
Recognition and Beautification of Multi-Stroke Symbols in Digital Ink

Heloise Hwawen Hse, A. Richard Newton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, U.S.A.
{hwawen, newton}@eecs.berkeley.edu

Abstract
Sketch-based user interfaces provide a more direct and
convenient way for interacting with computers, especially
for performing graphical tasks. Most computer programs
provide a mouse-and-palette based user interface for editing
shapes which can be cumbersome to use. In order to draw a
shape, a user must first select the desired shape from a menu
or from a hierarchy of menus, and then make a series of
adjustments to the shape (i.e. rotation, scaling,
horizontal/vertical flip, etc.). A more convenient approach
to this task is to allow the user to sketch the desired shape
directly and then replace it with a ‘beautified’ symbol with
the correct transformation, all in one step. In this paper, we
present a complete system for recognizing and beautifying
sketched symbols. We have implemented this system as an
interface to the Microsoft PowerPoint application to enable
a user to sketch symbols directly onto a presentation slide.

Introduction
Sketching is a simple and natural mode of expression. It is
especially desirable for conceptual design, both for
personal work and in a collaborative environment. With a
sketch-based user interface (UI), one can experience the
freedom of sketching on paper and yet gain the benefits of
an electronic design tool (Hearst et al. 1998). A sketch-
based UI is especially suitable for communicating
graphical ideas to computers (Igarashi 2003). The graphic
utilities in most existing applications (e.g. Microsoft
PowerPoint, Visio, Adobe Illustrator, etc.) are mouse-and-
palette based, where a user is required to select a desired
item from a tool palette or access it through a hierarchy of
menus. This type of deep modal interaction is very
controlling, because the user must tell the program both
explicitly and precisely what to do. In fact, it is similar to
typing commands in a command-line user interface, except
the user is now specifying commands through buttons and
menus (Igarashi 2003). The advantage is that the
interaction leaves no room for ambiguity and therefore less

likely to produce errors, but the disadvantage is that the
process can be cumbersome and tedious for the user. For
example, in order to draw a simple parallelogram in
PowerPoint 2003, like the one in Figure 1, one would need
to perform the following steps:

1. select AutoShapes menu from the Drawing toolbar
2. select Basic Shapes menu
3. click on parallelogram
4. click and drag the shape to the desired size on the slide
5. flip the parallelogram either horizontally or vertically

Once these tasks are completed, one may still need to
reposition the shape. If rotation is desired, an additional
step is also required.

Figure 1. A parallelogram created in PowerPoint using
a menu-based interface with a horizontal flip applied.

If the user can sketch the shape directly the way he or

she would like it to appear, and the sketched shape can be
‘neatened’ into the corresponding PowerPoint or other
application-specific object, the procedure of creating a
shape would be far more straightforward, just like drawing
with pen and paper. With such an interface, not only is the
simplicity of pen and paper preserved, but also the
resulting sketch can be interpreted with full and direct
knowledge of intent, thus realizing the full benefit of an
electronic tool. Of course, the ink can also be left
unformatted to facilitate further design exploration if
desired (Landay et al. 2002).

In this paper, we describe a collection of algorithms we
have developed that facilitate a pen-and-paper interface for
creating graphic symbols. We have developed a system,
HHreco, which recognizes and beautifies a sketched
symbol (Hse 2004). This system can be integrated easily

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

into an existing application for application-specific
beautification. We have chosen PowerPoint as our initial
target application and have interfaced HHreco to
PowerPoint 2003 to create a sketch-based user interface for
sketching and beautifying symbols on a presentation slide.

System Architecture
The steps that take a sketched shape to its beautified
version include recognition, fragmentation, and
beautification (see Figure 2). More specifically, once a
user has sketched a symbol using one or more pen strokes,
the strokes are passed to the recognition engine to be
recognized. The symbol is then structurally decomposed
into its primitive elements, line segments and elliptical
arcs. Based on the prediction of the recognizer, the symbol
can be accurately decomposed using a template based
approach. From the structural elements, geometric
properties are computed to derive the adjustment
parameters for appropriate beautification in PowerPoint.

