
Hidden Markov Model Symbol Recognition for Sketch-Based Interfaces

Derek Anderson, Craig Bailey and Marjorie Skubic

Computational Intelligence Research Laboratory
University of Missouri-Columbia, Columbia, MO 65211

dtaxtd@missouri.edu / baileycw@missouri.edu / skubicm@missouri.edu

Abstract

A central challenge for sketch-based interfaces is robust
symbol recognition. Artifacts such as sketching style,
pixelized symbol representation and affine transformations
are just a few of the problems. Temporal pattern recognition
through Hidden Markov Models (HMM) can be used to
recognize and distinguish symbols as pixel-driven gestures.
The key challenges of such a system are the type and amount
of necessary pre-processing, feature extraction, HMM
parameter selection and optional post processing. In this
paper, we describe a recognition strategy based on HMMs
and include recognition results on twelve sketched symbols.
In addition, we have successfully applied this methodology to
a PDA sketch-based interface to control a team of robots.
The symbol recognition component is used to identify
sketched formations and issue commands that drive the
behavior of the robot team.

Introduction

Our motivation for exploring sketch-based interfaces is
to create intuitive interaction for controlling and
communicating with one or more robots. We have
constructed a prototype system that was interactively
demonstrated at the 2004 AAAI robot competition in San
Jose, CA. This interface was used to direct robot
formations by communicating with a team of small mobile
robots (Skubic et al., 2004). In another project, we have
developed a sketch-based interface that is used to sketch a
route map that is then translated into a set of spatial rules
for a single mobile robot (Skubic, Bailey & Chronis, 2003;
Chronis & Skubic, 2004). One similar factor between
these two projects is the problem of recognizing a set of
pre-defined symbols that can be drawn in a variety of
different but similar ways and yet are interpreted robustly
as control commands to the robot. These differences are
due to affine transformations, user sketching styles, and
problems associated with the pixelized symbol capture. In
this paper, we present ongoing work towards a generalized
method to recognize sketched symbols through the
application of Hidden Markov Models (HMM).

Strategies to perform symbol recognition include fuzzy
logic rule-based systems (Jorge & Fonseca, 1999), global
and discriminate geometric features (Rubine, 1991),
primitive geometric shape fitting to pixel sequences

(Sezgin, Stahovich & Davis, 2001) and even hybrid
systems such as decision trees and HMMs (Ou, Chen &
Yang, 2003). The work performed by Sezgin et al. (2001)
involves the discovery of vertices at the end of linear
segments and the recognition of curved regions within a
stroke. They work to generate a more abstract and
compact description of a stroke through recognition of
primitive geometric shapes. Ou et al. (2003) perform
closed gesture symbol recognition with HMMs, but use
decision trees in classifying open gestures. They extract a
measure of curvature in a window of consecutive pixels
and use these features as observations to train a HMM. A
decision tree, constructed using the C4.5 algorithm, is used
to classify open gestures by identifying a few attributes of
the sketched symbol.

Of these approaches, the HMM seems to hold the most
promise for a generalized and automatic framework for
recognizing sketched gestures. However, a major
challenge is finding a feature set that captures the essence
of the gesture and yet is resilient to variability in scale,
orientation, and sketching style. Other challenges include
minimizing the number of training samples and
computational complexity.

HMMs can be applied to pixel-driven symbol
recognition through the following steps: (1) the
identification of pre-processing procedures to handle some
initial level of symbol variation, (2) identification and
extraction of features from the gesture, (3) an appropriate
application specific selection of HMM parameters, and (4)
the optional application of post-processing methods for
false alarm removal or additional symbol verification. In
this work, we describe how we proceed with each step and
address the topic of false alarm elimination through the
process of post feature identification or heuristics.
Another contribution of our work includes the discussion
and explanation of a PDA (Personal Digital Assistant)
sketch-based application for driving a robot team. In
addition, we discuss both the strength and limitations of
using HMMs for pixel-driven sketched gesture
recognition.

Sketched Symbol Recognition

As a symbol is sketched, the sequence of pixel
coordinates, which correspond to the two dimensional
locations of the pen over time, are recorded. This temporal
unfolding of the symbol in terms of pixel coordinates can

be viewed as a form of gesture recognition. The goal of
the system is to compute and learn a set of model
parameters that encapsulate symbol related discriminate
temporal features. These trained models are finite and can
be transferred to a PDA to generate the online likelihood
that some future observation, a new sequence of pixels,
was generated from some particular known model.

