
Position Paper—AAAI Fall Symposium on Dialogue Systems for Health Communication—October 22-24 2004, Washington
DC

A Triage Information Agent (TIA) based on the IDA Technology

Stan Franklin and Dan Jones, M.D.
Institute for Intelligent Systems

The University of Memphis
Memphis, TN 38152 USA

franklin@memphis.edu, djones@nwaft.com

Abstract
Busy hospital emergency rooms are concerned with
shortening the waiting times of patients, with relieving
overburdened physicians, and with reducing the number of
mistakes made by triage nurses. Here we propose a
software agent, dubbed TIA (Triage Information Agent)
that, via dialogue in English, would gather both logistical
and medical information from a patient for later use by the
triage nurse. TIA would also give tentative, possible
diagnoses to the triage nurse, along with recommendations
for non-physician care. The IDA Technology makes a
software agent such as TIA feasible, at least in principle.

Introduction
With waiting times in busy hospital emergency rooms
measured in hours, hospital administrators are looking for
ways to shorten them. Overwhelmed triage nurses often
make mistakes, sometimes leading to malpractice suits.
Though a solution for neither, a software Triage
Information Agent (TIA) could help alleviate both
problems. After a triage nurse rules out an immediately
life-threatening situation, a patient would engage in a
dialogue with TIA, who would then pass information about
the patient’s condition (chief complaint and differential
diagnoses) and recommendations for prioritization and
non-physician care to the nurse. After perusing the
information and suggestions from TIA, the nurse would
further observe and interview the patient as needed before
making the appropriate decisions.

Originally developed for personnel work for the U. S.
Navy, the IDA technology permits the automation of
human information agents, that is, of the daily tasks of
people who dialogue with clients, consult databases,
adhere to company policies, make decisions, and produce
text-based products (Franklin 2001). This would include
travel agents, customer service agents, loan officers, and
insurance agents. The IDA technology will also allow the

development of TIA. TIA is envisioned as a
conversational, decision making agent without an on-
screen avatar (Cassell and Vilhjálmsson 1999; Traum and
Rickel 2002).

IDA
IDA (Intelligent Distribution Agent) is a “conscious”
software agent that was developed for the US Navy
(Franklin et al. 1998). At the end of each sailor's tour of
duty, the sailor is assigned to a new billet. This assignment
process is called distribution. The Navy employs some 280
people, called detailers, to effect these new assignments.
IDA's task is to facilitate this process by completely
automating the role of detailer. IDA must communicate
with sailors via email in natural language, by
understanding the content and producing life-like
responses. Sometimes she will initiate conversations. She
must access several databases, again understanding the
content. She must see that the Navy's needs are satisfied by
adhering to some ninety policies and seeing that job
requirements are fulfilled. She must hold down moving
costs, but also cater to the needs and desires of the sailor as
well as is possible. This includes negotiating with the
sailor via an email correspondence in natural language.
Finally, she must write the orders and start them on the
way to the sailor. At this writing an almost complete
version of IDA is up and running and had been
demonstrated and tested to the satisfaction of the Navy.

The IDA Technology
The IDA Technology is based on a number of highly
connected modules each built on its distinct mechanism.
Most of these are up and running. A few are still being
developed, and a couple are designed but not yet
implemented. Figure 1 portrays these interconnections.

Figure 1. The IDA Architecture

Following Hofstadter’s terminology (see below) a
codelet is a special purpose, relatively independent, mini-
agent typically implemented as a small piece of code
running as a separate thread. IDA depends heavily on such
codelets for almost every module. In what follows we will
encounter several different types of codelets such as
perceptual codelets, attention codelets, information
codelets, behavior codelets and language generation
codelets. Many codelets play the role of demons (as in an
operating system) waiting patiently for the conditions
under which they can act. Some codelets subserve some
higher-level construct, while others act completely
independently.

In this section we describe several of the IDA modules
that would play a role in TIA.

Perception
Perception in IDA consists mostly of processing incoming
email messages in natural language (Zulandt Schneider et
al. 2001). In sufficiently narrow domains, natural language
understanding may be achieved via an analysis of surface
features without the use of a traditional symbolic parser
(Jurafsky & Martin 2000). Allen describes this approach to
natural language understanding as complex, template-
based matching (1995). Ida’s relatively limited domain
requires her to deal with only a few dozen or so distinct
message types, each with relatively predictable content.
This allows for surface level natural language processing.
We hypothesize that much of human language
understanding results from a combined bottom up/top
down passing of activation through a hierarchical

conceptual net with the most abstract concepts in the
middle.

