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Abstract 

A central challenge for sketch-based interfaces is robust 
symbol recognition.  Artifacts such as sketching style, 
pixelized symbol representation and affine transformations 
are just a few of the problems.  Temporal pattern recognition 
through Hidden Markov Models (HMM) can be used to 
recognize and distinguish symbols as pixel-driven gestures.  
The key challenges of such a system are the type and amount 
of necessary pre-processing, feature extraction, HMM 
parameter selection and optional post processing.  In this 
paper, we describe a recognition strategy based on HMMs 
and include recognition results on twelve sketched symbols.  
In addition, we have successfully applied this methodology to 
a PDA sketch-based interface to control a team of robots.  
The symbol recognition component is used to identify 
sketched formations and issue commands that drive the 
behavior of the robot team. 

Introduction 

Our motivation for exploring sketch-based interfaces is 
to create intuitive interaction for controlling and 
communicating with one or more robots.  We have 
constructed a prototype system that was interactively 
demonstrated at the 2004 AAAI robot competition in San 
Jose, CA.  This interface was used to direct robot 
formations by communicating with a team of small mobile 
robots (Skubic et al., 2004).  In another project, we have 
developed a sketch-based interface that is used to sketch a 
route map that is then translated into a set of spatial rules 
for a single mobile robot (Skubic, Bailey & Chronis, 2003; 
Chronis & Skubic, 2004).  One similar factor between 
these two projects is the problem of recognizing a set of 
pre-defined symbols that can be drawn in a variety of 
different but similar ways and yet are interpreted robustly 
as control commands to the robot. These differences are 
due to affine transformations, user sketching styles, and 
problems associated with the pixelized symbol capture. In 
this paper, we present ongoing work towards a generalized 
method to recognize sketched symbols through the 
application of Hidden Markov Models (HMM). 

Strategies to perform symbol recognition include fuzzy 
logic rule-based systems (Jorge & Fonseca, 1999), global 
and discriminate geometric features (Rubine, 1991), 
primitive geometric shape fitting to pixel sequences 

(Sezgin, Stahovich & Davis, 2001) and even hybrid 
systems such as decision trees and HMMs (Ou, Chen & 
Yang, 2003).  The work performed by Sezgin et al. (2001) 
involves the discovery of vertices at the end of linear 
segments and the recognition of curved regions within a 
stroke.  They work to generate a more abstract and 
compact description of a stroke through recognition of 
primitive geometric shapes.  Ou et al. (2003) perform 
closed gesture symbol recognition with HMMs, but use 
decision trees in classifying open gestures.  They extract a 
measure of curvature in a window of consecutive pixels 
and use these features as observations to train a HMM.  A 
decision tree, constructed using the C4.5 algorithm, is used 
to classify open gestures by identifying a few attributes of 
the sketched symbol.   

Of these approaches, the HMM seems to hold the most 
promise for a generalized and automatic framework for 
recognizing sketched gestures.  However, a major 
challenge is finding a feature set that captures the essence 
of the gesture and yet is resilient to variability in scale, 
orientation, and sketching style. Other challenges include 
minimizing the number of training samples and 
computational complexity. 

HMMs can be applied to pixel-driven symbol 
recognition through the following steps: (1) the 
identification of pre-processing procedures to handle some 
initial level of symbol variation, (2) identification and 
extraction of features from the gesture, (3) an appropriate 
application specific selection of HMM parameters, and (4) 
the optional application of post-processing methods for 
false alarm removal or additional symbol verification.  In 
this work, we describe how we proceed with each step and 
address the topic of false alarm elimination through the 
process of post feature identification or heuristics.  
Another contribution of our work includes the discussion 
and explanation of a PDA (Personal Digital Assistant) 
sketch-based application for driving a robot team.  In 
addition, we discuss both the strength and limitations of 
using HMMs for pixel-driven sketched gesture 
recognition. 

Sketched Symbol Recognition 

As a symbol is sketched, the sequence of pixel 
coordinates, which correspond to the two dimensional 
locations of the pen over time, are recorded.  This temporal 
unfolding of the symbol in terms of pixel coordinates can 



be viewed as a form of gesture recognition.  The goal of 
the system is to compute and learn a set of model 
parameters that encapsulate symbol related discriminate 
temporal features.  These trained models are finite and can 
be transferred to a PDA to generate the online likelihood 
that some future observation, a new sequence of pixels, 
was generated from some particular known model.  