Figure 1. Pattern recognition procedure

The overall goal is to develop one large classifier
whose job is to recognize and classify sketched symbols.
One example of a general pattern recognition system is
illustrated in Figure 1 and encompasses the (1) observation
and capturing of the data, (2) pre-processing of data, (3)
extraction and identification of features, (4) application of
the pattern recognition algorithms (typically some form of
a classifier), (5) optional post processing procedures, and
(6) final evaluation and interpretation of the results. The
steps behind performing sketch-based symbol recognition
include (1) the capture of pixel coordinates, (2) pre-
processing of pixel data, (3) the extraction of features from
the temporal pixel observations, (4) the application of
HMMs to classify the symbol, (5) the application of post
feature identification or heuristics to reduce false alarms,
and (6) the final classification of a symbol into one of a
known finite set.

Pre-Processing

It is a common approach to rely on pre-processing of
the data to clean up and minimize erroneous behavior in
the symbols. This includes linear and non-linear methods
to resample and interpolate a symbol. Factors such as the
amount of symbol variation, effects of pixelization, pixel
sampling rate and speed which the user draws a symbol
result in a possible introduction or elimination of features
through pre-processing. In the case of many linear re-
sampling methods, important areas such as edges can be
greatly distorted. The non-linear methods are attractive
but come at the expense of higher computational time.

We do not perform any elaborate pre-processing
procedures, but rather attempt to later compensate for these
factors within the model and its parameter selection. In
order to reduce the pre-processing time, we only perform
minimal pre-processing. The first step involves the
removal of consecutive identical points. The next step is a
method of minimum distance pixel sampling (to down-
sample), which can be done quickly as the points are being
captured, illustrated in Figure 2.

Figure 2 illustrates one additional artifact that primarily
surrounds sketching style. As a user sketches symbols on

a PDA screen, he can generate ‘hooks’ at the beginning or
end of a symbol. These hooks depend on factors such as
the symbol sampling rate and size of the sketched symbol.
One can attempt to identify these hooks for removal in a
pre-processing stage. The majority of our hooks were
removed simply through the sequential removal of pixels
within a fixed distance. The remainder of hooks were
recognized and removed, in a similar fashion to Ou et al.
(2003), by identifying large points of angular change at the
beginning of a sketch.

(a) (b)

Figure 2. Fixed distance pre-processing. (a)
Sketched symbol example before fixed point removal;
(b) Same symbol after fixed point removal.

We strived for the fewest number of pre-processing

procedures as possible. PDA devices typically have a low
amount of system resources available and a recognizer is
only one component of a larger application. Symbols
sketched on a PDA are typically composed of a small
number of observations or pixels. The fewer the number
of pixels the harder it can become to recover the geometric
characteristics and identifying features for a symbol. Any
pre-processing procedure that modifies these already
difficult to recognize symbols in a negative way can be
devastating. Some of the pre-processing procedures that
we considered computationally acceptable resulted in the
unacceptable distortion of symbols in important feature
regions or required too many points to have been generated
for small symbols. An example of this is in the case of a
fast sketched or small rectangle. Linear filtering or
interpolation techniques can distort the important edge
features and make their recognition extremely difficult

Feature Extraction

Two similar feature extraction methods were
investigated in order to study their computational
attractiveness, robustness and classification power. The
first feature extraction procedure we analyzed was a local
method of computing an angle from three consecutive
pixels. Two vectors are computed, one from the past to
present pixel and the other from the present to next pixel.
The feature reflects the angle between these two vectors.
This method is sensitive to the style, speed, and other
factors that make discrimination and classification very
difficult. The other side effect of this procedure was the
occasional generation of very long observation sequences.

Figure 3. Seven-step, sliding window feature
extraction procedure. The red pixel represents the
observation step for which we are computing the
present feature. The blue arrow represents the average
back vector and gold arrow represents the average
forward vector. The feature computed is the angle
between the back and forward vectors.

The remainder of this paper reports symbol recognition
results with respect to our second feature extraction
procedure. Figure 3 illustrates this seven step feature
extraction procedure. If there are N observations in the
symbol, then the algorithm will compute (N-6) features.
For every observation after the 3rd step and before the (N-
3) step, the angle between a forward and a back vector is
computed, where the forward and back vectors are
computed averages as shown in Figure 3. The averaging
effectively smoothes the curve and minimizes sketching
differences due to distortion, varying sketching styles, and
pixelization. The pixel that the feature is being computed
for is not actually used in determining the angle, which has
helped to maintain important information such as sharp
turns.

