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Abstract

In this paper, we address the problem of specifying and gener-
ating preferred plans using rich, qualitative user preferences.
We propose a logical language for specifying non-Markovian
preferences over the evolution of states and actions associated
with a plan. The semantics for our first-order preference lan-
guage is defined in the situation calculus. Unlike other recent
temporal preference languages, our preferences are qualita-
tive rather than just ordinal, affording greater expressivity and
less incomparability. We propose an approach to computing
preferred plans via bounded best-first search in a forward-
chaining planner. Key components of our approach are the
exploitation of progression to efficiently evaluate levels of
preference satisfaction over partial plans, and development
of an admissible evaluation function that establishes the opti-
mality of best-first search. We have implemented our planner
PPLAN and evaluated it experimentally. Our preference lan-
guage and planning approach is amenable to integration with
several existing planners, and beyond planning, can be used
to support arbitrary dynamical reasoning tasks involving pref-
erences.

1 Introduction
Research in automated planning has historically focused on
classical planning – generating a sequence of actions to
achieve a user-defined goal, given a specification of a do-
main and an initial state. Nevertheless, in many real-world
settings, plans are plentiful, and it is the generation of high-
quality plans meeting users’ preferences and constraints that
presents the biggest challenge (Myers & Lee 1999).

In this paper we examine the problem of preference-based
planning – generating a plan that not only achieves a user-
defined goal, but that also conforms, where possible, to a
user’s preferences over properties of the plan. To that end,
we propose a first-order language for specifying domain-
specific, qualitative user preferences. Our language is rich,
supporting non-Markovian preferences over the evolution of
actions and states leading to goal achievement. Our lan-
guage harnesses much of the expressive power of first-order
and linear temporal logic (LTL). We define the semantics
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of our preference language in the situation calculus (Reiter
2001). Nevertheless, nothing requires that the planner be
implemented in the situation calculus. Indeed our planner
PPLAN, a bounded best-first search planner, is a forward-
chaining planner, in the spirit of TLPlan (Bacchus & Ka-
banza 2000) and TALPlan (Kvarnström & Doherty 2000),
that exploits progression of preference formulae to more ef-
ficiently compute preferred plans. Experimental results il-
lustrate the efficacy of our best-first heuristic.

Research on qualitative preferences has predominantly fo-
cused on less expressive, static preferences (e.g., (Boutilier
et al. 2004)). In the area of dynamic preferences, Son and
Pontelli (Son & Pontelli 2004) have developed a language
for planning with preferences together with an implemen-
tation using answer-set programming. Also notable is the
work of Delgrande et al. (Delgrande, Schaub, & Tompits
2004), who have developed a framework for characteriz-
ing preferences and properties of preference-based planning.
Research on decision-theoretic planning and MDPs also ad-
dresses the problem of generating preferred plans (Puterman
1994). Nevertheless, the elicitation of preferences in terms
of Markovian numeric utilities makes these approaches less
applicable to the types of preferences we examine. We in-
clude a comprehensive discussion of related work at the end
of the paper.

We begin in Section 2 with a brief review of the situation
calculus. In Section 3, we describe the syntax and seman-
tics of our preference language for planning, illustrating its
use via an example which is carried through the paper. With
the semantics of our preferences in hand, we return in Sec-
tion 4 to the general problem of planning with preferences.
Next, in Section 5, we introduce progression which we prove
preserves our semantics, and we define an admissible best-
first heuristic. In Section 6, we describe our implementa-
tion of PPLAN, proving the correctness of our algorithm and
presenting our experimental results. We conclude the paper
with a discussion of related work and a summary.

2 Preliminaries
The situation calculus is a logical language for specifying
and reasoning about dynamical systems (Reiter 2001). In
the situation calculus, the state of the world is expressed
in terms of functions and relations (fluents) relativized to a
particular situation s, e.g., F (~x, s). In this paper, we distin-
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guish between the set of fluent predicates F and the set of
non-fluent predicates R representing properties that do not
change over time. A situation s is a history of the primitive
actions a ∈ A performed from an initial situation S0. The
function do(a, s) maps a situation and an action into a new
situation. The theory induces a tree of situations rooted at
S0.