Figure 2. The overall flow of the symbol recognition
and beautification system.

Data Acquisition
The data acquisition process has been presented in (Hse
and Newton 2004) and is summarized here for
completeness. Since there are no publicly available
benchmark for sketched symbols, we have created a
symbol database by gathering data from different people.
The target shapes were chosen based upon the applications
of interest (e.g. a slide drawing program like Microsoft
PowerPoint, a UML diagram editor, or an electrical
schematic editing tool) and include often-used basic shapes
and shapes with different geometric structures, including
shapes with lines, with curves, with mixed lines and

curves, and shapes with and without self-intersection. Of
course, other shapes can be added and learned by the
system, if desired.

To date, we have gathered data from 19 people. Each
participant was asked to sketch 30 examples for each of the
13 symbols shown in Figure 3. The database contains a
total of 7,410 examples overall and 570 examples per
symbol. The data was collected using the Wacom
Graphire2 Pen and Tablet.

Figure 3. The target symbol set.

Symbol
Recognition

Strokes

Segmentation

Beautification

PowerPoint
Symbol

Symbol Recognition
In order for users of a system to sketch naturally, the
recognition system should not place constraints on how the
user can draw a symbol in order for it to be recognized
accurately. The user should be able to draw a shape in the
same way he or she would on a piece of paper without
having to worry about where to start a stroke, how many
strokes to use, in what order to draw the strokes, etc. For
the class of applications we are interested in, the
recognition should be independent of stroke-order, -
number, and -direction, as well as invariant to rotation,
scaling, translation, and reflection of symbols. Based on
these considerations, we evaluated various types of
moments which have been used in the image recognition
community and a variety of different machine learning
techniques. We selected Zernike moments as the key
abstraction for the feature descriptors of symbols for three
main reasons: they have been shown effective in image
representation (Teh and Chin 1988), the magnitudes of the
Zernike moments are invariant to rotation and reflection
(Khotanzad and Hong 1990; Bailey and Srinath 1996), and
they can be constructed easily to an arbitrary order,
facilitating the construction of the feature set (Teh and
Chin 1988). Through our experiments, we found that
using a feature set consisting of feature values ranging
from moment order 2 and up to order 8 is sufficient for the
recognition problem. Using higher-order moments does
not yield significant improvement in the recognition rate
(<1%); in some cases the accuracy rate decreases since
higher order moments are more susceptible to noise (Teh

and Chin 1988). With a Support Vector Machine (SVM)
classifier using a radial basis kernel (Vapnik 1995), the
recognition rate reaches 97% in both writer-dependent and
writer-independent tests. More detailed descriptions of the
method and the experimental results have been published
elsewhere (Hse and Newton 2004).

Symbol Segmentation
Once a sketched symbol has been recognized, structural
information is needed to determine the geometric
properties of the symbol in order to perform meaningful
beautification. For example, the orientation of the symbol,
the width and height of the symbol, the sides that are
parallel or perpendicular, the sides that are equal in length,
etc. This structural information is obtained by segmenting
the symbol into a set of basis elements. In our system, the
basis set consists of straight line segments (L) and elliptical
arcs (E) (Hse, Shilman, and Newton 2004). They are
simple and minimal bases that we have found to best
represent the family of symbols considered in this work.

Based on the recognition result for a sketched symbol,
the appropriate segmentation template can be determined.
A template description consists of the number of E’s and
the number of L’s. The segmentation problem is set up as
an optimization problem in which the cost function is the
fit error and the constraint is the symbol template. Based
upon the template description of a symbol, the algorithm
identifies the globally optimal set of breakpoints that
minimizes the fit error for the symbol. Using a dynamic
programming approach, the optimal solution can be
obtained in polynomial time (Hse, Shilman, and Newton
2004).

