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Abstract

This paper presents an algorithm for the reconstruction of
a three-dimensional object from a single two-dimensional
freehand sketch composed of strokes connected at vertices.
The proposed algorithm uses the angular distribution of the
strokes in the sketch plane to determine one or more or-
thogonal three-dimensional axis systems whose projection
correlates with observed stroke orientations, and then uses
these axis systems to calculate a plausible depth for each
vertex to reconstruct a 3D object from the sketch. The pro-
posed approach is effective for reconstructing objects that are
mostly comprised of orthogonal features, as commonly found
in many engineering-oriented sketches. We demonstrate an
implementation of the algorithm using Levenberg-Marquardt
optimization that permits reconstruction of a typical object
with over 100 strokes in interactive time.

I ntroduction

Freehand sketches — informal drawings of shapes using lines
and curves — are often the simplest, most effective way of
communicating shape information. A recent proliferation of
pen-based hardware and software operating at high sampling
rates (Berger 2002) has made it possible for natural sketch-
ing to be done with pen-based digital devices. Of particular
interest to engineers and designers are 2D line drawings of
3D objects that represent projections of 3D objects onto a
2D viewing plane. Though human observers are able to re-
construct unambiguous 3D shapes from the 2D sketch of a
single view without additional information, CAD systems
lack this ability entirely.

The process of reconstructing a 3D object from a 2D
sketch specified by a set of strokes connected at various ver-
tices requires that depth values be assigned to each vertex.
Any arbitrary set of depths assigned to the vertices of the
graph constitutes a 3D configuration whose projection will
match the given sketch exactly. In principle, each such as-
signment yields a valid candidate 3D reconstruction.

The reconstruction process itself can be computationally
intensive, and many reconstruction solutions do not take into
account the inherent consistency of sketches of 3D objects.
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Strong trends in the angular direction of the 2D strokes that
make up a sketch can easily be identified by a human ob-
server, and suggest a considerable amount about the shape
of the associated 3D object. This paper presents a fast algo-
rithm that reconstructs a 3D object from freehand line sketch
by exploiting these angular trends.

Previous work

Several systems (e.g. (Stahovich, Davis, & Schrobe 1998;
Davis 2002)) have recently been constructed with sketch-
based interfaces. The reconstruction of 3D shapes from 2D
sketches has also been the focus of much research. Line la-
belling approaches (Huffman 1971; Clowes 1971) classify
each line as convex, concave or occluding edge without ex-
plicitly reconstructing 3D shapes. The methods in (Mack-
worth 1973; Wei 1987) construct relationships between the
slope of sketch lines and the gradients of the associated 3D
faces in an attempt to constrain the number of possible in-
terpretations. Interactive methods, in which 3D objects are
incrementally constructed by attaching facets sketched by
the user in 2D, are specified in (Lamb & Bandopdhay 1990;
Fukui 1998). A gesture-based system for interactively con-
structing 3D rectilinear models is given in (Zeleznik, Hern-
don, & Hughes 1996); another such interface for the interac-
tive construction of free-form 3D solids is given in (lgarashi,
Matsuoka, & Tanaka 1999). Other approaches to the recon-
struction problem require the assumption that 3D elements
in a scene are specified entirely by known primitives (Wang
& Grinstein 1989). Though restrictive, this allows the re-
constructed scene to be specified with a convenient solid ge-
ometry.

Optimization-based reconstruction methods determine
depth values as the solution that optimizes a target func-
tion. These methods are more general than the approaches
above and can be used to reconstruct relatively complex
3D objects. The relationship of a 2D sketch to an under-
lying 3D object can be characterised by systems of linear
equations for which the existence of solutions is a sufficient
criterion for reconstruction. Linear programming optimiza-
tion techniques may provide these solutions (Sugihara 1986;
Grimstead & Martin 1995). Another approach is taken in
(Lipson & Shpitlani 1996), in which 2D sketches are con-
verted to line and vertex graphs, which are analyzed for reg-
ularities such as parallelism, perpendicularity and symme-



try. Regularities in the 2D sketch plane are then weighted
according to the probability that they correspond to 3D ge-
ometrical relationships, and summed to produce an overall
compliance function that estimates how well the 3D con-
struction conforms to the regularities in the 2D sketch. Re-
construction proceeds by optimizing this compliance func-
tion. There are also statistical approaches to optimization-
based reconstruction (e.g. (Lipson & Shpitlani 2000; 2002)).
The correlation between the 2D angles formed by lines in the
sketch plane and the angle between these lines in 3D space
are learned from a large number of computer-generated 3D
shapes and the corresponding projections of these shapes
onto a viewing plane. These 2D-3D geometric correlations
are then used to determine the most likely 3D shape corre-
sponding to a set of 2D angles, by optimizing over possible
assignments of depth values.