Many symbols can be drawn in a variety of gesture
specific sequences (e.g., clockwise vs. counterclockwise
directions). Thus, each symbol may require multiple
HMM models in order to capture the different gesture
specific ways in which the symbol can be sketched. In
some settings, a clockwise or counterclockwise sketched
symbol can be represented as one HMM model by
considering the absolute value of the angle and restricting
the feature to be within the range of –180 to 180 degrees.
However, in general, it may be useful to know how the
user sketched the symbol. We are presently using the
multiple model idea, i.e. not using the absolute value of the
angle, in order to determine a clockwise or
counterclockwise gesture.

This local feature extraction technique has the effect of
introducing one additional problem that can be addressed
through an optional pre-processing step or feature
extraction procedure. If the feature extraction procedure is
calculated in the standard way referenced above, then the
angular features for a large ellipse can have the side effect
of being mapped into just one symbol (the straight line).
This local feature extraction method has the unwanted side
effect of missing subtle geometric changes. If necessary,
the components of the feature extraction procedure can be
made a function of the symbol size and controlled. This
means that features can be computed not for every pixel,

but every Dth pixel. The number of past and next pixels
that are used in calculation of the forward and back vectors
can also be determined through the symbol size. We are
presently not modifying the internals of the feature
extraction procedure, but rather using heuristics to choose
when to down sample pixels based on the size of the
symbol.

One large predicament is how to develop a reliable and
uniform pattern recognizer that works on multiple
platforms with different processing speeds. Our method of
fixed pixel distance removal helps to overcome some of
the problems associated with denseness, but is not as
robust for large and dense symbols. This is because the
dropping criterion is determined through a heuristically
selected threshold value. In these cases, a more formal
method of re-sampling might be necessary. We are
presently relying on an empirically selected heuristic value
for fixed distance point removal.

Temporal Pattern Recognition

Hidden Markov Models (HMM) are an attractive
approach to pixel-driven symbol recognition. HMMs are
the classical workhorse for recognizing temporal patterns,
such as natural speech recognition (Rabiner, 1989). An
HMM assumes that the process being learned is composed
of a finite sequence of discrete and stochastic hidden
states. The states are assumed to be hidden but observable
through features that the hidden states emit. Figure 4 is an
illustration of a continuous observation HMM (COHMM).
A COHMM is represented through a collection of hidden
states (Wi), associated hidden state transition probabilities
(a(i,j)) and hidden state probability density functions
(pdf’s). For a formal and complete definition of HMMs
refer to Rabiner (1989) or Bilmes (Bilmes, 1997).

Figure 4. Hidden Markov Model illustration

The three classical problems associated with HMMs
include:

1. Classification Problem: Given an observation

sequence, which model is the most likely to have
emitted the particular sequence?

2. Most Likely State Sequence Problem: What is the
most likely sequence of hidden states which are
believed to have emitted a given observation
sequence?

3. Training or Learning Problem: Given one or more
observation sequences, what are the model parameters
associated which maximizing the likelihood of the
observations?

HMM problem 3 takes the greatest computational time

and can be performed offline for the particular case of
sketch-based symbol recognition. Our HMM models are
trained offline in Matlab. Even though the computational
time of problem 3 is noted, it is not a factor because it is
not part of the final PDA classifier and only has to be
computed once offline. Step 1 is the only algorithm that
needs to be implemented and transferred onto a PDA to
predict and classify future observations (symbols).

We have applied the traditional Baum-Welch algorithm
to iteratively re-estimate the parameters for a discrete
observation HMM (DOHMM). Model verification can be
done using the conventional forward and backward
procedure with appropriate scaling (Rabiner, 1989). A
discrete model has limitations and can induce problems
into the learning process. Discretization of the features
always results in some form of information loss, but it
appears to be an acceptable level in this application. We
discuss methods here to attempt to overcome and
compensate for these problems by a careful selection of
HMM parameters.

The angular features that we generate are mapped into
20 different discrete symbols. Note that the first symbol is
reflective of the concept ‘about zero’ (0 +/- ((360°/N)/2),
where N is the number of discrete symbols), as depicted in
Figure 5. This is in contrast to the method of considering
the first symbol to range between 0° to (360°/N). If the
symbols are computed in this fashion, then straight
gestures with a slight angle will be mapped into two
different symbols, i.e. 1 and N.