This algorithm is very robust in determining breakpoints
that closely match a human’s natural perception. In
addition to finding the breakpoints, the fitted segments
produced by the algorithm can serve as the basis for
beautification of a symbol. The symbol can be further
beautified based on the geometric properties derived from
the segments, and this procedure is elaborated in the next
section. For complex symbols with mixed line segments
and elliptical arcs such as arches, cylinders, and callouts,
the strokes are filtered to reduce the number of data points
in order to expedite the segmentation process.

Symbol Beautification

For symbols that have been recognized as polygons, the
sketched strokes are ordered by endpoint proximity right
before the segmentation routine is called. The ordering of
the sketched strokes allows the resulting fitted segments to
be arranged in a cyclic order which eases the processing
and the analysis steps that are to follow. To instantiate one

of the PowerPoint shapes in Figure 3, four parameters must
be specified, namely the x and y coordinates of the upper-
left corner of the shape, and the width and height of the
shape. The shape can only be created initially in the
upright position. Depending on the sketched symbol,
additional features such as rotation, flip, and other
adjustments will have to be applied after the symbol has
been instantiated. A rotation must be performed with
respect to the center of the shape’s bounding box so as to
avoid shifting out of the correct position after the rotation.

The upper, left corner that is needed to instantiate a
symbol is not necessarily the upper, left corner of the
sketched symbol’s bounding box because the sketched
symbol may not be in an upright orientation. The
bounding box from the PowerPoint ink shape is the
smallest upright rectangle that encloses the ink strokes, but
this bounding box is not the “desired” bounding box
adapted to the orientation of the shape (see Figure 4).
Therefore, the upper, left corner for instantiating a new
symbol has to be derived carefully from the fitted segments
such that after the rotation transform, the symbol will align
with the sketched shape.

C’
C

A

(a) (b)

Figure 4. A sketched arch. (a) The bounding box given
by the PowerPoint ink object. (b) The desired bounding
box is shown with a thin solid line. “C” is the
coordinate needed to instantiate the PowerPoint symbol
to ensure the correct alignment after the rotation
transformation has been applied.

The extent to which beautification can be performed is

in part limited by the available support of an application.
For example, it is not possible to create an asymmetric
trapezoid in PowerPoint, and therefore a sketched
asymmetric trapezoid will be beautified into the closest
symmetric trapezoid.

A crucial procedure in the beautification process is to
identify the correct segment correspondence between a
PowerPoint symbol and a sketched symbol because this
directly affects the correctness of the transformation
parameters calculated. The challenging factor lies in that a
sketched symbol is not always drawn in the upright
position, so the alignment of the segments in a sketched
symbol and a PowerPoint symbol has to be derived

carefully. The transformation parameters are calculated
from the fitting segments instead of the original strokes
because the fitting segments tend to carry more stable
information, whereas sketched strokes contain more noise
and irregularities.

In Figures 6-18, we refer to the pointing end of a
segment as the head, H, and the other end as the tail, T (see
Figure 5).

Figure 5. The head and tail of a directed segment.

Rectangles Since the line segments have been ordered, it
is safe to assume that the first and the third segments are
parallel, and the second and the fourth segments are
parallel. We computed the width of the rectangle from
segments 1 and 3, and the height from segments 2 and 4.
Of course it could be the other way around, however the
rotation transform would be different. The object is
snapped to the closest axis (vertical or horizontal) if the
orientation is within ±10º of the axis (Figure 6).

Figure 6. (a) Sketched rectangle. (b) Beautified
rectangle. (c) Graphical description of the parameters.

Parallelograms The line segments are ordered
consecutively and the traversal starts with a segment that
forms an acute angle with the next segment. This specific
arrangement makes it easier to calculate the degree of
rotation and whether or not an instantiated PowerPoint
parallelogram must be flipped. If the traversal is
counterclockwise, then a horizontal flip is required (see
Figure 7). The averaged length of segments 1 and 3 is
used to adjust the shear parameter of the parallelogram.