Thus IDA’s language-processing module has been
implemented as a Copycat-like architecture with
perceptual codelets that are triggered by surface features
and a slipnet (Hofstadter & Mitchell 1994), a semantic net
that passes activation. The slipnet stores domain
knowledge. In addition there’s a pool of perceptual
codelets specialized for recognizing particular pieces of
text, and production templates used by codelets for
building and verifying understanding. Together they
constitute an integrated sensing system for IDA, allowing
her to recognize, categorize and understand.

It’s important to be clear about what is claimed by the
work “understand” as used in the previous sentence. An
example may help. A secretary sending out an email
announcement of an upcoming seminar on Compact
Operators on Banach Spaces can be said to have
understood the organizer’s request that she do so even
though she has no idea of what a Banach space is much
less what compact operators on them are. In most cases it
would likely require person years of diligent effort to
impart such knowledge. Nonetheless, the secretary
understands the request at a level sufficient for her to get
out the announcement. In the same way IDA understands
incoming email messages well enough to do all the things
she needs to with them. An expanded form of this
argument can be found in Artificial Minds (Franklin 1995).
Glenberg also makes a similar argument (1997).

IDA must also perceive the contents read from
databases, a much easier task. An underlying assumption
motivates our design decisions about perception. Suppose,

for example, that IDA receives a message from a sailor
saying that his projected rotation date (PRD) is
approaching and asking that a job be found for him. The
perception module would recognize the sailor’s name and
social security number, and that the message is of the
please-find-job type. This information would then be
written to the workspace. The general principle here is that
the contents of perception are written to working memory
before becoming conscious.

Workspace
IDA solves routine problems with novel content. This
novel content goes into her workspace, which roughly
plays the same role as human working memory. Perceptual
codelets write to the workspace as do other, more internal
codelets. Quite a number of codelets, including attention
codelets (see below) watch what’s written in the
workspace in order to react to it. Part, but not all, the
workspace, called the focus1, by Kanerva (1988)) is set
aside as an interface with long-term LTM. Retrievals from
LTM are made with cues taken from the focus and the
resulting associations are written to other registers in the
focus. The contents of still other registers in the focus are
stored in (written to) associative memory as we will see
below. Items in the workspace decay over time, and may
be overwritten. Not all of the contents of the workspace
eventually make their way into consciousness.

Associative memory
IDA employs sparse distributed memory (SDM) as her
major associative memory (Kanerva 1988, Anwar &
Franklin 2003). SDM is a content addressable memory
that, in many ways, is an ideal computational mechanism
for use as a long-term associative memory (LTM). Any
item written to the workspace cues a retrieval from LTM,
returning prior activity associated with the current entry.
LTM is accessed as soon as information reaches the
workspace, and the retrieved associations will be also
written to the workspace.

At a given moment IDA’s workspace may contain,
ready for use, a current entry from perception or
elsewhere, prior entries in various states of decay, and
associations instigated by the current entry, i.e. activated
elements of LTM. IDA’s workspace thus consists of both
short-term working memory (STM) and something very
similar to the long-term working memory (LT-WM) of
Ericsson and Kintsch (1995).

Consciousness mechanism
The apparatus for “consciousness” consists of a coalition
manager, a spotlight controller, a broadcast manager, and a
collection of attention codelets whose job it is to bring

1 Not to be confused with focus as in focus of attention, an
entirely different concept.

appropriate contents to “consciousness” (Bogner et al.
2000). Each attention codelet keeps a watchful eye out for
some particular occurrence that might call for “conscious”
intervention. In most cases the attention codelet is
watching the workspace, which will likely contain both
perceptual information and data created internally, the
products of “thoughts.” Upon encountering such a
situation, the appropriate attention codelet will form a
coalition with the small number of information codelets
that carry the information describing the situation. This
association should lead to the collection of this small
number of information codelets, together with the attention
codelet that collected them, becoming a coalition. Codelets
also have activations. The attention codelet increases its
activation in order that the coalition, if one is formed,
might compete for the spotlight of “consciousness”. Upon
winning the competition, the contents of the coalition is
then broadcast to all codelets. If or when successful, its
contents will be broadcast. Broadcast contents are also
stored in (written to) associative memory as the contents of
“consciousness” should be.