While flexible, optimization-based methods suffer from
two drawbacks:

1. The optimization surface itself may contain many local
minima that make it difficult to determine a global mini-
mum.

2. The computational complexity of the optimization pro-
cess is generally polynomial in the number of vertices and
lines in a sketch.

This paper presents a novel approach to optimization-based
reconstruction that avoids these issues in cases where the
sketch is relatively structured. The proposed method uses
the angular distribution of all strokes in the sketch to de-
termine a three-dimensional main axis that is then used to
calculate the missing depth values. The derivative of the op-
timization function used to determine the main axis can be
expressed analytically, allowing the use of fast optimization
methods. The sketch’s depth values are the determined using
the connectivity of the graph specifying the sketch.

Sketch Reconstruction

The reconstruction process takes as input a 2D sketch com-
posed of strokes connected at vertices that represents the 2D
orthographic projection of a 3D object onto the plane z = 0.
The 2D sketch can be interpreted as a connectivity graph
with edges specified by the strokes and vertices specified by
the sketch vertices. It is assumed that the graph is connected
e.g. that a path can be constructed from each vertex to every
other vertex. It is further assumed that none of the vertices
or strokes in the sketch completely obscure other elements
of the same kind, and that at least one vertex is connected to
three strokes. These assumptions are generally true for all
2D projections of single 3D objects. Since the (z,y) coor-
dinates of each vertex are given in the sketch, reconstructing
a 3D object requires assigning a z coordinate (also termed
the depth value) to each vertex, subject to constraints on the
characteristics of the resulting 3D object.

Given a 2D sketch with the criterion specified above, the
proposed reconstruction algorithm can be summarised as
follows:

1. Select all strokes in the 2D sketch

2. Build a histogram of the angular distribution of the se-
lected strokes in the sketch plane

3. Select the vertex where the angular distribution of the con-
nected strokes has the highest correlation with the his-
togram of Step 2

4. Assign weights to all strokes as a function of the strokes
attached to the selected vertex

5. Generate a maximum weight spanning tree (MST) for the
graph and select the strokes making up the MST

6. If the strokes making up the MST differ from those previ-
ously selected, go to Step 2

7. Set the depth of the selected vertex to 0

8. Determine the depth of the other endpoints of the strokes
attached to the selected vertex to reconstruct an axis sys-
tem

9. Determine the depth values of all other vertices in the
sketch using the reconstruct axis system and the MST

The algorithm has three major components: the construc-
tion of an angular distribution histogram of a set of strokes
and the selection of a representative vertex (Steps 2 and 3),
the assignment of a weights to each stroke and the construc-
tion of a maximum spanning tree for the graph (Steps 4 and
5), and the reconstruction of a 3D axis system and the sub-
sequent determination of the depth values of the sketch ver-
tices. Each of these components is discussed in detail below.
The problem of reconstructing sketches with more than one
primary axis is also addressed.

Many alternative methods of constructing the 3D axis
system are possible within the ADG/MST formulation pre-
sented above. For example, rather than select an axis ver-
tex as in step 2, an alternative approach (Lipson & Shpitlani
1996) is to construct an independent, unattached 3D axis
system at this step using a more general optimzation-based
procedure. This approach produces an orthogonal axis sys-
tem except in degenerate cases, but is more computationally
intensive than the algorithm presented in this paper.

Angular Distribution Graphs

Since orthogonality is the prevailing trend in most engineer-
ing drawings, and the easiest to identify, a statistical analysis
of the direction of strokes in the sketch is performed to deter-
mine whether these are consistent with the projections from
an underlying orthogonal axis system. The Angular Distri-
bution Graph (ADG) for a set of strokes is a discrete his-
togram of the 2D angles of the strokes relative to the sketch
plane.

Each angle is taken to be the mean of a Gaussian distribu-
tion with a fixed variance to reduce sensitivity to noise; the
resulting distribution is then sampled and added to the his-
togram. Peaks in the ADG show prevailing sketch angles.
The ADGs of most polyhedral 3D objects have clear peaks.
The reconstructed objects axis system should thus have a
spatial orientation such that it projects onto the sketch plane
at angles corresponding to maxima in the ADG. Figure 1
shows a 2D sketch and the ADG of all strokes.
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Figure 1: (a) A 2D sketch with a single distinct axis system
(b) its Angular Distribution Graph (ADG)

The local ADG of a vertex is the ADG of all strokes at-
tached to the vertex.The first step in the reconstruction pro-
cess is to select a vertex whose local ADG is most similar
to the ADG of a representative set of strokes. The similarity
between any two discrete ADGs can be measured using lin-
ear correlation. The vertex whose local ADG has the highest
correlation with the ADG of the representative set of strokes
is chosen to be the origin of an axis system used to recon-
struct the 3D object. The three strokes attached to this vertex
represent the projection of the axes onto the sketch plane.