Figure 5. Discrete mapping of the angular features

that we compute from the domain [0°, 360°] into one of
(1 … N) discrete symbols. The numbers (3... N-1) have
pictorially been left out.

In the ideal world of little symbol variation and perfect

features there may be only two distributions (i.e. two
hidden states) for an arrow. One distribution could
represent the straight line feature, while the other could
correspond to the sharp edges. We attempted to use a two
state model initially, but the combination of sketching
style, pixelized symbol representation and our local feature
extraction procedure did not yield adequate classification
rates. However, we found that we could learn a model to
represent this symbol if we over specified the number of
HMM hidden states. Figure 6 demonstrates our trained
HMM for the arrow. We over specified the model by an
additional two states. State 1 appears to learn the straight
line feature, while state 3 appears to capture the sharp edge
feature. States 2 and 4 appear to learn features that
correspond to subtle changes in a straight line direction,
which might relate to slightly curved regions.

Figure 6. Trained HMM for the arrow gesture.

Rectangular regions represent the state pdf’s of the
feature computed as in Figure 3.

We attempt to compensate and deal with some of the

sketched symbol variation through an over specification in
the number of HMM hidden states, selection of enough
discrete observation symbols and an adequate number of
training data. The over specification in the number of
HMM hidden states has proven to handle slight
inaccuracies that can arise in the local feature extraction
procedure and also help to capture reoccurring symbol
variation that appears to be natural for some symbols, such
as not straight but slightly curved.

This idea of over specifying the number of hidden
states is somewhat analogous to a mixture density HMM,
which works to learn multiple pdf’s per hidden state. Our
initial hypothesis was that an over specification of the
number of hidden states might help to learn difficult
regions that arise from sketching style or compensate for
the relatively simple feature extraction procedure. An
appropriate selection of the number of discrete observation
symbols helps in learning the pdf’s associated with each
hidden state. The number and type of training data is
necessary in order to accurately capture and learn these
attributes of interest. This different approach represents an

attempt to learn and account for some variation that arises
when considering a large and robust set of training data
from a variety of users through a local feature extraction
procedure.

The primary problem in this system so far has not been
misclassification but the false alarm rate. In nearly all
misclassification cases the system failed to recognize the
symbol as the most likely, but returned it as a second most
likely symbol. After a symbol is classified, the system can
compute a few global features or use heuristics to reject
symbols that should not be recognized. One such post-
processing feature in the case of a rectangle could be the
number of distinguishable turn points (corners). In well-
sketched rectangles these may be identified as transitions
between HMM states. One could use the Viterbi algorithm
to find the most likely sequence of HMM states and detect
points at which the model transitions between states. It is
also possible to devise and rely on heuristics for scenarios
that do not fit such typical and expected behavior. This
can be illustrated in the case of a rectangle that has no
sharp edges but rather regions of slight and gradual
change. It is easier to check for the existence of these
attributes after the system believes it knows the symbol.
At the moment, we are only using the open and closed
global features in the results reported below.

(a)

(b)

Figure 7. (a) Closed symbols: Ellipse, Triangle,

Rectangle, Pentagon and Star; (b) Open symbols: Line,
Check, Cross, Delete, Arrow and Round Arrows.

Open vs. Closed Symbols

We identify and distinguish between open and closed
gestures based on the relative location of the starting and
ending points. Partially sketching a symbol can generate a
likelihood value that results in a model match when there
should not be one (e.g., a “c” vs. a circle). We address this
problem by using the closed or open gesture criterion for a
global feature. Figure 7(a) illustrates the 5 closed symbols
and Figure 7(b) illustrates the 7 open symbols that we
included in training and testing.

Results

The testing and training reflects the set of symbols that
are shown in Figure 7, all collected on a PDA. An initial
goal was to compare our classification results to those that
were generated in the similar work by Ou et al. (2003). As
a result, we selected the same set of symbols. Our results
and methods differ in that they performed linear
interpolation on the original sequence of pixels followed
by a resampling of the symbol, used a more complex
feature curvature extraction algorithm, worked on a tablet
pc and used a decision tree to classify open gestures.
These two works can also be expected to vary in the
degree to which symbol variation was included in the
testing and training data.