Action selection (decision making)
IDA depends on a behavior net (Maes 1989, Negatu &
Franklin 1999) for high-level action selection in the
service of built-in drives. She has several distinct drives
operating in parallel. These drives vary in urgency as time
passes and her environment changes. Behaviors are
typically mid-level actions, many depending on several
behavior codelets for their execution. A behavior net is
composed of behaviors, corresponding to goal contexts in
GW theory, and their various links. A behavior looks very
much like a production rule, having preconditions as well
as additions and deletions. It’s typically at a higher level of
abstraction often requiring the efforts of several codelets to
effect its action. A behavior can be thought of as the
collection of its codelets (processors) in accordance with
global workspace theory. Each behavior occupies a node in
a digraph. The three types of links, successor, predecessor
and conflictor, of the digraph are completely determined
by the pre- and post-condition of its behaviors (Maes
1989).

As in connectionist models (McClelland et al. 1986),
this digraph spreads activation. The activation comes from
that stored in the behaviors themselves, from the
environment, from drives, and from internal states. The
more relevant a behavior is to the current situation, the
more activation it is going to receive from the
environment. Each drive awards activation to those
behaviors that will satisfy it. Certain internal states of the
agent can also send activation to the behavior net. One
example might be activation from a coalition of codelets
responding to a “conscious” broadcast. Activation spreads
from behavior to behavior along both excitatory and
inhibitory links and a behavior is chosen to execute based

on activation. Her behavior net produces flexible, tunable
action selection for IDA. As is widely recognized in
humans the hierarchy of goal contexts is fueled at the top
by drives, that is, by primitive motivators, and at the
bottom by input from the environment, both external and
internal.

The broadcast is received by appropriate behavior
codelets who know to instantiate a behavior stream in the
behavior net for dealing with the current situation. They
also bind appropriate variables, and send activation to
appropriate behaviors. If or when a particular behavior is
chosen to be executed, behavior codelets associated with it
jump into action each performing its task.

The process just described leads us to speculate that in
humans, like in IDA, processors (neuronal groups) bring
perceptions and thoughts to consciousness. Other
processors, aware of the contents of consciousness,
instantiate an appropriate goal context hierarchy, which in
turn, motivates yet other processors to perform internal or
external actions.

Deliberation
Since IDA’s domain is fairly complex, she requires
deliberation in the sense of creating possible scenarios,
partial plans of actions, and choosing between them
(Sloman 1999). In her original domain, IDA constructs a
list of a number of possible jobs in her workspace, together
with their fitness values. She must construct a temporal
scenario for at least a few of these possible billets to see if
the timing will work out (say if the sailor can be aboard
ship before the departure date). In each scenario the sailor
leaves his or her current post during a approved time
interval, spends a specified length of time on leave,
possibly reports to a training facility on a certain date, uses
travel time, and arrives at the new billet within a given
time frame. Such scenarios are valued on how well they fit
the temporal constraints (the gap) and on moving and
training costs. These scenarios are composed of scenes
organized around events. They are constructed in the
workspace by the process proceeding from attention
codelets, to “consciousness,” to behavior net, to behavior
codelets, as described previously.

Negotiation
After IDA has selected one or more jobs to be offered to a
given sailor, her next chore is to negotiate with the sailor
until one job is decided upon. The US Navy is quite
concerned about retention of sailors in the service. This
depends heavily on the sailor’s job satisfaction. Thus the
Navy gives a high priority to the assignment of a job that
both satisfies the sailor’s preferences and offers
opportunity for advancement, sometimes including
additional training. Whenever possible the final job
assignment is made with the sailor’s agreement. IDA must
negotiate this agreement with the sailor.

When the initial job offerings are made the sailor may
respond in several different ways. He may accept one of
the jobs offered. He may decline all of them and request
some different job assignment. He may ask for a particular
job not among those offered. He may ask that the process
be postponed until a new requisition list appears, hoping to
find something more to his liking. IDA may accede to or
deny any of these requests, the decision often dependent
on time constraints and/or the needs of the service. The
continuing negotiations offer many possible paths. It ends
with one job being assigned to the sailor, most often with
his agreement, but sometimes without.