 
 
 
 

 
 

Figure 1. Pattern recognition procedure 
 

The overall goal is to develop one large classifier 
whose job is to recognize and classify sketched symbols.  
One example of a general pattern recognition system is 
illustrated in Figure 1 and encompasses the (1) observation 
and capturing of the data, (2) pre-processing of data, (3) 
extraction and identification of features, (4) application of 
the pattern recognition algorithms (typically some form of 
a classifier), (5) optional post processing procedures, and 
(6) final evaluation and interpretation of the results.  The 
steps behind performing sketch-based symbol recognition 
include (1) the capture of pixel coordinates, (2) pre-
processing of pixel data, (3) the extraction of features from 
the temporal pixel observations, (4) the application of 
HMMs to classify the symbol, (5) the application of post 
feature identification or heuristics to reduce false alarms, 
and (6) the final classification of a symbol into one of a 
known finite set.   

Pre-Processing 

It is a common approach to rely on pre-processing of 
the data to clean up and minimize erroneous behavior in 
the symbols.  This includes linear and non-linear methods 
to resample and interpolate a symbol.  Factors such as the 
amount of symbol variation, effects of pixelization, pixel 
sampling rate and speed which the user draws a symbol 
result in a possible introduction or elimination of features 
through pre-processing.  In the case of many linear re-
sampling methods, important areas such as edges can be 
greatly distorted.  The non-linear methods are attractive 
but come at the expense of higher computational time.   

We do not perform any elaborate pre-processing 
procedures, but rather attempt to later compensate for these 
factors within the model and its parameter selection.  In 
order to reduce the pre-processing time, we only perform 
minimal pre-processing.  The first step involves the 
removal of consecutive identical points.  The next step is a 
method of minimum distance pixel sampling (to down-
sample), which can be done quickly as the points are being 
captured, illustrated in Figure 2. 

Figure 2 illustrates one additional artifact that primarily 
surrounds sketching style.  As a user sketches symbols on 

a PDA screen, he can generate ‘hooks’ at the beginning or 
end of a symbol.  These hooks depend on factors such as 
the symbol sampling rate and size of the sketched symbol.  
One can attempt to identify these hooks for removal in a 
pre-processing stage.  The majority of our hooks were 
removed simply through the sequential removal of pixels 
within a fixed distance.  The remainder of hooks were 
recognized and removed, in a similar fashion to Ou et al. 
(2003), by identifying large points of angular change at the 
beginning of a sketch. 

 
 
 
 
 
 
 
 

 
(a) (b) 

Figure 2. Fixed distance pre-processing. (a) 
Sketched symbol example before fixed point removal; 
(b) Same symbol after fixed point removal. 

 
We strived for the fewest number of pre-processing 

procedures as possible.  PDA devices typically have a low 
amount of system resources available and a recognizer is 
only one component of a larger application.  Symbols 
sketched on a PDA are typically composed of a small 
number of observations or pixels.  The fewer the number 
of pixels the harder it can become to recover the geometric 
characteristics and identifying features for a symbol.  Any 
pre-processing procedure that modifies these already 
difficult to recognize symbols in a negative way can be 
devastating.  Some of the pre-processing procedures that 
we considered computationally acceptable resulted in the 
unacceptable distortion of symbols in important feature 
regions or required too many points to have been generated 
for small symbols.  An example of this is in the case of a 
fast sketched or small rectangle.  Linear filtering or 
interpolation techniques can distort the important edge 
features and make their recognition extremely difficult 

Feature Extraction 

Two similar feature extraction methods were 
investigated in order to study their computational 
attractiveness, robustness and classification power.  The 
first feature extraction procedure we analyzed was a local 
method of computing an angle from three consecutive 
pixels.  Two vectors are computed, one from the past to 
present pixel and the other from the present to next pixel.  
The feature reflects the angle between these two vectors.  
This method is sensitive to the style, speed, and other 
factors that make discrimination and classification very 
difficult.  The other side effect of this procedure was the 
occasional generation of very long observation sequences.   



 
 

 
 
 
 

 
 
 

Figure 3. Seven-step, sliding window feature 
extraction procedure. The red pixel represents the 
observation step for which we are computing the 
present feature. The blue arrow represents the average 
back vector and gold arrow represents the average 
forward vector. The feature computed is the angle 
between the back and forward vectors. 
 

