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Abstract sketching Knowledge Entry Associate (SKEA) (Forbuosl
Sketching is often used when working out ideas. This  Usher 2002) is, we believe, the first open-domdietch

combination of drawing and conceptual labeling is a very ~ understanding system. sKEA's only coverage lirutat
natural and effective form of communication and problem- ~ comes from the underlying knowledge base it uses —
solving. Creating software that can participate in sketching ~ currently a subset of Cyc, consisting of over 36,00
provides many challenges. We outline the nuSketch  concepts, constrained by 1.2M facts. This doesmmesn
approach to sketch understanding, which focuses on visual  that we can effectively reason with all of theseampts in

and conceptual understanding instead of recognition. We  gketches yet — that is the nature of the challemgéave
summarize three experiments in progress withsiegching undertaken!

Knowledge Entry AssociafsKEA), the first open-domain

sketch understanding system. sKEA exploits a variety of

visual and qualitative spatial reasoning capabilities and .

human-like analogical matching to tackle a variety of tasks. T henuSketch Architectureand sKEA

We present experimental results, and outline future plans. In the nuSketch architecture, the basic unit iketch is a
glyph. Every glyph hask andcontent The ink consists
of one or more poly-lines, representing what ther ulsew.

The nuSketch approach The content is a conceptual entity, the kind ohghthat
Sketching is a form of multimodal interaction where the glyph is representing. There are two key gnois that
participants use a combination of interactive drgvand any sketching system must solve: _
language to provide high-bandwidth communicatidihis 1. Segmentation What pieces of ink should be
communication relies on shared understanding, bistral considered together as glyphs? _
and conceptual. Multimodal interface researchrhaily 2. Conceptual Labeling What conceptual entity
focused on providing more natural interfaces toatsg does a glyph denote? _
software, using recognition technologies to provite We solve the segmentation problem by having the use
desired interaction (Alvarado and Davis 2001, Cotteal. click a button when they begin drawing a glyph afick it
1997). While such systems have been shown to tie qu 2@gain when they are finished. — Other segmentation
useful in practice' we take a radica”y differeppmach_ technlques, such as time-outs and connectivity, lareur

The nuSketch approach is based on a key observation€Xperience very frustrating for users and erronprowe
about human-to-human sketching: Recognition is not Solve the conceptual labeling problem by enablihg t

essential. People are not artists in real timey trely on content of a glyph to be declared, via a simpldodiaas
language for conceptual labeling much of the tirkighile one or more types drawn from the underlying knogéed
some specialized domains have visual symbol larepiag Pase. This requires users to be familiar withshleset of
that practitioners use fluently, sketching is ugadmore the knowledge base that they need in their taslciwis a
broadly than that. In other words, for people oggtion strong limitation with the current version of thgstem.
is an accelerant, not a necessity. (We return to this issue at the end.)

This suggests a very different approach to sketch The nuSketch architecture uses a variety of gedenetr
understanding that complements recognition-oriented computations  to  visually  construct qualitative

research. In the nuSketch approach, we sidestep represe_ntat_ions, inClUding RCC8 relations_(COheQGJ.,g
recognition issues by providing other interface Voronoi diagrams (Edwards and Moulin 1998) for
mechanisms for people to conceptually label thek. i  approximating proximity, and polygon operations to

This provides two crucial advantages. First, ilgas us capture domain constraints.

to focus on deeper visual and conceptual understgrod _ )
sketches. Second, it enables us to build sketchystems A central feature of nuSketch is our use of anakigi
that can operate outside the tight domain constrafmat processing, based on Gentner’s structure-mappiegryh

bind today’s recognition-based systems. In pakigithe (Gentner 1983). Analogy provides a powerful meafs
entering and testing knowledge. Currently sKEARes



users to compare two layers of a sketch, whichlesghe
detection of similarities and differences. We ubke
Structure-Mapping Engine (SME) (Falkenhainer, Fsrbu
and Gentner 1989) to perform the comparisons. Vi
general-purpose analogical matcher. sKEA's analbgre
based on both the visual and the conceptual mhtara
sketch. Some of our experiments also take advantég
the MAC/FAC system (Forbus, Gentner and Law 1994)
which does a coarse matching using content veetods
then uses SME to narrow the results.

SME produces candidate inferences, conjecturest aneu
description based on its alignment with anotheandidate
inferences are useful in knowledge capture because
suggest ways to flesh out a description based on
similarities with prior knowledge.

Since there is independent psychological evidemzd t
structural alignment occurs in visual processing] &hat
SME captures many aspects of this processing aetyra
it means that when our sense of similarity and our
software’s sense of similarity about a sketch djeeit is a
sign that our representations have failed to captur
something crucial about the sketch. This provides
powerful constraint that drives the visual and eptaal
representations we compute. Even if one does ai ¢
about modeling human performance, a sketching syste
will be a better partner if you and it agree on wiieings
look alike.