A basic action theory in the situation calculus D com-
prises four domain-independent foundational axioms and a
set of domain-dependent axioms. The foundational axioms
Σ define the situations, their branching structure, and the sit-
uation predecessor relation @. s @ s′ states that situation
s precedes situation s′ in the situation tree. Σ includes a
second-order induction axiom. The domain-dependent ax-
ioms are strictly first-order and are of the following form:
• successor state axioms DSS , one for every fluent F ∈ F ,
which capture the effects of actions on the truth value of F .
• action precondition axioms Dap, one for every action a
in the domain. These define the fluent Poss(a, s), the con-
ditions under which it’s possible to execute an action a in
situation s.
• axioms DS0

describing the initial situation.
• unique names axioms for actions Duna.

Details of the form of these axioms can be found in (Reiter
2001). Following convention and to enhance readability, we
will generally refer to fluents in situation-suppressed form,
e.g., at(home) rather than at(home, s).

A planning problem is a tuple 〈D, G〉 where D is a basic
action theory and G is a goal formula, representing proper-
ties that must hold in the final situation. In the situation cal-
culus, planning is characterized as deductive plan synthesis.
Given a planning problem 〈D, G〉, the task is to determine
a situation s = do(an, . . . , do(a1, S0))))

1, i.e., a sequence of
actions from S0, such that: D |= (∃s).executable(s) ∧ G(s)

where executable(s) def
= (∀a, s′).do(a, s′) v s ⊃ Poss(a, s′).

We refer to situation s = do(~a, S0) as the plan trajectory
and the sequence of actions ~a = a1a2...an as the associated
plan. The length of this plan is n. The set of all plans is
denoted by Π, and Πk denotes the subset of plans of length
≤ k. A planning problem 〈D, G〉 is solvable if it has at least
one plan. It is k-solvable if it has a plan of length ≤ k.

3 Preference Specification
In this section we describe the syntax and semantics of our
first-order preference language, illustrated in terms of the
following example.

The Dinner Example: It’s dinner time and Claire is
tired and hungry. Her goal is to be at home with her
hunger sated. There are three possible ways for Claire
to get food: she can cook something at home, order in
take-out food, or go to a restaurant. To cook a meal,
Claire needs to know how to make the meal and she
must have the necessary ingredients, which might re-
quire a trip to the grocery store. She also needs a clean
kitchen in which to prepare her meal. Ordering take-out
is much simpler: she only has to order and eat the meal.

1Which we abbreviate to do([a1, . . . , an], S0), or do(~a, S0).

Going to a restaurant requires getting to the restaurant,
ordering, eating, and then returning home.

This example is easily encoded in any number of plan-
ning systems, and given a specification of the initial state, a
planner could generate numerous plans that achieve Claire’s
goal. Nevertheless, like many of us, Claire has certain pref-
erences concerning where and what she eats that make some
plans better than others. It is the definition of these prefer-
ences and the generation of these preferred plans that is the
focus of this paper.

3.1 A First-Order Preference Language
In this section we present the syntax of a first-order lan-
guage for expressing preferences about dynamical systems.
Our preference language modifies and extends the prefer-
ence language PP recently proposed by Son and Pontelli in
(Son & Pontelli 2004). We keep their hierarchy of basic de-
sire formulae, atomic preference formulae, and general pref-
erence formulae, to which we add a new class of aggregated
preference formulae. Subsequent reference to a preference
formula refers to an aggregated preference formula, which
encompasses basic desire formulae, atomic preference for-
mulae, and general preference formulae.
Definition 1 (Basic Desire Formula (BDF)). A basic
desire formula is a sentence drawn from the smallest set B
where:

1. F ⊂ B
2. R ⊂ B
3. f ∈ F , then final(f) ∈ B
4. If a ∈ A, then occ(a) ∈ B
5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,

(∃x)ϕ1, (∀x)ϕ1,next(ϕ1), always(ϕ1), eventually(ϕ1),
and until(ϕ1, ϕ2).