Figure 7. (a) Sketched parallelogram. (b) Beautified
parallelogram. (c) Graphical description of the

parameters.

Trapezoids The pair of parallel sides are determined by
computing the dot products of the opposing segments.
Next, the top (short side) and the bottom (long side) of the

trapezoid are identified and then the segments are arranged
in clockwise order starting from the top segment. Then the
rotation angle is computed and snapped to the closest
horizontal or vertical axis if the angle is within ±10º of the
axis. (see Figure 8)

 (a) (b)

1

2

3

4

(c)

h

w H2T4
headtail

Figure 8. (a) Sketched trapezoid. (b) Beautified
trapezoid. (c) Graphical description of the parameters.

Triangles Even though only two types of triangles are
supported directly in PowerPoint, right triangles and
isosceles triangles, our system supports right triangle,
isosceles triangles, equilateral triangles, and other
triangles as well. If one of the angles in a sketched triangle
is close to 90º (±10º), it is beautified into a right triangle.
Then the line segments are ordered clockwise starting from
the base segment going toward the right angle (see Figure
9). If two sides of a sketched triangle are close in length, it
is beautified into an isosceles triangle. Starting from the
base of the isosceles triangle, the line segments are ordered
clockwise. Of course if an isosceles triangle contains a
right angle, it will be beautified accordingly. The width,
height, and the rotation of the triangle can then be easily
computed with the base segment anchored. If all three
sides of the triangles are about equal, it is beautified into an
equilateral triangle. A triangle that does not fall into any of
these special categories is handled by fixing the longest
side as the base, and then creating a PowerPoint isosceles
triangle and adjusting its shear parameter to fit the
ketched triangle.

(a) (b)

1

2

3

4

(c)

h
w

s

(a) (b)
1

2 3

(c)

h

w

(a) (b)

1

2

3

4

(c)

h

w

H1

H3

Figure 9. (a) Sketched triangle with a right angle. (b)
Beautified right triangle. (c) Right triangle

parameters.

Regular Pentagons The width of a pentagon is the
distance between H1 and T5 (see Figure 10). To determine
the rotation angle of a pentagon, first, the intersection (P)
between the first and the last line segments of the pentagon
is calculated. Next, a vector (V) going from the center of
the pentagon to P is formed. Then the rotation angle is
determined from the pointing direction of V.

(a) (b) (c)

P1

P2
3

1

2

5

(a) (b)

4

(c)

w

P

V H1T5

Figure 13. (a) Sketched heart. (b) Beautified heart. (c)
Graphical description of the parameters. Figure 10. (a) Sketched pentagon. (b) Beautified

pentagon. (c) Graphical description of the parameters. Moons The rotation angle of the moon is determined by
the vector that points toward the concave opening of the
moon. This vector (V) is obtained by taking the midpoint
of the outer elliptical arc and the midpoint of the segment
formed by the arc’s endpoints. The magnitude of this
vector is the width of the moon. To adjust the thickness
parameter, the distance (D) between the midpoints of the
two elliptical arcs is computed, and then the ratio of D and
the width of the moon are calculated. (see Figure 14)

Regular Hexagons Since the fitted line segments of a
sketched hexagon have been ordered consecutively, the
width of the hexagon is calculated by taking the distance
between H2 and T6. The rotation vector (V) is determined
by the intersection of segments 2 and 6 and the center of
the hexagon. (see Figure 11)

1
2

3

4

5

6 V

(a) (b) (c)

H2T6

 (a) (b) (c)

V
hD

w

Figure 11. (a) Sketched hexagon with fitted line
segments ordered consecutively. (b) Beautified

hexagon. (c) Graphical description of the parameters.

Figure 14. (a) Sketched moon. (b) Beautified moon. (c)
Graphical description of the parameters.

