into a decision-support 
system that lets a commander forecast adversary tactics 
necessitates understanding how the commander makes 
decisions (e.g., Do the decisions need to be made quickly? 
How much does the commander rely on others’ analyses?). 
This understanding then guides the design of the model 
and the decision-support system (e.g., How and to what 
degree is the internal complexity and state of the model 
presented?  How fast does the model return a result?).  This 
understanding should also guide the specification of 
validity – at what point do imperfections in the model 
impact the end-user’s performance (e.g., If the commander 
used the predictive model in concert with results from 
other human-based analyses to confirm/disconfirm the 
predictions from the model, lower validity may have less 
of an impact on decision-making performance)? With this 
approach, we can create a reasonably detailed description 
of the impacts of technosocial model validity and therefore 
guide model development and deployment accordingly. 

Analysis Results 
We have developed, or are developing, software tools for 
aiding analysis and decision-making with predictive 
models in a number of domains. In this paper, we present 
the results of applying a CSE approach across numerous 
projects, representing thousands of hours with hundreds of 

domain experts spanning a wide variety of applications, 
such as military intelligence analysis (Pfautz et al. 2006c), 
military command and control (Potter et al. 2000; Rosen & 
Smith 1996; Rimey & Brown 1994), unmanned vehicle 
control (Pfautz & Roth 2006; Pfautz et al. 2005), sensor 
network management (Pfautz et al. 2006b), and analysis of 
weather impacts (Pfautz et al. 2006a). These domains 
present a disparate set of specific goals but all are 
concerned with understanding and forecasting behavior. 
While the general results of these many analyses have been 
presented elsewhere (Pfautz et al. 2006c; Pfautz et al. 
2005), here we focus on how studying these different 
analyst communities reveals common complexities in the 
use and validity of predictive models. 
 

 
Figure 1: Predictive modeling tools and technology development 
process 

 First and foremost, we found that analysts were 
consistent in their concerns about any model’s validity. 
Few analysts were comfortable with accepting a 
representation of “what is” or “what if” behavior without 
some level of understanding of the model’s inner 
workings, including theoretic and computational 
foundations, data sources used in model construction and 
application, as well as any and all assumptions in the 
reasoning design (this defined end-user validity for these 
domains). Repeatedly, analysts expressed their misgivings 
about generalized models and the need to express situation-
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specific qualifications (in the words of one analyst, “All 
bets are off if it rains on Thursday”). In one domain, 
analysts vehemently refuted the notion that models could 
be created by anyone other than analyst community itself – 
they argued that too much knowledge about the specific 
situation and about their analysis practices and procedures 
was required. This perspective, while not as vigorously 
voiced, was common across analysts—a model was not 
valid unless it was created by trusted members of the 
analyst community and adhered to community practices 
and terminology. This revealed a very specific impact on 
end-user performance—if the analyst did not trust the 
model, they would not use it, and therefore there would be 
no benefit to performance from the model. Trust typically 
varied with model complexity; the more complex the 
model and the methodologies used in its creation and 
application, the less likely that the model would be 
accepted. 
 Based on this result, we focused our analysis on two 
different options: user-created models and user-adaptable 
models. We identified a number of challenges to be 
overcome if these options were to be realistic in the 
domains we studied. We discuss these challenges below.  

Challenges of User-Created Modeling 
Typically, creating or interpreting models requires 
knowledge of a range of computational methods, along 
with an understanding of the various strategies for 
representing anticipatory analytical thinking. The analysts 
in the communities we studied were not experts in 
computational methods. This, therefore, is the key 
challenge in user-created modeling—users may not have 
any understanding of the methods and principles used in 
constructing predictive models. Other related and unrelated 
challenges include the following needs: 
• Computational methods and software tools that enable 

users to: 
 • Identify and select existing entities to model 
 • Easily define factors and causal relationships (i.e., 

externalize their own mental model of predictive 
factors without sophisticated knowledge of the 
underlying computation) 