BDFs establish preferred situations. By combining BDFs
using boolean and temporal connectives, we are able to ex-
press a wide variety of properties of situations. We illustrate
their use with BDFs from our dinner example.

hasIngrnts(spag) ∧ knowsHowToMake(spag) (P1)

(∃x).hasIngrnts(x) ∧ knowsHowToMake(x) (P2)

final(kitchenClean) (P3)

(∃x).eventually(occ(cook(x))) (P4)

(∃x).(∃y).eventually(occ(orderTakeout(x, y))) (P5)

(∃x).(∃y).eventually(occ(orderRestaurant(x, y))) (P6)

always(¬((∃x).occ(eat(x)) ∧ chinese(x))) (P7)

P1 states that in the initial situation Claire has the ingredients
and the know-how to cook spaghetti. P2 is more general,
expressing that in the initial situation Claire has the ingre-
dients to cook something she knows how to make. Observe
that fluent formulae that are not inside temporal connectives
refer only to the initial situation. P3 states that in the final
situation the kitchen is clean. P4 - P6 tell us respectively that
at some point Claire cooked something, ordered something
from take-out, or ordered something at a restaurant. Finally
P7 tells us that Claire never eats any chinese food.

While BDFs alone enable us to express some simple user
preferences, we cannot express preferences between alter-
natives. For example, we cannot say that Claire prefers
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cooking to ordering take-out. To do so, we define Atomic
Preference Formulae, which represent preferences over al-
ternatives. Our definition differs from that in (Son & Pon-
telli 2004) in that we ask the user to annotate the component
preferences with a value indicating the level of preference.
What we gain in doing so is significantly reduced incompa-
rability, a wider range of preference combination methods,
and a more fine-grained representation of the user’s desires.

Definition 2 (Atomic Preference Formula (APF)). Let V
be a totally ordered set with minimal element vmin and max-
imal element vmax. An atomic preference formula is a for-
mula ϕ0[v0] � ϕ1[v1] � ... � ϕn[vn], where each ϕi is a
BDF, each vi ∈ V , vi < vj for i < j, and v0 = vmin. When
n = 0, atomic preference formulae correspond to BDFs.

An atomic preference formula expresses a preference over
alternatives. In what follows, we let V = [0, 1] for parsi-
mony, but we could just as easily choose a strictly qualita-
tive set like {best < good < indifferent < bad < worst}.
Returning to our example, the following APF expresses
Claire’s preference over what to eat (pizza, followed by
spaghetti, followed by crêpes):

eventually(occ(eat(pizza)))[0]�
eventually(occ(eat(spag)))[0.4]�

eventually(occ(eat(crêpes)))[0.5] (P8)

We can see that Claire strongly prefers pizza but finds
spaghetti and crêpes about equally good. If instead Claire
is more concerned about how long she will have to wait for
her meal, she may specify the following APF:

P5[0]� (P2∧P4)[0.2]� P6[0.7]� (¬P2∧P4)[0.9] (P9)

This says that Claire’s first choice is take-out, followed by
cooking if she has the ingredients for something she knows
how to make, followed by going to a restaurant, and lastly
cooking when it requires a trip to the grocery store. From
the values that Claire provided, we can see that she really
prefers options that don’t involve going out.

Again, an atomic preference represents a preference over
alternatives ϕi. We wish to satisfy the BDF ϕi with the low-
est index i. Consequently, if Claire eats pizza and crêpes,
this is no better nor worse with respect to P8 than situations
in which Claire eats only pizza, and it is strictly better than
situations in which she just eats crêpes. Note that there is
always implicitly one last option, which is to satisfy none of
the ϕi, and this option is the least preferred.

In order to allow the user to specify more complex prefer-
ences, we introduce our third class of preference formulae,
which extends our language to conditional, conjunctive, and
disjunctive preferences.

Definition 3 (General Preference Formula (GPF)). A for-
mula Φ is a general preference formula if one of the follow-
ing holds:

• Φ is an atomic preference formula
• Φ is γ : Ψ, where γ is a BDF and Ψ is a general

preference formula [Conditional]
• Φ is one of

- Ψ0 &Ψ1 & ...&Ψn [General Conjunction]
- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a general preference formula.