Arches (Block arcs) The rotation angle is determined by
the vector (V) from the midpoint of the outer elliptical arc
to the midpoint of the segment formed by the endpoints of
the inner elliptical arc. The height to create the
PowerPoint arch symbol is twice the magnitude of V, and
the width of the arch is the length of the segment formed
by the endpoints of the outer elliptical arc. (see Figure 15)

Ellipses From the elliptical fitting, the major and minor
axes and their magnitudes are computed. Using the major
axis, the orientation of the sketched ellipse is determined,
and the appropriate rotation angle is applied to a

owerPoint elliptical symbol. (see Figure 12) P

(a) (b) (c)

hw

(a) (b) (c)

w

V

h

Figure 12. (a) Sketched ellipse. (b) Beautified ellipse.
(c) Graphical description of the parameters.

Hearts The rotation angle of a heart shape is calculated
from the major axes of the two fitting elliptical arcs. First,
the intersection (P1) of the two major axes is computed.
Next, the two ends of the major axes that are closer to the
bottom of the hearts are identified. Then, the midpoint
(P2) of the segment formed by these two endpoints is
calculated. The vector going from P2 to P1 is used to
determine the rotation of the heart shape. (see Figure 13)

Figure 15. (a) Sketched arch. (b) Beautified arch. (c)
Graphical description of the parameters.

Cylinders The orientation of a cylinder symbol is
determined by the vector (V) from the middle of the
cylinder (midway between the L1 and L2) to the center of
the ellipse E1. The height of the cylinder is the distance
from the midpoint of E2 along the orientation vector to the
top of E1. The intersections of the orientation vector and

E1 are computed. Two possible intersections exist and the
correct one would be the intersection point that yields a
greater height distance. (see Figure 16)

System Implementation
The recognition system and the symbol segmentation
utilities have been implemented in Java and released in a
software package, HHreco, that is available for download
(Hse 2004). In order to interface to the PowerPoint 2003
application, program development was carried out in
Visual Studio .NET 2003. The HHreco library was ported
over to J# in .NET. Since the beautification routines are
application-specific, they are implemented in C# in order
to better interface to the PowerPoint object model.

(a) (b)

L1 L2

E1

E2

(c)

w

h

V

At program start-up, a PowerPoint application and a
recognition toolbar are launched. The recognition toolbar
(Figure 19) contains a button to invoke recognition and a
menu for correcting misrecognitions. By selecting the pen
tool on the Ink Drawing and Writing toolbar in
PowerPoint, one can begin to sketch shapes on a
presentation slide. The inks are directly accepted by the
PowerPoint application. Once a symbol has been
completed (Figure 20), the user clicks on the Recognize ink
button to invoke the recognizer. Since PowerPoint does
not expose ink data through its object model at this time,
all of the processing must be carried out externally. The
ink object is copied from the PowerPoint application to a
clipboard and pasted into our own component for
recognition, segmentation, and beautification. Once the
transformation parameters have been computed, a properly
transformed PowerPoint symbol is then created and
displayed on the slide (Figure 21). When a misrecognition
occurs, the user can make correction by selecting the
correct class from the drop down menu. This action will
incrementally retrain the recognizer with the sketched
symbol and its correct class label, and then reprocess the
ink and update the display with the correct symbol. The
adaptability of the recognition system allows it to continue
to improve its accuracy by learning from users’
corrections.

Figure 16. (a) Sketched cylinder. (b) Beautified
cylinder. (c) Graphical description of the parameters.

Cubes The current implementation assumes that cubes are
sketched in the upright position. The three horizontal line
segments in a cube are identified and their relative
positions are used to determine whether an instantiated
PowerPoint cube needs to be horizontally flipped. (see

igure 17) F

(a) (b) (c)
w

h

Figure 17. (a) Sketched cube. (b) Beautified cube. (c)
Graphical description of the parameters.