 • Provide substantiation for the factors and 
relationships they express 

 • Incorporate particular data sources and provide 
justification for their selection 

 • Create models of varying complexity  
 • Evaluate and debug their own models 
• Methods for guiding model creation that: 
 • Provide a theoretical basis for model structure or 

components 
 • Adhere with community practices and/or doctrine 
 • Ensure a consistent and systematic creation process 

• Techniques for countering errors or logical 
inconsistencies in model creation, especially among 
users unfamiliar with a specific computational method 

•  Techniques to control for potential user biases in model 
creation 

Challenges of User-Adaptable Modeling 
Allowing users to selectively adapt an existing predictive 
model is subject to the same principle challenge as letting 
those same users create models: in both cases, the users we 
studied were not sophisticated modelers. However, while 
many of the above challenges apply, some are mitigated by 
the use of “template” models or model components that 
could be firmly ground in theory and/or captured in a 
particularly effective computational formalism. Still, some 
challenging requirements remain with a user-adaptable 
modeling approach, such as: 
• Techniques for defining templates or sub-components of 

a model that meet end-user criteria for understandability 
and validity 

• Methods for guiding users to the adaptation of templates 
or components to:  

 • Address a particular situation 
 • Incorporate their domain-specific knowledge 
 • Integrate specific data sources 
 • Adhere with community practices  
 • Build and expand constantly evolving domain-

specific terms and definitions 
 • Collaborate with others on adaptation/expansion of 

a model 

Tools and Techniques 
Given a number of efforts to develop reasoning and 
decision support systems for intelligence analysts, we 
developed specific tools and techniques that represent 
some potential solutions to the above challenges. Perhaps 
the most critical challenge was to identify or develop 
computational methods and software tools that enable user-
created modeling. After considering rule-based methods, 
fuzzy logic, and other formalisms, we chose Bayesian 
belief networks (BBNs) as particularly promising (Pearl 
2001). BBNs support the creation of graphical models—
that is, they allow users to create variables, link them 
together, and specify probabilistic relationships in a 
graphical environment. They represent a significant degree 
of computational sophistication (allowing for deductive 
and abductive reasoning, reasoning under uncertainty, 
etc.). However, as noted in prior work (Pfautz et al. 2007), 
BBNs are still not completely amenable to user-created 
modeling because of a number of specific issues (e.g., 
exponential growth of entries needed in conditional 
probability tables as the number of parents and parent 
states increase). To address these issues, we developed a 
new computational formalism, Causal Influence Models 
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(CIMs) which represent an improvement to existing 
Influence Diagram (Howard & Matheson, 984) and 
Influence Network (Rosen & Smith 1996) techniques. An 
example CIM is shown in Figure 2. 

 
Figure 2: Example CIM representing a hypothetical group’s 
attitudes, beliefs, and goal scripts 

 We implemented our CIM approach within a pre-release 
version of our BNet.Builder™ software. We deliberately 
considered CIMs in a static case—not as models within a 
high fidelity modeling and simulation environment, but 
rather as specific tools to aid an analyst in: (1) reasoning 
about the current state of a system (i.e., “what is”), and (2) 
speculating about changing one or more factors and 
observing its impact on the system’s behavior (i.e., “what 
if”). Over the course of multiple projects, we worked with 
domain experts (on the order of 40-50 individuals) to see if 
they could externalize their knowledge with this 
formalism, working specifically in the domain of 
individual and group behavior. We found that they could 
easily define factors and causal relationships (i.e., create 
some limited behavior representations) with minimal 
training (on the order of hours), but that the open-ended 
nature of the modeling meant that they were at a loss for a 
“starting point.”   

  
Figure 3: Providing theory- or practice- based guidance for 
intermediate structure development. 