The remainder of this paper reports symbol recognition 
results with respect to our second feature extraction 
procedure.  Figure 3 illustrates this seven step feature 
extraction procedure.  If there are N observations in the 
symbol, then the algorithm will compute (N-6) features.  
For every observation after the 3rd step and before the (N-
3) step, the angle between a forward and a back vector is 
computed, where the forward and back vectors are 
computed averages as shown in Figure 3.  The averaging 
effectively smoothes the curve and minimizes sketching 
differences due to distortion, varying sketching styles, and 
pixelization.  The pixel that the feature is being computed 
for is not actually used in determining the angle, which has 
helped to maintain important information such as sharp 
turns. 

Many symbols can be drawn in a variety of gesture 
specific sequences (e.g., clockwise vs. counterclockwise 
directions).  Thus, each symbol may require multiple 
HMM models in order to capture the different gesture 
specific ways in which the symbol can be sketched.  In 
some settings, a clockwise or counterclockwise sketched 
symbol can be represented as one HMM model by 
considering the absolute value of the angle and restricting 
the feature to be within the range of –180 to 180 degrees.  
However, in general, it may be useful to know how the 
user sketched the symbol.  We are presently using the 
multiple model idea, i.e. not using the absolute value of the 
angle, in order to determine a clockwise or 
counterclockwise gesture. 

This local feature extraction technique has the effect of 
introducing one additional problem that can be addressed 
through an optional pre-processing step or feature 
extraction procedure.  If the feature extraction procedure is 
calculated in the standard way referenced above, then the 
angular features for a large ellipse can have the side effect 
of being mapped into just one symbol (the straight line).  
This local feature extraction method has the unwanted side 
effect of missing subtle geometric changes.  If necessary, 
the components of the feature extraction procedure can be 
made a function of the symbol size and controlled.  This 
means that features can be computed not for every pixel, 

but every Dth pixel.  The number of past and next pixels 
that are used in calculation of the forward and back vectors 
can also be determined through the symbol size.  We are 
presently not modifying the internals of the feature 
extraction procedure, but rather using heuristics to choose 
when to down sample pixels based on the size of the 
symbol.   

One large predicament is how to develop a reliable and 
uniform pattern recognizer that works on multiple 
platforms with different processing speeds.  Our method of 
fixed pixel distance removal helps to overcome some of 
the problems associated with denseness, but is not as 
robust for large and dense symbols.  This is because the 
dropping criterion is determined through a heuristically 
selected threshold value.  In these cases, a more formal 
method of re-sampling might be necessary.  We are 
presently relying on an empirically selected heuristic value 
for fixed distance point removal. 

Temporal Pattern Recognition 

Hidden Markov Models (HMM) are an attractive 
approach to pixel-driven symbol recognition.  HMMs are 
the classical workhorse for recognizing temporal patterns, 
such as natural speech recognition (Rabiner, 1989).  An 
HMM assumes that the process being learned is composed 
of a finite sequence of discrete and stochastic hidden 
states.  The states are assumed to be hidden but observable 
through features that the hidden states emit.  Figure 4 is an 
illustration of a continuous observation HMM (COHMM).  
A COHMM is represented through a collection of hidden 
states (Wi), associated hidden state transition probabilities 
(a(i,j)) and hidden state probability density functions 
(pdf’s).  For a formal and complete definition of HMMs 
refer to Rabiner (1989) or Bilmes (Bilmes, 1997). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Hidden Markov Model illustration 



The three classical problems associated with HMMs 
include: 

 
1. Classification Problem: Given an observation 

sequence, which model is the most likely to have 
emitted the particular sequence? 

2. Most Likely State Sequence Problem:  What is the 
most likely sequence of hidden states which are 
believed to have emitted a given observation 
sequence? 

3. Training or Learning Problem:  Given one or more 
observation sequences, what are the model parameters 
associated which maximizing the likelihood of the 
observations? 

 
HMM problem 3 takes the greatest computational time 

and can be performed offline for the particular case of 
sketch-based symbol recognition.  Our HMM models are 
trained offline in Matlab.  Even though the computational 
time of problem 3 is noted, it is not a factor because it is 
not part of the final PDA classifier and only has to be 
computed once offline.  Step 1 is the only algorithm that 
needs to be implemented and transferred onto a PDA to 
predict and classify future observations (symbols). 