Spatial Processing in nuSketch and sk EA

While we do not use recognition techniques on our
sketches, we do compute some simple spatial piepart

the ink (Forbus and Usher 2002). We focus on gatia
relationships between the glyphs rather than ddetgiled
analysis of the structure of the glyphs themselvwescall
this approachblob semantics When a glyph is added,
moved, or resized, sKEA computes a set of spatial
attributes and relationships. This process is ritest in
detail in (Forbus, Tomai, and Usher 2003). Thetigpba
attributes and relationships that make up the Visua
structure of the sketch are: groupings, positional
relationships, size, and orientation.

sKEA automatically computes two kinds of groupings:
contained glyph groupand connected glyph groupsA
contained group consists of a single container lglspd
the set of glyphs that are fully contained withinpiossibly
tangentially so. The contained group does notubtel
glyphs that are contained within other glyphs ia gftoup.
A connected glyph group consists of a set of glyhted
overlap ink strokes with one another. Articulatipaints

Positional relationships are computed pair-wise and
expressed in a viewer-oriented coordinate system of
left/right and above/below. They are not computed
between all pairs of glyphs, but rather in local
neighborhoods based on adjacency, as determinea via
Voronoi diagram. Positional relationships are cated
only between glyphs on the same layer of a sketch.

Glyph size in sKEA is assigned as either tiny, $mal
medium, large or huge. Sizes are based on theddraa
glyph’s axis-aligned bounding box, a coarse but
empirically useful approximation. Glyph areas are
normalized with respect to either the area of thenlding

box around all glyphs on all layers or the useeswport,
whichever is larger. The normalized areas are then
clustered into qualitative size values based on a
logarithmic scale of the square root of the area.

Additional Spatial Reasoning

As part of our ongoing research we are developimgem
spatial reasoning capabilities to accomplish déffer
research goals. Currently we are working on addiirey
ability to articulate the “important” points andgseents on
different objects as well as to more specificalifine the
relationship between adjacent glyphs. Another argare
we need to expand our available spatial reasorilijies
is curvature. We are working on different techmisjuo
qualitative summarize degree of curvature.

Experiments

We next describe three experiments currently unadgrw
with sKEA. All three leverage sKEA as an input devio
spatial reasoning systems as this is an area shaell-
suited to sketching as input. Our qualitative igpat
reasoning approach provides a bridge between the
perceptual and the conceptual.

Experiment 1: Miller Geometric Analogies

Evans’ ANALOGY program is an Al classic (Evans 1968
It seems only natural that sKEA ought to be ableaoy

out this task. And our recent results suggestithédct it
can. Here is a typical Miller problem, drawn ussi¢EA:
The test-taker must choose one of the five answasrs
providing the closest analog to the comparison $Aoi B

as C is tdblank.” Evans system solved these problems by
constructing an explicit transformation that turdeahto B,
computed transformations between C and 1, C andd2 a
so on, and chose the transformation from C thahés
closest to the A to B transformation. As Evansedpt
there can be ambiguity in the appropriate choice of

can be computed over connected glyph groups and transformation.

tangentially connected pairs of glyphs can be nateduch.
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Figure 1. A typical Miller test problem

We avoid this problem by simply using SME to praevid
human-like analogical processing, comparing the
similarities and differences directly instead ohstructing
transformations. Because SME is domain indepeneent
are able to focus our investigation on the repradiem of
the problems.

To solve the geometric analogy problems, we usea t
stage structure mapping process, depicted in figure
below. The first stage is the computation of magpi
from figure A to figure B and from figure C to eachthe
answer figures 1-5. This generates six mappinge (t
example mapping AB and the potential answer magping
C1-C5) that represent the similarities and diffeemn
between their respective pairs of figures. Th@sdstage
takes those mappings as input and computes theried
analogy from AB to each of the answer mappings 61-C
The strongest results from the second stage ireditteet
correct answer. The second stage is an exampléhaf
we callsecond order analogical mapping
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Figure2. The two-stage mapping process

Since we do not have built-in recognition of simgtepes,
we currently have to use conceptual labeling totiiethe
shapes to sKEA This strikes us as a natural opportunity
to incorporate some simple recognition technolqgies
which we are planning to do.

! Evans had a preprocessor that was run for half of his examples
to automatically construct shape descriptions. The rest were
input by hand.