 We approached this problem by providing a very simple 
structure to help guide users to identifying inputs and 
outputs to the intermediate model structure. Color-coding, 
with supporting network layout heuristics, allowed the 

users to more cleanly define the “stimuli” and “actions” or 
“behaviors” of the model. While this helped to a degree, it 
still left the intermediate structure of the model relatively 
open. Therefore, our next step was to introduce the concept 
of “helpers,” tools that would allow for the specification of 
intermediate model structure from existing or prior theories 
and practice. For example, we might specify (via an easily 
swapped ontology) a set of personality factors for an 
individual or a set of cultural influences for a group. These 
factors can then be easily dragged-and-dropped into the 
CIM, as shown in Figure 3. 
 We augmented this approach by providing the ability to 
create additional structure after a factor was initially 
identified (e.g., this structure might represent a more 
complicated underlying model, or may simply help identify 
additional correlated factors that the analyst should 
consider). This allows us to provide a basis in theoretical 
Behavioral Science (e.g., the 5-factor model) or, more 
operationally, in experts’ past experiences (e.g., recent 
patterns of gang behavior in the area of operation), as 
needed in the domain to achieve application validity. It 
also can enable a systematic and/or consistent application 
of theory or practice, depending on the restrictions that are 
placed on how factors can be created via the drag-and-drop 
interface. 
 Another important step in supporting user-created 
modeling was identifying the system being modeled, along 
with its relationship with external factors and entities, 
which we support through a typical network view of 
entities and their relationships (based on our in-house 
social network analysis tool, CONNECT™), as shown in 
Figure 4. 

 
Figure 4: Network via of entities of interest 

 Via this interface, analysts could specify the system or 
reasoning process for which they wanted to create a model. 
This allows the analyst to be very situation-specific in how 
they construct and apply their models.  
 Another key challenge to address was the user’s need to 
ensure that the model they created was adequately based 
on substantiated information regarding a particular 
individual or group. To support this need, we developed an 
interface to a user-defined file structure containing relevant 
information. Within this interface, the analyst can choose a 
document and/or select a specific fact or conclusion from 
the document, and drag-and-drop that information as an 
input or output of the model (e.g., this model is seeing an 
increase in bombings in this area, this model predicts an 
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upcoming offensive in the general area). This tool is shown 
in Figure 5. 

 
Figure 5: Allowing analysts to specify model inputs and outputs 
from existing research or data sources 

 This tool also allows the variables and links in the CIM 
to be auto-annotated with data source information and/or 
the comments of the model creator, as shown in Figure 6. 

 
Figure 6: Annotations on a node showing auto-populated sources 
and user comments 

 The ability to annotate the model in this fashion 
provides an additional capability important to the user 
communities we studied: validation through collaboration. 
While analysts justify their reasoning through their real-
world experience, they also actively vet their reasoning 
with others to help ameliorate individual biases, identify 
additional/missing pieces of a model, and ensure sources 
and justifications are sufficient. This community-of-
practice-based validation is done through a number of 
mechanisms, including collaborative model construction, 
model review by superiors, and model review by experts. 
This last step is of particular interest because it provides 
the opportunity for experts to assess how a particular 
theory is applied in a particular situation. In the domains 
we studied, we found many processes for ensuring analytic 
rigor (Zelik et al. 2007), and therefore worked to construct 
tools to support these existing practices by which models 
of human behavior could be validated. 
 The simplest form of collaboration for validation 
involved supporting a small group of model builders 
working collaboratively. The CIM’s interface not only 
allows for rapid specification and connection of factors, 
but also permits users in actively testing and refining their 
models. This allows for a group to immediately see the 

model that is created and then walk through test cases 
based on their own experiences to ensure model validity. 
We regularly incorporate collaborative communication 
tools (e.g., chat, email) into the design of our systems to 
help with situations where model constructors and 
evaluators are not co-located. We also have developed a 
version of our CIM that allows for analysts to 
simultaneously view and edit (via token-based 
collaboration) models. 
 We found that the ease with which users could create 
linkages while building models with the CIM could lead to 
logistical errors. Therefore, we introduced a tool that 
translates paths through the CIM into prose, aiding in 
validation and verification of the model either by the 
creator themselves or by a supervisor or domain expert. 
This tool is shown in Figure 7. 