Determining a Maximum Spanning Tree

The depth of each vertex is determined by the projection of
the connected strokes onto the main axis system. Given that
the graph is connected, it is possible to construct a spanning
tree that connects each vertex to the axis origin. Depth val-
ues are then propagated along this tree, beginning at the axis
endpoints. Since strokes whose direction are not parallel
to one of the reconstructed axes cannot be reliably recon-
structed, these must be avoided when constructing the span-
ning tree. The weight assigned to the vector v,, = (2, yn)

underlying stroke n is given by t
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where {v,1, Va2, Va3 } are the 2D vectors underlying the
strokes in the axis system. A Maximum weight Spanning
Tree (MST) constructed with these weights connects all of
the vertices in the sketch while avoiding strokes that are least
similar to the sketch ADG,; using it to determine the depth
values of each vertex therefore maximizes the regularity of
the reconstructed 3D object.

The maximum weight spanning tree is determined using
Prim’s algorithm (Cormen, Leiserson, & Rivest 1999). The
algorithm begins using only the main axis vertex and the
projected axes. The tree is then iteratively expanded by se-
lecting the connected stroke with the highest weight. The
representative ADG and MST for the sketch are constructed
iteratively (Steps 2 to 5) in order to minimize the effects of
atypical strokes. If this process does not converge on asingle
MST after a several iterations, the 2D sketch does is consid-
ered not to have a single underlying axis system. A method
for determining multiple underlying axis systems is outlined
below. Sketches without one or more underlying axis sys-
tems cannot be reconstructed with the proposed method.

Reconstruction of the Main Axis

The origin of the main axis system is assumed to have a
depth of zero. The depth of the three attached endpoints
(x1,y1,91)s (T2,y2,y2) and (zs,ys,ys) at the end of each
axis stroke must be determined in order to reconstruct the
main axis system. The x and y values are specified in the
sketch. The values of z1, z, and z3 are determined using an
optimization-based approach under the assumption that the
axis strokes are perpendicular in 3D space. The optimization
cost is a function of z1, 29, and z3:
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where p,, is a three-dimensional vector representing axis
stroke n, L,, is the vector magnitude of p,,, and r,,,, is the
ratio of the length of strokes m and n as measured in the
sketch plane. The weighting factor w allows a tradeoff be-
tween the angular and length constraints.

Since the vectors in the main axis are assumed to be per-
pendicular to one another in 3D space, the angle between
them should be 90°; the difference between the ratio of their
lengths in the sketch plane and the ratio of their lengthen
3D space should be 0. The optimization goal is therefore
to minimize the cost function f(z1, 22, z3). The minimizing
parameters are given by the solution to the system equation

(JTI + AD)ox = J%e (3)



where I is the identity matrix, A is an optimization parameter
and J is the Jacobian matrix given by the partial derivatives
of the error equation about z1, z5, and zs, respectively. The
Jacobian matrix is given by
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The Levenberg-Marquardt method (Heath 2002) yields a
fast solution to this nonlinear optimization problem. The
method is an iterative variation of the Newton method in
nonlinear estimation. The value X is initialized to a small
value. If the value of e obtained for a particular 6x reduces
the error, x is incremented to x + dx and A is divided by 2.
On the other hand, if the e increases, A is multiplied by 2
and the augmented normal equations are solved again until
an increment that reduces the error is obtained.

Vertex Depth Calculation

The depth of each vertex in the sketch is determined by the
propagating the depth of the endpoints of the axis strokes
to each connected vertex, using the reconstructed axis sys-
tem and the MST. The value z, of a vertex (z,, yp, 2,) that
is connected to an already reconstructed vertex in the MST
is determined by first selecting the axis whose projection

- - - - rnra’_’_ynya
v, maximizes the 2D projection Ry e and then
maximizing solving the 3D projection
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for z,,. This equation can also be expressed as a second order
polynomial of the form Azg + Bz,+C = 0. In cases where
the 2D projection of the vector onto the chosen axis is not
equal to 1, no analytic solution will exist; the reconstructed
depth is the value that minimizes the second order polyno-
mial equation. The above computation is then recursively
applied as specified by the connectivity of the MST.

