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Abstract 
Sketching is often used when working out ideas.  This 
combination of drawing and conceptual labeling is a very 
natural and effective form of communication and problem-
solving.  Creating software that can participate in sketching 
provides many challenges.  We outline the nuSketch 
approach to sketch understanding, which focuses on visual 
and conceptual understanding instead of recognition.  We  
summarize three experiments in progress with the sketching 
Knowledge Entry Associate (sKEA), the first open-domain 
sketch understanding system.  sKEA exploits a variety of 
visual and qualitative spatial reasoning capabilities and 
human-like analogical matching to tackle a variety of tasks.  
We present experimental results, and outline future plans. 

The nuSketch approach 

Sketching is a form of multimodal interaction where 
participants use a combination of interactive drawing and 
language to provide high-bandwidth communication.  This 
communication relies on shared understanding, both visual 
and conceptual.  Multimodal interface research has mainly 
focused on providing more natural interfaces to legacy 
software, using recognition technologies to provide the 
desired interaction (Alvarado and Davis 2001, Cohen et al. 
1997).  While such systems have been shown to be quite 
useful in practice, we take a radically different approach.  
The nuSketch approach is based on a key observation 
about human-to-human sketching: Recognition is not 
essential.   People are not artists in real time; they rely on 
language for conceptual labeling much of the time.  While 
some specialized domains have visual symbol languages 
that practitioners use fluently, sketching is used far more 
broadly than that.  In other words, for people, recognition 
is an accelerant, not a necessity.   
 
This suggests a very different approach to sketch 
understanding that complements recognition-oriented 
research.  In the nuSketch approach, we sidestep 
recognition issues by providing other interface 
mechanisms for people to conceptually label their ink.  
This provides two crucial advantages.  First, it enables us 
to focus on deeper visual and conceptual understanding of 
sketches.  Second, it enables us to build sketching systems 
that can operate outside the tight domain constraints that 
bind today’s recognition-based systems.  In particular, the 

sketching Knowledge Entry Associate (sKEA) (Forbus and 
Usher 2002) is, we believe, the first open-domain sketch 
understanding system.  sKEA’s only coverage limitation 
comes from the underlying knowledge base it uses – 
currently a subset of Cyc, consisting of over 35,000 
concepts, constrained by 1.2M facts.  This does not mean 
that we can effectively reason with all of these concepts in 
sketches yet – that is the nature of the challenge we have 
undertaken!   
 

The nuSketch Architecture and sKEA 
In the nuSketch architecture, the basic unit in a sketch is a 
glyph.  Every glyph has ink and content.  The ink consists 
of one or more poly-lines, representing what the user drew.  
The content is a conceptual entity, the kind of thing that 
the glyph is representing.  There are two key problems that 
any sketching system must solve: 

1. Segmentation.  What pieces of ink should be 
considered together as glyphs? 

2. Conceptual Labeling.  What conceptual entity 
does a glyph denote? 

We solve the segmentation problem by having the user 
click a button when they begin drawing a glyph and click it 
again when they are finished.  Other segmentation 
techniques, such as time-outs and connectivity, are  in our 
experience very frustrating for users and error-prone.  We 
solve the conceptual labeling problem by enabling the 
content of a glyph to be declared, via a simple dialog, as 
one or more types drawn from the underlying knowledge 
base.  This requires users to be familiar with the subset of 
the knowledge base that they need in their task, which is a 
strong limitation with the current version of the system.  
(We return to this issue at the end.)   
 
The nuSketch architecture uses a variety of geometric 
computations to visually construct qualitative 
representations, including RCC8 relations (Cohen 1996), 
Voronoi diagrams (Edwards and Moulin 1998) for 
approximating proximity, and polygon operations  to 
capture domain constraints.   
 