 
Figure 7: A tool for user-review of logical pathways in a CIM-
based model 

 This verification and validation tool, in addition to 
relatively commonplace collaboration tools, supports a 
community of practice approach to model creation. This, in 
turn, supports the concept of user-adaptable modeling, 
where models developed and/or validated elsewhere in the 
community of practice can be manipulated by analysts to 
suit a particular situation or mission. The details of a model 
can be provided via the annotation tools, allowing model 
creators to share their reasoning about particular structures 
with model adaptors and therefore reducing the 
misapplication of models. Existing collaboration tools can 
be similarly used in a user-adaptive modeling approach to 
allow Behavioral Science experts or more experienced 
analysts to assess and refine the application of a model to a 
particular situation (i.e., to provide an independent 
assessment of application validity). 
 In both user-defined and user-adapted models, 
experimentation is a common method used by analysts to 
understand and trust the implications of a set of factors and 
relationships. During model creation, analysts will often 
experiment with permutations of evidence to confirm 
adherence to some hypothesis as method establishing 
correctness and completeness. While the verification and 
validation tool supports this behavior by clearly delineating 
which factors are related, active experimentation remains 
an important technique. To support this, the model 
development environment updates in real-time, allowing 
analysts to actively observe model behavior in reaction to 
changes in evidence. To further support this practice, we 
introduced a tool that allows users to monitor changes to 
the beliefs of factors in the network. Using this tool, 
analysts can set the current status of a model as a baseline. 
Deviations from this baseline are displayed as evidence on 
one or more nodes is altered. This belief monitor tool is 
shown in Figure 8. 
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Figure 8: A tool to view changes to the beliefs of factors in the 
model from a user-specified baseline 

Conclusions 
The concept of user-created or user-adapted models should 
necessarily be a source of concern for the predictive 
modeling community. As described above, there are a 
number of considerable challenges in bringing 
computationally or theoretically sophisticated modeling 
capabilities to operational user communities with little or 
no expertise in interacting directly with the underlying 
composition of a model. We have presented a set of tools 
and techniques that attempt to address these challenges, but 
recognize that a number of these challenges are a function 
of the community using the tools and their strategies for 
managing model validity. This end-user focus, derived 
from Cognitive System Engineering (or general 
requirements analysis) helps identify the bounds of 
application validity for a particular domain, and can 
provide scope for the construction of analysis or decision-
support tools. In our work, we found communities with 
existing practices for describing, qualifying, and validating 
models, which led us to develop tools to support these 
practices, rather than to the development of complex 
models. Given the support of these tools, we have found 
that analysts can successfully create and adapt predictive 
models, and that this can increase understanding and 
acceptance—and, therefore, the utility—of these models to 
analysts. 
 We anticipate future work to extend the approaches 
described above, particularly towards more complex 
modeling techniques (e.g., agent-based simulation). We 
also plan to explore the degree to which other 
computational methods are amenable to user expression of 
a model (e.g., leveraging research on how experts express 
their judgments (O'Hagan et al. 2006)). Finally, we plan to 
study the interaction between model complexity and 
perceived end-user validity in more detail, investigating 
trust and utility trade-offs as a function of risk/consequence 
management (e.g., low tolerance for less perceived validity 
in situations with significant adverse consequences). 

Acknowledgements 
The authors would like to express their deepest gratitude to 
the many dedicated analysts who we interviewed and 
observed and who must remain anonymous. The concepts 
and solutions presented here were funded across multiple 
efforts, including work performed, in some part, under 
Government Contract Nos. FA8650-04-C-6403, W15P7T-
06-C-C001, and FA8650-06-C-6731 by a number of 
scientists and engineers at Charles River Analytics, 
including Geoffrey Catto, Joseph Campolongo, Amanda 
Seybold, and Sofya Tenenbaum. 