Multiple Axis Sketches

The reconstruction algorithm described above assumes that
the sketch has a single underlying axis system. If the sketch
was drawn using two or more distinct axis systems, how-
ever, these must be handled independently. A separate axis
selection step was therefore added to the reconstruction al-
gorithm. In the modified algorithm, the axis system deter-
mined in Step 3 is used to construct a local MST of con-
nected strokes rooted at the axis origin. Connected strokes
are added to the MST if the cumulative ADG of the axis
system and the candidate stroke does not contain more than
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Figure 2: (a) A 2D sketch with two distinct axis systems and
(b) its Angular Distribution Graph (ADG) (c) The resulting
Maximum Spanning Trees (shown in bold) and axis origins

three peaks. The set of strokes in the MST and disjoint set
of all other strokes are are recursively split until each vertex
is assigned to at one or more local MSTSs.

Figure 2 (a) shows a sketch with two axis systems. The

sketch ADG shown in Figure 2 (b) has five distinct peaks,
as opposed to the three found in the ADGs of sketches with



w 0 0.001 0.01 0.1 1
0 89.90° | 89.93° | 88.40° | 88.3° | 86.10°
Miength 1.75 1.53 1.32 1.15 1.03

Table 1: Mean axis angular error (ug,,,) and mean length
ratios (Ltengtr) @s a function of w measured over all three
axes for two axes reconstructions.

a single axis system such as Figure 1. Figure 2 (c) shows
the two axis systems isolated by the algorithm, and the the
local MST attached to each one. All vertices belonging to a
single MST are reconstructed separately, then translated so
that they are aligned at vertices belonging to more than one
local MST.

Results

The characteristics of the reconstructed shape are deter-
mined by those of the main axis systems. An analysis of
the reconstruction of a single main axis with coordinates
(100, 0, 21), (0,90, z3), (20,20, z3) is shown in Figure 3.
Small random values are initially assigned to z1, 23, 23, and
all constants in Equation 2 are initially set to 1. The re-
constructed values are z; = —17.52, z = —7.37 and
z3 = 112.98, respectively. The final value of the optimiza-
tion function was very close to 0, indicating that the recon-
structed axes were perpendicular, and the ratio of their pro-
jected lengths was equal to the ratio of their lengths. Con-
vergence occurred after approximately 25 iterations.

Table 1 shows the mean angle between the reconstructed
axes (in degrees) and the mean ratio between the longest and
shortest reconstructed axes as a function of the weighting
term w, measured over the reconstruction of two different
main axis systems with r,, = 1Vn in both cases. The rela-
tive importance of length ratios in the optimization function
increases as w increases, while as the relative importance of
the angular terms decreases. The mean length ratio therefore
decreases to 1 as w increases, while the axes shift away from
perpendicularity. Because of its effect on the relative length
ratios, the value of w can be used to determine the elonga-
tion of the reconstructed 3D shape, and should generally be
defined by the user.

Example 2D reconstructions are shown in Figure 4. The
reconstruction process for these shapes finished in approxi-
mately 0.1 sec on a Pentium-1V tablet PC. Sketches of sev-
eral hundred strokes were reconstructed in less than 1 sec-
ond. The proposed algorithm is suited to all sketches com-
posed of strokes with limited deviations from the underly-
ing axis systems. Further work will center on the develop-
ment of algorithms for reconstructing plausible shapes when
strokes exhibit large deviations from the underlying axis sys-
tems, as well as the reconstruction of curved strokes, and
strokes not attached to the main object.

Conclusions

This paper has presented a fast algorithm for reconstructing
a 3D object from a 2D sketch, assuming that the object was
constructed with an underlying axis system. The algorithm

uses the angular distribution of the strokes in the sketch to
reconstruct a 3D axis system given by a three-connected
sketch vertex and the attached strokes. The connectivity of
the strokes in the sketch is then used to assign depth values
to all of the sketch vertices. A method for determining mul-
tiple axis systems was also presented. The algorithm can
reconstruct complex sketches of 100 or more strokes in near
interactive time. Further research will center on extensions
of the algorithm to irregular objects and curved lines.
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Figure 4: Reconstruction of two sketches. (a) Free hand sketches(b) Extraction of main axis systems and Maximum Spanning
Trees (MST); A small circle shows the origin of the main axis system located on the most prominent vertex junction. The MST
is shown in bold strokes. (c) Rotated view s of the original shapes