IDA must be able to carry out such negotiations. This
requires making decisions and responding to the sailor’s
messages.

There’s more to the IDA architecture and mechanisms,
but this is all that space will allow.

Description of TIA
The high-lever goals of TIA are (1) to shorten total

patient time in the Emergency Department, and (2) to
decrease triage-related errors and malpractice risk. These
can both be reduced to more specific subgoals:

1. Shorten wait time for commencement of care. In
most busy ED’s, the bottleneck resource is physician
time. If the time required for accurate triage is
reduced from 10 minutes to 2 minutes, nothing is
gained if the patient still has to wait a total of 3 hours
for a physician to become available. So to shorten
wait times, TIA must either (a) decrease the amount of
time a physician spends with patients (on average); or
decrease the average time spent waiting for non-
physician care (e.g., nursing procedures, lab tests, x-
rays, etc.). The obvous low-lying fruit here is to have
TIA initiate routine non-physician care actions based
on specific criteria.

The most common ED patient is probably a ‘2-
step’ patient: the physician sees the patient, creates a
‘differential diagnosis’ (list of possible causes of the
patient’s problem), and orders specific tests or
procedures to be done. That’s step 1. Then, maybe
two hours later, the nurse (or status board) notifies the
physician that the patient’s tests and procedures have
been completed. At that time, the physician sees the
patient again, reviews the test or procedure results,
and arrives at a provisional diagnosis and disposition
for the patient. That’s step 2. Some patients
(‘quickies’) only require one step, and some require
three or more, but two it probably most typical.

An effective triage system, such as TIA, could
effectively convert many or most 2-step patients to 1-
step patients by automatically triggering orders for
specific tests and procedures based on triage

information. For example, a patient with a sore throat
and fever should have a ‘Strep screen’; and a patient
with cough and fever plus chest pain or shortness of
breath needs a chest x-ray. The best ED triage nurses
become reasonably fluent at recognizing and ‘pre-
ordering’ only the most obvious such tests and
procedures. TIA could accomplish pre-ordering of
needed tests and procedures much more
comprehensively and consistently than most triage
nurses; and (in the physician author’s opinion) more
efficiently and effectivly than most physicians, who
tend to be inconsistent, frequently omitting important
tests and often ordering unnecessary ones

2. Decrease triage-related errors and malpractice risk. In
general, error reduction equates to malpractice risk
reduction. TIA can reduce errors of two types:

a) Errors of delay. In a busy ED, resources are
limited and there is an unavoidable ‘average
wait’ for patients to obtain care. The primary
function of triage is to sort patients according
to their ‘urgency’ (need for early or
immediate attention to avoid death, disability
or suffering). The best triage nurses (with
years of experience) become ‘reasonably
good’ at recognizing which patients need
urgent attention, and which can wait. By
consistently recognizing an unlimited number
of prioritization criteria, TIA can lend greater
reliability and consistency to the
prioritization function.

b) Errors of oversight or omission. One of the
most common causes of physician
malpractice is failure of the tired, fatigued or
overworked physician to formulate a
reasonable ‘differntial diagnosis’ (list of
possible causes), and to obsessively test
further for the most serious possibilities.
There is a constant human tendency, when
fatigued and/or under time pressure, to focus
in on the most obious or likely diagnosis, and
ignore or overlook less likely but more
serious causes. By consistently recognizing
and flagging for physician attention the most
serious causes of specific patient complaints,
TIA can reduce physician oversights, thereby
increasing the quality of care and reducing
malpractice risk.

Issues of Concern
Although TIA can be expected to reduce waiting times to
be seen by a triage nurse, by reducing the time a triage
nurse spends with each patient, a triage nurse is still going
to have to take the vital signs and recognize immediately
life-threatening situations. That’s about all most triage
nurses do, other than enter a ‘chief complaint’ and patient

demographics. These can be off-loaded to TIA, perhaps
reducing nurse time per patient.

The real savings of time will come from converting
two-step patients to one-step patients. TIA can add
consistent triggering of early ordering of tests and
procedures, and consistent warning regarding consistent
diagnostic possibilities, and those functions can reduce
overall time in the emergency room, as well as reducing
errors.