Generating comparable classification results is tricky.
Simply reporting a few classification numbers is not
sufficient. Variables within a testing environment include
variation due to sketching style in the symbols, subjective
factors such as when a symbol should no longer be
classified as a symbol (fuzzy thinking), sampling rate of
pixels, scaling of the symbols, and what combinations of
factors are accounted for in terms of testing and training
data.

Table 1 reflects the classification results from the entire
set of symbols in Figure 7. The samples were collected
from three different users. One user was very familiar
with a PDA, the other had used a PDA before and the last
user had never used a PDA. These samples varied in the
size, relative starting point for the gesture, orientation and
style. Ten training samples were collected from each user
and the classifier was tested using twenty separate
examples from each user. Therefore, the classification
results are generated from 60 testing samples per symbol.
Each classification result in Table 1 reflects the average of
all models that are used to represent that one symbol.
Hence, the ellipse classification results are the combination
of both the clockwise and counterclockwise models.

Table 1. Classification Results

Symbols Ou (2003) Our Results

Ellipse 99.1% 92%
Triangle 100% 95%
Rectangle 89.2% 93%
Pentagon 96.4% 93%
Star 100% 97%
Line 100% 98%
Check 97.3% 93%
Cross 98.2% 92%
Delete 92.8% 89%
Arrow 94.6% 98%
Round Arrow 94.6% and 95.5% 96%

The classification results provided by Ou et al. (2003)

are a little higher on some symbols, while slightly lower
than ours on others. We included two sets of classification

results in Table 1 for the round arrow, to maintain
uniformity with the results reported by Ou (2003). They
report a classification percentage of 94.6% on the arrow,
while we report 98%. They report higher and perfect
classification percentages on the line, star and triangle.
These two sets of results will differ due to training and
testing symbol variation, pre-processing procedures,
feature extraction and other factors that arise due to HMM
usage and implementation.

We also collected samples of symbols that we would
not expect any of the models to recognize. Figure 8(a)
demonstrates an example of a correctly not-recognized
symbol and Figure 8(b) shows a symbol that was marked
as identified but is a false alarm. The false alarm is an
example of what can happen with open gestures when they
are not performed in their entirety. Some form of post-
processing or heuristics, which we have discussed, can
then be used to disqualify it if desired.

(a) (b)

Figure 8. (a) Correctly not-recognized closed
symbol; (b) Open symbol recognized as a false alarm.

Sketch Interface for Multi-Robot Formations

The sketch recognition strategy discussed above has
been applied to a PDA interface for controlling a team of
small robots. In this section, we briefly describe our
sketch interface for driving multi-robot formations. See
also (Skubic et al., 2004) for more detail.

The symbol recognition component of the robot sketch
interface is responsible for identifying and distinguishing a
fixed set of control symbols which are used to create
multi-robot formations (Figure 9). The four symbols used
in the system were the ellipse, rectangle, line and arrow. A
user can also sketch “blobs”, which represent robots.
When a robot blob is recognized, the robot icon is
displayed on the PDA screen as a solid black circle.

Based on previous work, we have also supported a set
of editing capabilities to move and delete symbols
(sketching an “X”). A single HMM was not used to
recognize the delete command because it is the
combination of two separate strokes. For the moment, our
techniques can only handle the recognition of single stroke
symbols. We perform the check for a delete command
through the search for two consecutive lines being
sketched, each one independently recognized by a HMM,
and then perform a check for an intersection point. The
blob, also based on previous work, is sketched as a
“squiggle” (Skubic, Bailey, & Chronis, 2003).

 (a) (b)

Figure 9. Robot formation directives sketched on a

PDA. (a) Two robots sketched in a march formation;
(b) Two robots in a follow-the-leader formation, with
the leader moving in a circle.

The user can move and align the robot icons into

configurations such as “follow the leader” and “march side
by side” formations. While there are robot icons on the
screen, a user can sketch an arrow; the orientation of the
arrow with respect to the sketched robot icons is used to
identify the robot formation. Follow the leader is
identified when the robot icons are aligned in a linear
formation parallel to the arrow. The march side by side
formation is identified when the robot formation is
perpendicular to the sketched arrow direction. After the
command to march or follow the leader has been given,
there is an option to sketch additional symbols such as
ellipses, rectangles, or lines to change the geometric path
of the robots. For example, a sketched clockwise ellipse
after a follow the leader formation will result in the robot
leader moving in a clockwise circular path with the
remaining robot team following behind (Figure 9(b)).