Here are some example general preference formulae:

P2 : P4 (P10) P8 | P9 (P11) P8 &P9 (P12)

P10 states that if Claire initially has the ingredients for
something she can make, then she prefers to cook. Prefer-
ences P12 and P11 show two ways we can combine Claire’s
food and time preferences into a single complex preference.
P12 tries to maximize the satisfaction of both of her prefer-
ences, whereas P11 is appropriate if she would be content if
either of the two were satisfied.

We have just seen two ways that a user’s preferences can
be combined. Indeed, because users very often have more
than a single preference, we feel that it is important to pro-
vide a variety of methods of combining different prefer-
ences. Moreover, since a user’s preferences may be unsat-
isfiable, our preference language should allow the user to
indicate how to relax his preferences in order to find a so-
lution. With this in mind, we introduce our final class of
preference formulae which proposes a number of preference
aggregation methods.

Definition 4 (Aggregated Preference Formula (AgPF)).
A formula Φ is an aggregated preference formula if:
1) Φ is a general preference, or 2) for general pref-
erence formulae Ψi, i = 1, . . . , n, Φ is one of
lex(Ψ1, ...,Ψn), lexand(Ψ1, ...,Ψn), lexor(Ψ1, ...,Ψn),
leximin(Ψ1, ...,Ψn), or, if V is numeric, sum(Ψ1, ...,Ψn).

We briefly discuss these different aggregation methods,
many of which are already well-known in the literature
(cf., (Ehrgott 2000)). Preference formulae lex(Ψ1, ...,Ψn)
rank situations using the standard lexicographic ordering, a
combination method which is appropriate when the user’s
preferences are of greatly different levels of importance.
lexand(Ψ1, ...,Ψn) (resp. lexor(Ψ1, ...,Ψn)) refines the or-
dering defined by Ψ0 & ...&Ψn (resp. Ψ0 | ... | Ψn) by
sorting indistinguishable situations using the lexicograping
ordering. For example, lexand(Ψ1,Ψ2) will try to satisfy
both Ψ1 and Ψ2, but failing this will prefer to satisfy Ψ1

over Ψ2. This is useful in cases where we have preferences
of similar yet unequal importance. The aggregation method
leximin first sorts the levels of satisfaction of the compo-
nent preferences in non-decreasing order and then applies
the lexicographic ordering, a method well-suited to cases
where the component preferences are considered equally im-
portant. Finally, if V is numeric, we can simply sum the
levels of satisfaction of the component preferences, which
amounts to maximizing the average level of satisfaction.

This concludes our description of the syntax of our pref-
erence language. Our language extends and modifies the PP
language recently proposed in (Son & Pontelli 2004). Quan-
tifiers, variables, non-fluent relations, a conditional con-
struct, and aggregation operators (AgPF) have been added to
our language. In PP it is impossible to talk about arbitrary
action or fluent arguments or their properties, and difficult
or even impossible to express the kinds of preferences given
above. PP’s APFs are ordinal rather than qualitative making
relative differences between ordered preferences impossible
to articulate. Finally, our semantics gives a different, and we
argue more natural, interpretation of General Conjunction
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and General Disjunction. Relative to quantitative dynami-
cal preferences, we argue that our language is more natural
for a user. We elaborate on this point in Section 7.

3.2 The Semantics of our Language
We appeal to the situation calculus to define the semantics
of our preference language. BDFs are interpreted as situa-
tion calculus formulae and are evaluated relative to an action
theory D. In order to define the semantics of more complex
preference formulae, which can be satisfied to a certain de-
gree, we associate a qualitative value or weight with a sit-
uation term, depending upon how well it satisfies a prefer-
ence formula. Weights are elements of V , with vmin indi-
cating complete satisfaction and vmax complete dissatisfac-
tion. The motivation for introducing values was that purely
ordinal preferences (such as the atomic preference formu-
lae in (Son & Pontelli 2004)) can be combined in only very
limited, and not necessarily very natural ways, in addition to
leading to great incomparability between outcomes. Replac-
ing ordinal preferences by qualitative preferences allows us
to give a more nuanced representation of the user’s prefer-
ences.

Since BDFs may refer to properties that hold at various
situations in a situation history, we use the notation ϕ[s, s′]
borrowed from (Gabaldon 2004) to explicitly denote that ϕ
holds in the sequence of situations originating in s and ter-
minating in s′ = do([a1, . . . , an], s). Recall that fluents are
represented in situation-suppressed form and F [s] denotes
the re-insertion of situation term s.