We have applied the traditional Baum-Welch algorithm 
to iteratively re-estimate the parameters for a discrete 
observation HMM (DOHMM).  Model verification can be 
done using the conventional forward and backward 
procedure with appropriate scaling (Rabiner, 1989).  A 
discrete model has limitations and can induce problems 
into the learning process.  Discretization of the features 
always results in some form of information loss, but it 
appears to be an acceptable level in this application.  We 
discuss methods here to attempt to overcome and 
compensate for these problems by a careful selection of 
HMM parameters. 

The angular features that we generate are mapped into 
20 different discrete symbols.  Note that the first symbol is 
reflective of the concept ‘about zero’ (0 +/- ((360°/N)/2), 
where N is the number of discrete symbols), as depicted in 
Figure 5.  This is in contrast to the method of considering 
the first symbol to range between 0° to (360°/N).  If the 
symbols are computed in this fashion, then straight 
gestures with a slight angle will be mapped into two 
different symbols, i.e. 1 and N.   
 

 
 
 
 
 
 
 

 
Figure 5. Discrete mapping of the angular features 

that we compute from the domain [0°, 360°] into one of 
(1 … N) discrete symbols.  The numbers (3... N-1) have 
pictorially been left out. 

 
In the ideal world of little symbol variation and perfect 

features there may be only two distributions (i.e. two 
hidden states) for an arrow.  One distribution could 
represent the straight line feature, while the other could 
correspond to the sharp edges.  We attempted to use a two 
state model initially, but the combination of sketching 
style, pixelized symbol representation and our local feature 
extraction procedure did not yield adequate classification 
rates.  However, we found that we could learn a model to 
represent this symbol if we over specified the number of 
HMM hidden states.  Figure 6 demonstrates our trained 
HMM for the arrow.  We over specified the model by an 
additional two states.  State 1 appears to learn the straight 
line feature, while state 3 appears to capture the sharp edge 
feature.  States 2 and 4 appear to learn features that 
correspond to subtle changes in a straight line direction, 
which might relate to slightly curved regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Trained HMM for the arrow gesture.  

Rectangular regions represent the state pdf’s of the 
feature computed as in Figure 3. 

 
We attempt to compensate and deal with some of the 

sketched symbol variation through an over specification in 
the number of HMM hidden states, selection of enough 
discrete observation symbols and an adequate number of 
training data.  The over specification in the number of 
HMM hidden states has proven to handle slight 
inaccuracies that can arise in the local feature extraction 
procedure and also help to capture reoccurring symbol 
variation that appears to be natural for some symbols, such 
as not straight but slightly curved.   

This idea of over specifying the number of hidden 
states is somewhat analogous to a mixture density HMM, 
which works to learn multiple pdf’s per hidden state.  Our 
initial hypothesis was that an over specification of the 
number of hidden states might help to learn difficult 
regions that arise from sketching style or compensate for 
the relatively simple feature extraction procedure.  An 
appropriate selection of the number of discrete observation 
symbols helps in learning the pdf’s associated with each 
hidden state.  The number and type of training data is 
necessary in order to accurately capture and learn these 
attributes of interest.  This different approach represents an 



attempt to learn and account for some variation that arises 
when considering a large and robust set of training data 
from a variety of users through a local feature extraction 
procedure.   

The primary problem in this system so far has not been 
misclassification but the false alarm rate.  In nearly all 
misclassification cases the system failed to recognize the 
symbol as the most likely, but returned it as a second most 
likely symbol.  After a symbol is classified, the system can 
compute a few global features or use heuristics to reject 
symbols that should not be recognized.  One such post-
processing feature in the case of a rectangle could be the 
number of distinguishable turn points (corners).  In well-
sketched rectangles these may be identified as transitions 
between HMM states.  One could use the Viterbi algorithm 
to find the most likely sequence of HMM states and detect 
points at which the model transitions between states.  It is 
also possible to devise and rely on heuristics for scenarios 
that do not fit such typical and expected behavior.  This 
can be illustrated in the case of a rectangle that has no 
sharp edges but rather regions of slight and gradual 
change.  It is easier to check for the existence of these 
attributes after the system believes it knows the symbol.  
At the moment, we are only using the open and closed 
global features in the results reported below.    
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Figure 7. (a) Closed symbols: Ellipse, Triangle, 

Rectangle, Pentagon and Star; (b) Open symbols: Line, 
Check, Cross, Delete, Arrow and Round Arrows. 