References 
Campbell, G. & Bolton, A. (2005). HBR Validation: 
Integrating Lessons Learned From Multiple Academic 
Disciplines, Applied Communities, and the AMBR Project. 
In R. Pew & K. Gluck (Eds.), Modeling Human Behavior 
With Integrated Cognitive Architectures (pp. 365-395). 
Mahweh, NJ: Lawrence Earlbaum Associates. 
 
Cooke, N. M. (1994). Varieties of Knowledge Elicitation 
Techniques. International Journal of Human-Computer 
Studies, 41(6), 801-849. 
 
Gluck, K. & Pew, R. (2005). Modeling Human Behavior 
With Integrated Cognitive Architectures. Mahweh, NJ: 
Lawrence Erlbaum. 
 
Howard, R. & Matheson, J. (1984). Influence Diagrams. In 
R. Howard & J. Matheson (Eds.), Readings on the 
Principles and Applications For Decision Analysis (pp. 
719-762). Menlo Park, CA: Strategic Decisions Group. 
 
Munson, L. & Hulin, C. (2000). Examining the Fit 
Between Empirical Data and Theoretical Simulations. In 
D. Ilgen & C. Hulin (Eds.), Computational Modeling of 
Behavior in Organizations (pp. 69-83). Washington, D.C.: 
Am. Psychological Association. 
 
Norman, D. (1986). Cognitive Engineering. In D. Norman 
& S. Draper (Eds.), User-Centered System Design. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 
 
O'Hagan, A., Buck, C., Daneshkhah, A., Eiser, R., 
Garthwaite, P., et al. (2006). Uncertain Judgements: 
Eliciting Experts' Probabilities. New York: Wiley & Sons. 
 
Pearl, J. (2001). Causality: Models, Reasoning, and 
Inference. Cambridge University Press. 
 
Pfautz, J., Cox, Z., Koelle, D., Catto, G., Campolongo, J., 
& Roth, E. (2007). User-Centered Methods for Rapid 
Creation and Validation of Bayesian Networks. In 
Proceedings of 5th Bayesian Applications Workshop at 
Uncertainty in Artificial Intelligence (UAI '07). 
Vancouver, British Columbia. 

93



Pfautz, J., Fouse, A., von Wiegand, T., Roth, E., & Fichtl, 
T. (2006a). An Approach for Multimodal Display 
Development for UAV Systems. In Proceedings of 3rd 
Annual Workshop on Human Factors of Unmanned Aerial 
Vehicles. Mesa, Arizona. 
 
Pfautz, J. & Roth, E. (2006). Using Cognitive Engineering 
for System Design and Evaluation: A Visualization Aid for 
Stability and Support Operations. International Journal of 
Industrial Engineering, 36(5), 389-407. 
 
Pfautz, J., Roth, E., Bisantz, A., Fouse, A., Madden, S., & 
Fichtl, T. (2005). The Impact of Meta-Information on 
Decision-Making in Intelligence Operations. In 
Proceedings of Human Factors and Ergonomics Society 
Annual Meeting. Orlando, FL. 
 
Pfautz, J., Roth, E., Bisantz, A., Llinas, J., & Fouse, A. 
(2006b). The Role of Meta-Information in C2 Decision-
Support Systems. In Proceedings of In Proceedings of 
Command and Control Research and Technology 
Symposium. San Diego, CA. 
 
Pfautz, J., Roth, E., Powell, G., Fichtl, T., Guarino, S., & 
Carlson, E. (2006c). Cognitive Complexities Impacting 
Army Intelligence Analysis. In Proceedings of Human 
Factors and Ergonomics Society 50th Annual Meeting. San 
Francisco, California. 
 
Potter, S. S., Roth, E. M., Woods, D. D., & Elm, W. C. 
(2000). Bootstrapping Multiple Converging Cognitive 
Task Analysis Techniques for System Design. In Chipman, 
Shalin, & Schraagen (Eds.), Cognitive Task Analysis (pp. 
317-340). New Jersey: Lawrence Erlbaum. 
 