In order to make meaningful comparisons betweemger
such asCi rcl e versusTri angl e, the system requires
common-sense domain knowledge about those terms. |
must know that circles, square and triangles driy@s of
shape and have the same kind of knowledge aboes siz
and orientations. This taxonomic information isitzined

in our knowledge base as Cygenls and isa
relationships. In comparing sizes, there is aoi
ordering information from smallest to largest, aimd
comparing orientations there is the concept of timta
from one orientation to the next. These facts fdha
domain of knowledge necessary for the solutionheisé
geometric analogy problems. We make the knowledge
available to the system in the form of general kieolge
within our knowledge base.

The system elaborates the results of each firgesta
mapping by querying the knowledge base, retrieving
knowledge based on the attributes in the mappidgndrat
relationships hold between them. These elaborated
descriptions become input for the second stage of
analogical mapping.

Experimental Results

When the Miller Geometric analogy test is run thylowur
system, it scores correctly on 15 of the problems,
incorrectly on 4 and gives ambiguous results on one
problem. The inability of our system to solve allthe
problems can be traced to four short-comings. Tarey
(1) the inability to do axial symmetry, (2) the ity to
decompose glyphs (due to the blob semantics asgmjpt
(3) a lack of hierarchical awareness in positional
relationships, and (4) the inability to reinterpréte
example pair and try a different avenue of attaélar a
more detailed analysis of these issues pleaseTsenal,
Forbus and Usher 2004).

Future work in this area will include continuedeasch on
visual structure as well as conceptual relatiorshipe
plan to extend our visual processing and experimegtit
Ferguson’s MAGI model of symmetry (Ferguson 1994).
We also intend to introduce conceptual groupindai
context for spatial qualities and as a foundati@nricher
conceptual relationships between sketched entiti@sally,

we plan to stretch the boundaries of blob semartiics
exploring automatic recognition of known shapes and
techniques for the decomposition of blobs into &ilgu
meaningful pieces of ink. While useful to thiskiaall of
these ongoing improvements are completely domain
neutral and will contribute to other research assawell.

Experiment 2: Bennett M echanical
Comprehension test
The Bennett Mechanical Comprehension test has been

used for over 50 years as a method for evaluating
candidates for jobs requiring mechanical aptitude.is



also commonly used as an independent measure tidlspa
ability by cognitive psychologists. We are usihigttest
as one means of evaluating the physical knowledge a
reasoning skills in Companion Cognitive Systemsrijse
and Hinrichs 2004), a new architecture we are itrgat
Each problem involves an analysis of a picture to
understand the question and arrive at the propswem

In addition to providing an externally determined
evaluation metric, this test is especially goodause it is
extraordinarily broad in terms of its domain corten
Having a small set of principles isn’t enough, kinuyv
how those principles are applied to real-worldatitins is
also crucial.

The test consists of 68 problems, including statics
dynamics, fluid, thermal, electricity, and mategial The
problems are all qualitative in nature. Consider f
example the two ladders shown here. Which would be
more stable, A or B? This is a simple kind of camaive

On individual glyphs, we can compute leftmost bwito
rightmost bottom, leftmost top, rightmost top, batt
leftmost, bottom rightmost, top leftmost, top rigiast and
centroid. On pairs of glyphs, we can compute ggetion
points and overlapping segments. We doubt that thi
exhausts the relevant set of distinctions needed,we
would be surprised if it were, say, three times thize.
Any reasoning system can take advantage of these as
SKEA provides access to these points in predicaiulus
through NATs, such as (RightmostBottomFn (GlyphFn
Object-13 Layer-12)), and as reified objects, sasHoint-
13.

Companions will use analogy over sketches heavily i
solving these problems. When presented with aleno,

a Companion will use MAC/FAC to search its casealip

of experiences for possible analogues. These gneso
include sketches created in presenting prior probland
in “bootstrapping” knowledge entry sessions, whieogv

analysis problem — once one has mapped from the concepts such as ladders and wheelbarrows will be

everyday concepts to abstract qualitative mechhnlicss
how to understand everyday objects in terms ofitatiaie
mechanics that is an interesting learning problefor
example, conceptual properties such as “stabilityi’st be
tied to visual properties like “the width of theded, which
in turn are grounded in the sketch. Being abldeton
these visual/conceptual mappings and use them ddp@n
to solve new problems is our goal.
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Figure 3. Ladder stability problem.

One important subproblem in analogical reasoniniggus
sketches is mapping properties such as measurefmamts
one sketch to another, as in the width of the lragégure
3. Our solution is to specify measured propsfieterms
of anchor points within a glyph that are easily
distinguishable in qualitative terms. Here, foaewle, the
bottom points of the glyph are key to defining thidth of
the base. By examining all of the points on thglylwe
can find the bottom points, including the leftmastd
rightmost bottom points. Such anchor points aremaed
on demand. Thus terms like “width of the base” ban
defined for one ladder in terms of a symbolic egpien,
and applied by analogy to other situations.