A central feature of nuSketch is our use of analogical 
processing, based on Gentner’s structure-mapping theory 
(Gentner 1983).  Analogy provides a powerful means of 
entering and testing knowledge.  Currently sKEA enables 



users to compare two layers of a sketch, which enables the 
detection of similarities and differences.  We use the 
Structure-Mapping Engine (SME) (Falkenhainer, Forbus 
and Gentner 1989) to perform the comparisons.  SME is a 
general-purpose analogical matcher.  sKEA’s analogies are 
based on both the visual and the conceptual material in a 
sketch.  Some of our experiments also take advantage of 
the MAC/FAC system (Forbus, Gentner and Law 1994) 
which does a coarse matching using content vectors and 
then uses SME to narrow the results. 
 
SME produces candidate inferences, conjectures about one 
description based on its alignment with another.  Candidate 
inferences are useful in knowledge capture because they 
suggest ways to flesh out a description based on 
similarities with prior knowledge. 
 
Since there is independent psychological evidence that 
structural alignment occurs in visual processing, and that 
SME captures many aspects of this processing accurately, 
it means that when our sense of similarity and our 
software’s sense of similarity about a sketch diverge, it is a 
sign that our representations have failed to capture 
something crucial about the sketch.  This provides a 
powerful constraint that drives the visual and conceptual 
representations we compute.  Even if one does not care 
about modeling human performance, a sketching system 
will be a better partner if you and it agree on when things 
look alike.   
 

Spatial Processing in nuSketch and sKEA 
While we do not use recognition techniques on our 
sketches, we do compute some simple spatial properties of 
the ink (Forbus and Usher 2002).  We focus on the spatial 
relationships between the glyphs rather than doing detailed 
analysis of the structure of the glyphs themselves; we call 
this approach blob semantics.  When a glyph is added, 
moved, or resized, sKEA computes a set of spatial 
attributes and relationships.  This process is described in 
detail in (Forbus, Tomai, and Usher 2003).  The spatial 
attributes and relationships that make up the visual 
structure of the sketch are: groupings, positional 
relationships, size, and orientation. 
 
sKEA automatically computes two kinds of groupings: 
contained glyph groups and connected glyph groups.  A 
contained group consists of a single container glyph and 
the set of glyphs that are fully contained within it, possibly 
tangentially so.  The contained group does not include 
glyphs that are contained within other glyphs in the group.  
A connected glyph group consists of a set of glyphs that 
overlap ink strokes with one another. Articulation points 
can be computed over connected glyph groups and 
tangentially connected pairs of glyphs can be noted as such. 
 

Positional relationships are computed pair-wise and 
expressed in a viewer-oriented coordinate system of 
left/right and above/below.  They are not computed 
between all pairs of glyphs, but rather in local 
neighborhoods based on adjacency, as determined via a 
Voronoi diagram.  Positional relationships are computed 
only between glyphs on the same layer of a sketch.   
 
Glyph size in sKEA is assigned as either tiny, small, 
medium, large or huge.  Sizes are based on the area of a 
glyph’s axis-aligned bounding box, a coarse but 
empirically useful approximation.  Glyph areas are 
normalized with respect to either the area of the bounding 
box around all glyphs on all layers or the users view port, 
whichever is larger.  The normalized areas are then 
clustered into qualitative size values based on a 
logarithmic scale of the square root of the area. 
 

Additional Spatial Reasoning  
As part of our ongoing research we are developing more 
spatial reasoning capabilities to accomplish different 
research goals.  Currently we are working on adding the 
ability to articulate the “important” points and segments on 
different objects as well as to more specifically define the 
relationship between adjacent glyphs.  Another area where 
we need to expand our available spatial reasoning abilities 
is curvature.  We are working on different techniques to 
qualitative summarize degree of curvature.   

Experiments 

We next describe three experiments currently underway 
with sKEA. All three leverage sKEA as an input device to 
spatial reasoning systems as this is an area that is well-
suited to sketching as input.  Our qualitative spatial 
reasoning approach provides a bridge between the 
perceptual and the conceptual. 