Open vs. Closed Symbols 

We identify and distinguish between open and closed 
gestures based on the relative location of the starting and 
ending points.  Partially sketching a symbol can generate a 
likelihood value that results in a model match when there 
should not be one (e.g., a “c” vs. a circle). We address this 
problem by using the closed or open gesture criterion for a 
global feature.  Figure 7(a) illustrates the 5 closed symbols 
and Figure 7(b) illustrates the 7 open symbols that we 
included in training and testing. 

Results 

The testing and training reflects the set of symbols that 
are shown in Figure 7, all collected on a PDA.  An initial 
goal was to compare our classification results to those that 
were generated in the similar work by Ou et al. (2003).  As 
a result, we selected the same set of symbols.  Our results 
and methods differ in that they performed linear 
interpolation on the original sequence of pixels followed 
by a resampling of the symbol, used a more complex 
feature curvature extraction algorithm, worked on a tablet 
pc and used a decision tree to classify open gestures.  
These two works can also be expected to vary in the 
degree to which symbol variation was included in the 
testing and training data. 

Generating comparable classification results is tricky.  
Simply reporting a few classification numbers is not 
sufficient.  Variables within a testing environment include 
variation due to sketching style in the symbols, subjective 
factors such as when a symbol should no longer be 
classified as a symbol (fuzzy thinking), sampling rate of 
pixels, scaling of the symbols, and what combinations of 
factors are accounted for in terms of testing and training 
data. 

Table 1 reflects the classification results from the entire 
set of symbols in Figure 7.  The samples were collected 
from three different users.  One user was very familiar 
with a PDA, the other had used a PDA before and the last 
user had never used a PDA.  These samples varied in the 
size, relative starting point for the gesture, orientation and 
style.  Ten training samples were collected from each user 
and the classifier was tested using twenty separate 
examples from each user.  Therefore, the classification 
results are generated from 60 testing samples per symbol.  
Each classification result in Table 1 reflects the average of 
all models that are used to represent that one symbol.  
Hence, the ellipse classification results are the combination 
of both the clockwise and counterclockwise models. 

 
Table 1. Classification Results 

 
Symbols Ou (2003) Our Results 

Ellipse 99.1% 92% 
Triangle 100% 95% 
Rectangle 89.2% 93% 
Pentagon 96.4% 93% 
Star 100% 97% 
Line 100% 98% 
Check 97.3% 93% 
Cross 98.2% 92% 
Delete 92.8% 89% 
Arrow 94.6% 98% 
Round Arrow 94.6% and 95.5% 96% 

 
The classification results provided by Ou et al. (2003) 

are a little higher on some symbols, while slightly lower 
than ours on others.  We included two sets of classification 



results in Table 1 for the round arrow, to maintain 
uniformity with the results reported by Ou (2003).  They 
report a classification percentage of 94.6% on the arrow, 
while we report 98%.  They report higher and perfect 
classification percentages on the line, star and triangle.  
These two sets of results will differ due to training and 
testing symbol variation, pre-processing procedures, 
feature extraction and other factors that arise due to HMM 
usage and implementation. 

We also collected samples of symbols that we would 
not expect any of the models to recognize.  Figure 8(a) 
demonstrates an example of a correctly not-recognized 
symbol and Figure 8(b) shows a symbol that was marked 
as identified but is a false alarm.   The false alarm is an 
example of what can happen with open gestures when they 
are not performed in their entirety.  Some form of post-
processing or heuristics, which we have discussed, can 
then be used to disqualify it if desired. 
 

 
 
 
 
 

(a) (b) 
 

Figure 8. (a) Correctly not-recognized closed 
symbol; (b) Open symbol recognized as a false alarm. 

Sketch Interface for Multi-Robot Formations 

The sketch recognition strategy discussed above has 
been applied to a PDA interface for controlling a team of 
small robots.  In this section, we briefly describe our 
sketch interface for driving multi-robot formations.  See 
also (Skubic et al., 2004) for more detail.   