Rimey, R. & Brown, C. (1994). Control of Selective 
Perception Using Bayes Nets and Decision Theory. 
International Journal of Computer Vision, 12(2-3), 173-
207. 
 
Rosen, J. & Smith, W. (1996). Influence Net Modeling 
With Causal Strengths: An Evolutionary Approach. In 
Proceedings of Command and Control Research and 
Technology Symposium. 
 
Roth, E. M., Patterson, E. S., & Mumaw, R. J. (2002). 
Cognitive Engineering: Issues in User-Centered System 
Design. In J. J. Marciniak (Ed.), Encyclopedia of Software 
Engineering (Second ed.), (pp. 163-179). New York: 
Wiley Interscience, John Wiley and Sons. 
 
Schraagen, J. M. C., Chipman, S. F., & Shalin, V. L. 
(2000). Introduction to Cognitive Task Analysis. In J. M. 
C. Schraagen, S. F. Chipman, & V. L. Shalin (Eds.), 
Cognitive Task Analysis (pp. 3-24). Mahwah, NJ: 
Lawrence Erlbaum Associates. 
 

Tor, K., Ritter, F., & Haynes, S. (2004). CaDaDis: A Tool 
for Displaying the Behavior of Cognitive Models and 
Agents. In Proceedings of Behavior Representation in 
Modeling and Simulation. 
 
U.S. Department of Defense (2001). VV&A 
Recommended Practices Guide Glossary. Washington, 
D.C.: Defense Modeling and Simulation Office. 
 
Vicente, K. J. (1999). Cognitive Work Analysis: Towards 
Safe, Productive, and Healthy Computer-Based Work. 
Mahwah, NJ: Lawrence Erlbaum Associates. 
 
Woods, D. D. & Roth, E. M. (1988). Cognitive Systems 
Engineering. In M. Helander (Ed.), Handbook of Human-
Computer Interaction. New York: North-Holland. 
 
Young, A. & Harper, K. A. (2005). TRACE: An Ontology-
Based Approach to Generic Traceability Tools for Human 
Behavior Model. In Proceedings of 2005 Behavior 
Representation in Modeling and Simulation. Universal 
City, CA: DMSO. 
 
Zelik, D., Patterson, E., & Woods, D. (2007). Judging 
Sufficiency: How Professional Intelligence Analysts 
Assess Analytical Rigor. In Proceedings of Human Factors 
and Ergonomics Society 51st Annual Meeting. 

Author Biographies 
JONATHAN PFAUTZ is a Principal Scientist and Vice 
President of the Cognitive Systems Division at Charles River 
Analytics Inc. in Cambridge, MA. His major research interests 
include social network analysis, individual differences, cultural 
anthropology, intelligence analysis, human-computer interfaces, 
and cognitive task analysis-based system development for a 
variety of military and non-military domains. He received his 
Ph.D. from Cambridge University. 

ERIC CARLSON is a Scientist at Charles River Analytics Inc. 
His research interests include designing human-in-the-loop 
automation, information and knowledge representation, human 
behavior modeling, social network analysis, and multi-agent 
systems. Mr. Carlson received his B.S. in Cognitive Science from 
University of California, San Diego. 

DAVID KOELLE is a Senior Software Engineer at Charles 
River Analytics Inc. He is the lead engineer on a number of 
efforts to create intelligence analysis tools for describing and 
forecasting socio-cultural influences on human behavior. Mr. 
Koelle received his B.S. in Computer Science from Worcester 
Polytechnic Institute. 

EMILIE ROTH is a Cognitive Psychologist, Human Factors 
Engineer, and Founder of Roth Cognitive Engineering in Boston, 
MA. She is an expert in cognitive task analysis and naturalistic 
decision making in dynamic high-risk environments and is 
considered a pioneer in the field of Cognitive Systems 
Engineering. She received her Ph.D. from University of Illinois at 
Urbana-Champaign. 

94