Experiment 1: Miller Geometric Analogies 
Evans’ ANALOGY program is an AI classic (Evans 1968).  
It seems only natural that sKEA ought to be able to carry 
out this task.  And our recent results suggest that in fact it 
can.  Here is a typical Miller problem, drawn using sKEA: 
The test-taker must choose one of the five answers as 
providing the closest analog to the comparison “A is to B 
as C is to blank.”  Evans system solved these problems by 
constructing an explicit transformation that turned A into B, 
computed transformations between C and 1, C and 2 and 
so on, and chose the transformation from C that is the 
closest to the A to B transformation.  As Evans noted, 
there can be ambiguity in the appropriate choice of 
transformation.   
 



 
Figure 1. A typical Miller test problem 

 
We avoid this problem by simply using SME to provide 
human-like analogical processing, comparing the 
similarities and differences directly instead of constructing 
transformations.  Because SME is domain independent, we 
are able to focus our investigation on the representation of 
the problems. 
 
To solve the geometric analogy problems, we use a two-
stage structure mapping process, depicted in figure 2 
below.  The first stage is the computation of mappings 
from figure A to figure B and from figure C to each of the 
answer figures 1-5.  This generates six mappings (the 
example mapping AB and the potential answer mappings 
C1-C5) that represent the similarities and differences 
between their respective pairs of figures.  The second stage 
takes those mappings as input and computes the prescribed 
analogy from AB to each of the answer mappings C1-C5.  
The strongest results from the second stage indicate the 
correct answer.  The second stage is an example of what 
we call second order analogical mapping. 
 

Figure 2.  The two-stage mapping process 
 
Since we do not have built-in recognition of simple shapes, 
we currently have to use conceptual labeling to identify the 
shapes to sKEA1.  This strikes us as a natural opportunity 
to incorporate some simple recognition technologies, 
which we are planning to do. 
 

                                                 
1 Evans had a preprocessor that was run for half of his examples 
to automatically construct shape descriptions.  The rest were 
input by hand. 

In order to make meaningful comparisons between terms 
such as Circle versus Triangle, the system requires 
common-sense domain knowledge about those terms.  It 
must know that circles, square and triangles are all types of 
shape and have the same kind of knowledge about sizes 
and orientations.  This taxonomic information is contained 
in our knowledge base as Cyc genls and isa 
relationships.  In comparing sizes, there is additional 
ordering information from smallest to largest, and in 
comparing orientations there is the concept of rotation 
from one orientation to the next.  These facts form the 
domain of knowledge necessary for the solution of these 
geometric analogy problems.  We make the knowledge 
available to the system in the form of general knowledge 
within our knowledge base.   
 
The system elaborates the results of each first-stage 
mapping by querying the knowledge base, retrieving 
knowledge based on the attributes in the mapping and what 
relationships hold between them.  These elaborated 
descriptions become input for the second stage of 
analogical mapping.   
 

Experimental Results 
When the Miller Geometric analogy test is run through our 
system, it scores correctly on 15 of the problems, 
incorrectly on 4 and gives ambiguous results on one 
problem.  The inability of our system to solve all of the 
problems can be traced to four short-comings.  They are 
(1) the inability to do axial symmetry, (2) the inability to 
decompose glyphs (due to the blob semantics assumption), 
(3) a lack of hierarchical awareness in positional 
relationships, and (4) the inability to reinterpret the 
example pair and try a different avenue of attack.  For a 
more detailed analysis of these issues please see (Tomai, 
Forbus and Usher 2004). 
 
Future work in this area will include continued research on 
visual structure as well as conceptual relationships.  We 
plan to extend our visual processing and experiment with 
Ferguson’s MAGI model of symmetry (Ferguson 1994).  
We also intend to introduce conceptual grouping as both 
context for spatial qualities and as a foundation for richer 
conceptual relationships between sketched entities.  Finally, 
we plan to stretch the boundaries of blob semantics by 
exploring automatic recognition of known shapes and 
techniques for the decomposition of blobs into visually 
meaningful pieces of ink.  While useful to this task, all of 
these ongoing improvements are completely domain 
neutral and will contribute to other research areas as well.   