The set of anchor points we have needed so faisters
the following.

depicted by multiple users drawing them in problem-
independent ways. In the example of Figure 3ctee it
would retrieve would include that “stability” is
qualitatively proportional to “the width of the lels Then,
via an analogy using SME, that fact would be asslime
the current case as a candidate inference andkBé s
would compute the measurements for “the width @& th
base” of the each ladder. To arrive at a solution,
differential qualitative analysis (Weld 1988) haseh
implemented as a list of back chaining axioms iREI
The corresponding parts between the two systemalsoe
found by analogy (i.e., comparing parts A and B-igfure

3). At this writing, we have implemented and ¢elsall of
the pieces individually, and by the time of the $@sium
we will be able to report on how well they work &diger

to solve problems.

Experiment 3: Modeling spatial language

Connections between space and language can be
surprisingly subtle. For instance, many accouhtspatial
prepositions only take geometry into account. Heave
there is ample psychological evidence that spatial
prepositions rely on conceptual factors as wellv@ary
1998, Feist and Gentner 1998). For example (ittstl in
figure 4a below), given an abstract blob on a adrve
surface, people are more likely to say that thé lidoon it

if the blob is described as animate (e.g., a drégoand
more likely to be in it if the curved surface issddbed to

be a hand. Language can even affect spatial merasry
Feist & Gentner have found (Feist and Gentner 200fl)
subjects are shown the picture on the right whiliedp told
“The puppet is on the table”, when they are latesvn
both pictures they are more likely to claim that fhicture
they saw was the one on the left.
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Figure 4a. Conceptual factors influence spatial
prepositions

Figure 4b. Spatial prepositions influence memory
These psychological

reasonable conceptual and linguistic, as well atialp
models. We are currently using sKEA to model these
phenomena. We gather spatial information from the
sketch ink. Functional information is gatherednir¢he
label the user assigns to the ink and the knowlduige.
For example, if the user draws a figure like thes om
Figure 4a above and labels the groundPast e the
functional properties can be gathered from Cycdnking

at the collections of which plate is a member (is i
Ani mat e, a Cont ai ner, etc). This can be combined
with the geometric analysis of the ink.

This process involves making visual ties to thetigpa
relationships represented inside the Cyc KB (whitcin,
spatial prepositions, were already motivated by the
cognitive science literature) and seeing if we caodel
these findings.

As this writing, we are just in the beginning ste@é this
particular project. However, it is another exampiéhow
we hope to integrate the power of open-domain blkedc
with cognitive systems to produce interesting asdful
results.

Related Work

Most other existing multimodal interfaces focus on
creating an extremely natural interaction usinggeition
techniques and other algorithms to automaticaktpgaize
user sketches. The tradeoff imposed is that tipeyade in
a tightly constrained domain. sKEA on the otherdjaan
operate in arbitrary domains, the only limitatidresng the
specificity of the underlying database and whatasural
to express via sketching. The price we pay isightyy
less natural interaction between the user and yeeems.

results suggest that accurately
modeling human use of spatial prepositions requires

We think the nuSketch approach and sKEA provide a
valuable complement to the usual recognition-based
approaches used in multimodal interfaces. To lbe, s
recognition technologies improve we will happily
incorporate them into nuSketch systems — as longeas
can do so without compromising our open-domain
approach.

Our use of SME, a general-purpose analogical matébie
both visual and spatial representations is uniguens
approaches to analogy. Most attempts to build cayyal
systems have been domain-specific. For example,
Mitchell's Copycat program (Mitchell 1993) is desar

got use with letter strings, and French’s Table{eq@nch
1995) woks only with table settings. The kinds of
comparisons that can be made with these systentsmede
wired. Unfortunately, many case-based reasonjatgms

are similarly fixed in terms of their capabilitiesOur
experience with SKEA provides yet more evidenct tiia
needn't be the case: Domain-independent matchers
grounded in principles of human processing, like ESM
can operate in a wide variety of domains.

Discussion and Future Work

We have presented three ongoing research progeted

to our nuSketch and sKEA systems. Our domain-
independent approach to sketch understanding allevwts
build utilities for general purpose qualitative tah
reasoning and apply them to problems in differarhains.
The individual domains are restricted only by toatents

of the knowledge base. The knowledge base isyeasil
extendable through the use of flat-files so new @iosare
easily incorporated.

Our ongoing work has also pointed out weaknessesiof
current spatial reasoning techniques. Work is enly

underway to add additional functionality and to amte

what we already have. Several areas that wereioneuat
as additions in progress are: location and useslefrant
points on a glyph, estimation of curvature, seggom of

glyphs, and expansion of the spatial vocabulaije are

also investigating using natural language to redtme
need for users to be intimately familiar with thermal

details of a large knowledge base; this is a verpmlex

undertaking, as the investigation of spatial préms

above indicates.
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