We expect that TIA will gather information from
patients by conversing with them in colloquial English
using voice recognition and speech synthesizing. Though
the quality of such voice recognition an speech
synthesizing systems are steadily improving, various parts
of this country are becoming more and more bilingual,
which may create problems. Errors in voice recognition
could often be handled conversationally by TIA as is done
by humans. Still, voice recognition would be the likely
stumbling block for an implemented and fielded TIA in the
near future. Concerns about the early feasibility of a
natural language interface directly between TIA and
patient arise for multiple reasons: the patient’s age, degree
of incapacity due to illness/stress, intelligence level,
English fluency, etc., all vary tremendously; one’s
interview technique often has to be radically modified on
the fly; a question often has to be asked three different
ways to find one the patient understands; and the source of
the information often moves around from the patient to the
little brother to the mother and then the aunt, etc. All of
these foreseen difficulties can, in principle, be overcome
with our current technology as soon as the voice
recognition becomes sufficiently reliable.

Knowledge engineering into TIA will require
identifying the topics of conversation that TIA should
broach. These will surely include patient identifying data
and demographics, the ‘chief complaint’ and related
symptoms, and qualifications thereof (e.g., the nature of
the pain, duration of symptoms, etc.). The cost of such
knowledge engineering for the TIA system should be on
the order of magnitude of ten person years or $1,000,000.
The gains, spread over hundreds of emergency rooms,
should surely justify this cost.

Will patients willingly interact with TIA? This will
depend on TIA’s ease of use, and on the patient’s
perception of TIA’s benefits. Some educational effort may
well be needed. Still, people are becoming more
accustomed to, and more comfortable with, dealing with
software agents of various types. Thus patients’
willingness shouldn’t be a major problem.

References
Allen, J. J. 1995. Natural Language Understanding.

Redwood City CA: Benjamin/Cummings; Benjamin;
Cummings.

Anwar, A., and S. Franklin. 2003. Sparse Distributed
Memory for "Conscious" Software Agents. Cognitive
Systems Research 4:339–354.

Cassell, J., and H. Vilhjálmsson. 1999. Fully Embodied
Conversational Avatars: Making Communicative
Behaviors Autonomous. Autonomous Agents and
Multi-Agent Systems 2:45-64.

Ericsson, K. A., and W. Kintsch. 1995. Long-term working
memory. Psychological Review 102:211–245.

Franklin, S. 1995. Artificial Minds. Cambridge MA: MIT
Press.

Franklin, S. 2001. Automating Human Information
Agents. In Practical Applications of Intelligent
Agents, ed. Z. Chen, and L. C. Jain. Berlin: Springer-
Verlag.

Glenberg, A. M. 1997. What memory is for. Behavioral
and Brain Sciences 20:1–19.

Hofstadter, D. R., and M. Mitchell. 1994. The Copycat
Project: A model of mental fluidity and analogy-
making. In Advances in connectionist and neural
computation theory, Vol. 2: logical connections, ed.
K. J. Holyoak, and J. A. Barnden. Norwood N.J.:
Ablex.

Jurafsky, D., and J. H. Martin. 2000. Speech and Language
Processing. Englewood Cliffs, NJ: Prentice-Hall.

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge
MA: The MIT Press.

Maes, P. 1989. How to do the right thing. Connection
Science 1:291–323.

Negatu, A., and S. Franklin; 1999. Behavioral learning for
adaptive software agents. Intelligent Systems: ISCA
5th International Conference; International Society
for Computers and Their Applications - ISCA;
Denver, Colorado; June 1999.

Sloman, A. 1999. What Sort of Architecture is Required
for a Human-like Agent? In Foundations of Rational
Agency, ed. M. Wooldridge, and A. S. Rao.
Dordrecht, Netherlands: Kluwer Academic
Publishers.

Traum, D., and J. Rickel. 2002. Embodied agents for
multi-party dialogue in immersive virtual worlds. In
Proceedings of the first international joint conference
on Autonomous agents and multiagent systems: part
2. New York: ACM Press.

Zulandt Schneider, R. A., R. Huber, and P. A. Moore.
2001. Individual and status recognition in the
crayfish, Orconectes rusticus: The effects of urine
release on fight dynamics. Behaviour 138:137–154.