Experiment 2: Bennett Mechanical 
Comprehension test 
The Bennett Mechanical Comprehension test has been 
used for over 50 years as a method for evaluating 
candidates for jobs requiring mechanical aptitude.  It is 



also commonly used as an independent measure of spatial 
ability by cognitive psychologists.  We are using this test 
as one means of evaluating the physical knowledge and 
reasoning skills in Companion Cognitive Systems (Forbus 
and Hinrichs 2004), a new architecture we are creating.  
Each problem involves an analysis of a picture to 
understand the question and arrive at the proper answer.  
In addition to providing an externally determined 
evaluation metric, this test is especially good because it is 
extraordinarily broad in terms of its domain content.  
Having a small set of principles isn’t enough, knowing 
how those principles are applied to real-world situations is 
also crucial.   
 
The test consists of 68 problems, including statics, 
dynamics, fluid, thermal, electricity, and materials.  The 
problems are all qualitative in nature.  Consider for 
example the two ladders shown here.  Which would be 
more stable, A or B?  This is a simple kind of comparative 
analysis problem – once one has mapped from the 
everyday concepts to abstract qualitative mechanics!  It is 
how to understand everyday objects in terms of qualitative 
mechanics that is an interesting learning problem.  For 
example, conceptual properties such as “stability” must be 
tied to visual properties like “the width of the base”, which 
in turn are grounded in the sketch.  Being able to learn 
these visual/conceptual mappings and use them by analogy 
to solve new problems is our goal. 

 
Figure 3. Ladder stability problem. 

 
 
One important subproblem in analogical reasoning using 
sketches is mapping properties such as measurements from 
one sketch to another, as in the width of the base in Figure 
3.    Our solution is to specify measured properties in terms 
of anchor points within a glyph that are easily 
distinguishable in qualitative terms.  Here, for example, the 
bottom points of the glyph are key to defining the width of 
the base.  By examining all of the points on the glyph we 
can find the bottom points, including the leftmost and 
rightmost bottom points.  Such anchor points are computed 
on demand.  Thus terms like “width of the base” can be 
defined for one ladder in terms of a symbolic expression, 
and applied by analogy to other situations.   
 
The set of anchor points we have needed so far consists of 
the following.   

On individual glyphs, we can compute leftmost bottom, 
rightmost bottom, leftmost top, rightmost top, bottom 
leftmost, bottom rightmost, top leftmost, top rightmost and 
centroid.  On pairs of glyphs, we can compute intersection 
points and overlapping segments.  We doubt that this 
exhausts the relevant set of distinctions needed, but we 
would be surprised if it were, say, three times this size. 
Any reasoning system can take advantage of these as 
sKEA provides access to these points in predicate calculus 
through NATs, such as (RightmostBottomFn (GlyphFn 
Object-13 Layer-12)), and as reified objects, such as Point-
13. 
 
Companions will use analogy over sketches heavily in 
solving these problems.   When presented with a problem, 
a Companion will use MAC/FAC to search its case library 
of experiences for possible analogues.  These analogues 
include sketches created in presenting prior problems and 
in “bootstrapping” knowledge entry sessions, where how 
concepts such as ladders and wheelbarrows will be 
depicted by multiple users drawing them in problem-
independent ways.  In the example of Figure 3, the case it 
would retrieve would include that “stability” is 
qualitatively proportional to “the width of the base”.  Then, 
via an analogy using SME, that fact would be assumed in 
the current case as a candidate inference and the sKEA 
would compute the measurements for “the width of the 
base” of the each ladder.  To arrive at a solution, 
differential qualitative analysis (Weld 1988) has been 
implemented as a list of back chaining axioms in FIRE.  
The corresponding parts between the two systems are also 
found by analogy (i.e., comparing parts A and B of Figure 
3).   At this writing, we have implemented and tested all of 
the pieces individually, and by the time of the Symposium 
we will be able to report on how well they work together 
to solve problems.   