The symbol recognition component of the robot sketch 
interface is responsible for identifying and distinguishing a 
fixed set of control symbols which are used to create 
multi-robot formations (Figure 9).  The four symbols used 
in the system were the ellipse, rectangle, line and arrow.  A 
user can also sketch “blobs”, which represent robots. 
When a robot blob is recognized, the robot icon is 
displayed on the PDA screen as a solid black circle.   

Based on previous work, we have also supported a set 
of editing capabilities to move and delete symbols 
(sketching an “X”).  A single HMM was not used to 
recognize the delete command because it is the 
combination of two separate strokes.  For the moment, our 
techniques can only handle the recognition of single stroke 
symbols.  We perform the check for a delete command 
through the search for two consecutive lines being 
sketched, each one independently recognized by a HMM, 
and then perform a check for an intersection point.  The 
blob, also based on previous work, is sketched as a 
“squiggle” (Skubic, Bailey, & Chronis, 2003). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                 (a)                                        (b) 
 
Figure 9. Robot formation directives sketched on a 

PDA.  (a) Two robots sketched in a march formation; 
(b) Two robots in a follow-the-leader formation, with 
the leader moving in a circle. 

 
The user can move and align the robot icons into 

configurations such as “follow the leader” and “march side 
by side” formations.  While there are robot icons on the 
screen, a user can sketch an arrow; the orientation of the 
arrow with respect to the sketched robot icons is used to 
identify the robot formation.  Follow the leader is 
identified when the robot icons are aligned in a linear 
formation parallel to the arrow.  The march side by side 
formation is identified when the robot formation is 
perpendicular to the sketched arrow direction.  After the 
command to march or follow the leader has been given, 
there is an option to sketch additional symbols such as 
ellipses, rectangles, or lines to change the geometric path 
of the robots. For example, a sketched clockwise ellipse 
after a follow the leader formation will result in the robot 
leader moving in a clockwise circular path with the 
remaining robot team following behind (Figure 9(b)). 

The symbol recognition system has been implemented 
in PalmOS using C++.  The sketch recognition application 
has been tested on several PDA platforms, including the 
Handspring Visor, the Palm m505 and the Palm Tungsten 
platforms.  The recognition time of symbols is barely 
noticeable at all.  The recognition time depends on the 
observation length, but on average is less than a second on 
the Visor and appears to be automatic in almost all cases 
on the Tungsten.  When demonstrated at the AAAI 
Conference, the recognition system successfully identified 
symbols sketched by solicited participants.  The team 
earned a technical innovation award at the AAAI Robotics 
Competition for the sketch-based interface. 

Future Work 

The existing system has several limitations that we 
intend to address through future work. The high false 



alarm rate is currently being reduced through a post-
processing phase using heuristics. Although this is an 
acceptable solution for the prototype system, it does not 
scale well for adding more types of symbols. This 
limitation will be addressed by investigating alternative 
features, or combinations of features.  There is always a 
tradeoff in classification and recognition ability when 
considering whether to compute a local or global feature or 
both.  Also, we propose to extend the system to support 
multi-stroke symbols. 

Currently, there is no formal representation of 
hierarchical structures (i.e., configurations of recognized 
gestures). Configurations of gestures are handled in an ad 
hoc manner. We are going to explore hierarchical 
strategies and data structures for representing and 
reasoning about configurations of symbols distributed over 
space or time. To address the limited computational 
resources and screen size of the PDA platform, we also are 
investigating a port of the sketch-based interface from a 
PDA to a Tablet PC. 

Concluding Remarks 

The application of Hidden Markov Models to sketch-
based symbol recognition as pixel-driven gestures is a very 
attractive method.  Acceptable classification rates can be 
achieved through a moderate amount of pre-processing, 
identification of adequate but discriminatory features, 
appropriate selection or over specification of HMM 
parameters and additional post-processing and post-
verification methods.  False alarms are an undesirable and 
unavoidable aspect of this approach, but can be addressed 
through post-processing feature identification and 
heuristics.  HMMs can act as an extremely important tool 
in the approach and design of sketch-based recognition 
systems, but should be considered as only one source of 
information.  The outcomes of this classifier could be 
fused or merged with another type of algorithm, heuristics, 
or additional pattern recognition techniques to handle the 
natural ambiguity in sketch understanding. 
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