Callouts A callout symbol is fitted with one ellipse and
two lines. The magnitudes of the major and minor axes of
the fitted ellipse determine the width and height of the
callout symbol, and the orientation of the major axis
indicates the rotation angle. Once the body of the callout
symbol has been decided, the pointing direction is obtained
by taking the intersection of the two line segments. The tip
of the pointer has to be specified in terms of the relative
position to the width and height of the symbol body. (see
Figure 18)

At the current time, we are unable to programmatically
delete the inking strokes in the PowerPoint slide due to
accessibility issues in the PowerPoint 2003 API (at this
time, the ink collector of PowerPoint is not exposed
through the object model).

 (a) (b) (c)

hw

Figure 19. The recognition toolbar contains a button to
call the recognizer and a correction interface. Figure 18. (a) Sketched callout. (b) Beautified callout.

(c) Graphical description of the parameters.

Figure 20. A sketched cylinder.

Figure 21. Cylinder beautified into a PowerPoint

object overlaying the original ink strokes.

Conclusions and Future Work
We have developed a complete system for recognizing and
beautifying hand-sketched symbols. The multi-stroke
recognition system is independent of stroke order, number,
and direction, as well as being invariant to rotation,
scaling, translation, and reflection of symbols.
Furthermore, the system is trainable and adaptive such that
it is capable of learning new shapes from examples and
improving its accuracy over time. The robust symbol
segmentation algorithm allows structural primitives to be
extracted with high accuracy in order to facilitate the

beautification process. We have integrated this system
with the PowerPoint 2003 application to enable sketching
graphic symbols directly onto a presentation slide.

In informal tests, users have expressed positive feedback
on the sketch-based PowerPoint interface. They feel that
this is a more straight-forward and convenient way of
entering symbols than through the conventional menus.
Our future work includes a more in-depth user study and
exploring the possibilities of using a timeout scheme or
scene segmentation to automatically group strokes and
invoke recognition.

Acknowledgement
We would like to thank Michael Shilman and Barn Li of
Microsoft for their technical advice on interfacing to
PowerPoint. This work was supported in part by the Roy
W. Carlson Distinguished Professorship. This support is
gratefully acknowledged.

References
Bailey, R. and Srinath, M. 1996. Orthogonal Moment
Features for Use with Parametric and Non-Parametric
Classifiers. IEEE Trans. on PAMI 18(4): 389-399.
Hearst, M. A., Gross, M. D., Landay, J. A. and Stahovich,
T. F. 1998. Sketching Intelligent Systems. IEEE Intelligent
System 3(3): 10-19.
Hse, H. 2004. HHreco. http://www-
cad.eecs.berkeley.edu/Respep/Research/hhreco/index.html
Hse, H. and Newton, A. R. 2004. Sketched Symbol
Recognition using Zernike Moments. 2004 International
Conference on Pattern Recognition. Forthcoming.
Hse, H., Shilman, M. and Newton, A. R. 2004. Robust
Sketched Symbol Fragmentation using Templates.
International Conference on Intelligent User
Interfaces,156-160. Funchal, Portugal, ACM Press.
Igarashi, T. 2003. Freeform User Interfaces for Graphical
Computing. International Symposium on Smart
Graphics,39-48. Heidelberg, Germany.
Khotanzad, A. and Hong, Y. H. 1990. Invariant Image
Recognition by Zernike Moments. IEEE Trans. on PAMI
12(5): 289-297.
Landay, J. A., Hong, J. I., Klemmer, S., Lin, J. and
Newman, M. 2002. Informal PUIs: No Recognition
Required. AAAI Spring Symposium on Sketch
Understanding,86-90. Palo Alto, CA, AAAI Press.
Teh, C. and Chin, R. T. 1988. On Image Analysis by the
Methods of Moments. IEEE Trans. on PAMI 10(4): 496-
513.
Vapnik, V. 1995. The Nature of Statistical Learning
Theory. New York, Springer-Verlag.