Experiment 3: Modeling spatial language 
Connections between space and language can be 
surprisingly subtle.  For instance, many accounts of spatial 
prepositions only take geometry into account.  However, 
there is ample psychological evidence that spatial 
prepositions rely on conceptual factors as well (Coventry 
1998, Feist and Gentner 1998).  For example (illustrated in 
figure 4a below), given an abstract blob on a curved 
surface, people are more likely to say that the blob is on it 
if the blob is described as animate (e.g., a dragonfly) and 
more likely to be in it if the curved surface is described to 
be a hand.  Language can even affect spatial memory, as 
Feist & Gentner have found (Feist and Gentner 2001).  If 
subjects are shown the picture on the right while being told 
“The puppet is on the table”, when they are later shown 
both pictures they are more likely to claim that the picture 
they saw was the one on the left. 



Figure 4a. Conceptual factors influence spatial 
prepositions 
 
 

 
 

Figure 4b. Spatial prepositions influence memory 
 
These psychological results suggest that accurately 
modeling human use of spatial prepositions requires 
reasonable conceptual and linguistic, as well as spatial, 
models.  We are currently using sKEA to model these 
phenomena.  We gather spatial information from the 
sketch ink.  Functional information is gathered from the 
label the user assigns to the ink and the knowledge base.  
For example, if the user draws a figure like the one in 
Figure 4a above and labels the ground as Plate the 
functional properties can be gathered from Cyc by looking 
at the collections of which plate is a member (is it 
Animate, a Container, etc).  This can be combined 
with the geometric analysis of the ink.  
 
This process involves making visual ties to the spatial 
relationships represented inside the Cyc KB (which, for 
spatial prepositions, were already motivated by the 
cognitive science literature) and seeing if we can model 
these findings.   
 
As this writing, we are just in the beginning stages of this 
particular project.  However, it is another example of how 
we hope to integrate the power of open-domain sketching 
with cognitive systems to produce interesting and useful 
results. 
 

Related Work 

Most other existing multimodal interfaces focus on 
creating an extremely natural interaction using recognition 
techniques and other algorithms to automatically recognize 
user sketches.  The tradeoff imposed is that they operate in 
a tightly constrained domain.  sKEA on the other hand, can 
operate in arbitrary domains, the only limitations being the 
specificity of the underlying database and what is natural 
to express via sketching.  The price we pay is a slightly 
less natural interaction between the user and the system. 

We think the nuSketch approach and sKEA provide a 
valuable complement to the usual recognition-based 
approaches used in multimodal interfaces.  To be sure, as 
recognition technologies improve we will happily 
incorporate them into nuSketch systems – as long as we 
can do so without compromising our open-domain 
approach. 
 
Our use of SME, a general-purpose analogical matcher, for 
both visual and spatial representations is unique among 
approaches to analogy.  Most attempts to build analogy 
systems have been domain-specific.  For example, 
Mitchell’s Copycat program (Mitchell 1993) is designed 
got use with letter strings, and French’s TableTop (French 
1995) woks only with table settings.  The kinds of 
comparisons that can be made with these systems are hard-
wired.   Unfortunately, many case-based reasoning systems 
are similarly fixed in terms of their capabilities.  Our 
experience with sKEA provides yet more evidence that this 
needn’t be the case: Domain-independent matchers 
grounded in principles of human processing, like SME, 
can operate in a wide variety of domains.   

Discussion and Future Work 

We have presented three ongoing research projects related 
to our nuSketch and sKEA systems.  Our domain-
independent approach to sketch understanding allows us to 
build utilities for general purpose qualitative spatial 
reasoning and apply them to problems in different domains.  
The individual domains are restricted only by the contents 
of the knowledge base.  The knowledge base is easily 
extendable through the use of flat-files so new domains are 
easily incorporated. 
 
Our ongoing work has also pointed out weaknesses of our 
current spatial reasoning techniques.  Work is currently 
underway to add additional functionality and to enhance 
what we already have.  Several areas that were mentioned 
as additions in progress are: location and use of relevant 
points on a glyph, estimation of curvature, segmentation of 
glyphs, and expansion of the spatial vocabulary.   We are 
also investigating using natural language to reduce the 
need for users to be intimately familiar with the formal 
details of a large knowledge base; this is a very complex 
undertaking, as the investigation of spatial prepositions 
above indicates. 
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