The symbol recognition system has been implemented
in PalmOS using C++. The sketch recognition application
has been tested on several PDA platforms, including the
Handspring Visor, the Palm m505 and the Palm Tungsten
platforms. The recognition time of symbols is barely
noticeable at all. The recognition time depends on the
observation length, but on average is less than a second on
the Visor and appears to be automatic in almost all cases
on the Tungsten. When demonstrated at the AAAI
Conference, the recognition system successfully identified
symbols sketched by solicited participants. The team
earned a technical innovation award at the AAAI Robotics
Competition for the sketch-based interface.

Future Work

The existing system has several limitations that we
intend to address through future work. The high false

alarm rate is currently being reduced through a post-
processing phase using heuristics. Although this is an
acceptable solution for the prototype system, it does not
scale well for adding more types of symbols. This
limitation will be addressed by investigating alternative
features, or combinations of features. There is always a
tradeoff in classification and recognition ability when
considering whether to compute a local or global feature or
both. Also, we propose to extend the system to support
multi-stroke symbols.

Currently, there is no formal representation of
hierarchical structures (i.e., configurations of recognized
gestures). Configurations of gestures are handled in an ad
hoc manner. We are going to explore hierarchical
strategies and data structures for representing and
reasoning about configurations of symbols distributed over
space or time. To address the limited computational
resources and screen size of the PDA platform, we also are
investigating a port of the sketch-based interface from a
PDA to a Tablet PC.

Concluding Remarks

The application of Hidden Markov Models to sketch-
based symbol recognition as pixel-driven gestures is a very
attractive method. Acceptable classification rates can be
achieved through a moderate amount of pre-processing,
identification of adequate but discriminatory features,
appropriate selection or over specification of HMM
parameters and additional post-processing and post-
verification methods. False alarms are an undesirable and
unavoidable aspect of this approach, but can be addressed
through post-processing feature identification and
heuristics. HMMs can act as an extremely important tool
in the approach and design of sketch-based recognition
systems, but should be considered as only one source of
information. The outcomes of this classifier could be
fused or merged with another type of algorithm, heuristics,
or additional pattern recognition techniques to handle the
natural ambiguity in sketch understanding.

Acknowledgements

This work is partially funded by the Naval Research
Lab under grant N00173-04-1-G005.

References

Bilmes, J., 1997. A Gentle Tutorial of the EM Algorithm
and its Application to Parameter Estimation for
Gaussian Mixture and Hidden Markov Models,
Technical Report, University of Berkeley, ICSI-TR-97-
021.

Chronis, G., and Skubic, M., 2004. Robot Navigation
Using Qualitative Landmark States from Sketched

Route Maps. In Proc. IEEE. Conf. Robotics and
Automation, New Orleans, LA, May: 1530-1535.

Jorge, J., and Fonseca, M., 1999. A Simple Approach to
Recognize Geometric Shapes Interactively. Proc. Third
Intl. Workshop on Graphics Recognition, Jaipur, India,
Sept, 251-258.

Ou, J., Chen, X. and Yang, J., 2003. Gesture Recognition
for Remote Collaborative Physical Tasks Using Tablet
PCs, ICCV Workshop on Multimedia Technologies in E-
Learning and Collaboration, Nice, France, Oct.

Rabiner, L., 1989. A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition. In
Proc. IEEE, 77(2): 257-286.

Rubine, D., 1991. Specifying gestures by example.
Computer Graphics, 25: 329-337.

Sezgin, M., Stahovich, T., and Davis, R., 2001. Sketch
Based Interfaces: Early Processing for Sketch
Understanding. Proc. of PUI-2001, Orlando, Florida,
Nov, 1-8.

Skubic, M., Bailey, C., and Chronis, G., 2003. A Sketch
Interface for Mobile Robots, In Proc. IEEE Conf. SMC,
Washington, D.C., Oct, 918-924.

Skubic, M., Anderson, D., Khalilia, M., and Kavirayani,
S., 2004, A Sketch-Based Interface for Multi-Robot
Formations, AAAI Mobile Robot Competition 2004:
Papers from the AAAI Workshops, San Jose, CA, July.

Yasuda, H., Takahashi, K., and Matsumoto, T., 2000. A
Discrete HMM for Online Handwriting Recognition.
International Journal of Pattern Recognition and
Artificial Intelligence, 14(5): 675-689.