We now show how to interpret BDFs in the situation cal-
culus. If f ∈ F , we will simply need to re-insert the situa-
tion argument, yielding:

f [s′, s] = f [s′]

For r ∈ R, we have nothing to do as r is already a situation
calculus formula, so:

r[s′, s] = r

A BDF final(f) just means that the fluent f holds in the
final situation, giving the following:

final(f)[s′, s] = f [s]

The BDF occ(a) tells us that the first action executed is a,
which can be written as:

occ(a)[s′, s] = do(a, s′) v s

The boolean connectives and quantifiers are already part of
the situation calculus and so require no translation. Finally,
we are left with just the temporal connectives, which we in-
terpret in exactly the same way as in (Gabaldon 2004):2

eventually(ϕ)[s′, s] = (∃s1 : s′ v s1 v s)ϕ[s1, s]

always(ϕ)[s′, s] = (∀s1 : s′ v s1 v s)ϕ[s1, s]

next(ϕ)[s′, s] = (∃a).do(a, s′) v s ∧ ϕ[do(a, s′), s]

until(ϕ,ψ)[s′, s] = (∃s1 : s′ v s1 v s){ψ[s1, s]∧

(∀s2 : s′ v s2 v s1)ϕ[s2, s]}
Since each BDF is shorthand for a situation calculus ex-

pression, a simple model-theoretic semantics follows.
2We use the following abbreviations:

(∃s1 : s′ v s1 v s)Φ = (∃s1){s
′ v s1 ∧ s1 v s ∧ Φ}

(∀s1 : s′ v s1 v s)Φ = (∀s1){[s
′ v s1 ∧ s1 v s] ⊂ Φ}

Definition 5 (Basic Desire Satisfaction). Let D be an ac-
tion theory, and let s′ and s be situations such that s′ v s.
The situations beginning in s′ and terminating in s satisfy ϕ
just in the case that D |= ϕ[s′, s]. We define ws′,s(ϕ) to be
the weight of the situations originating in s′ and ending in
s wrt BDF ϕ. ws′,s(ϕ) = vmin if ϕ is satisfied, otherwise
ws′,s(ϕ) = vmax.

Note that in the special case of s′ = S0, we drop s′ from
the index, i.e. ws(ϕ) = wS0,s(ϕ). For readibility, the fol-
lowing definitions are phrased in terms of ws(ϕ) but can be
analogously formulated for the more general case.

Example 1: Suppose that we have the plan trajectory s =
do([cleanDishes,cook(crêpes),eat(crêpes), cleanDishes], S0)
and the initial database DS0

which is described by
{hungry(S0), hasIngrnts(spag, S0), at(home, S0),
hasIngrnts(crêpes, S0), knowsHowToMake(crêpes)}.
Then we have:
ws(P1) = 1 ws(P2) = 0 ws(P3) = 0 ws(P4) = 0
ws(P5) = 1 ws(P6) = 1 ws(P7) = 0

The weight of an atomic preference formula is simply de-
fined to be the value associated with the first satisfied com-
ponent BDF:

Definition 6 (Atomic Preference Satisfaction). Let s be a
situation and Φ = ϕ0[v0] � ϕ1[v1] � ... � ϕn[vn] be
an atomic preference formula. Then ws(Φ) = vi if i =
min j{D |= ϕj [S0, s]}, and ws(Φ) = vmax if no such i
exists.

Evaluation with respect to Example 1 gives ws(P8) = 0.5
and ws(P9) = 0.2.

Definition 7 (General Preference Satisfaction). Let s be
a situation and Φ be a general preference formula. Then
ws(Φ) is defined as follows:
• ws(ϕ0 � ϕ1 � ...� ϕn) is defined above

• ws(γ : Ψ) =

{

vmin if ws(γ) = vmax

ws(Ψ) otherwise
• ws(Ψ0 & Ψ1 & ...& Ψn) = max{ws(Ψi) : 1 ≤ i ≤ n}
• ws(Ψ0 | Ψ1 | ... | Ψn) = min {ws(Ψi) : 1 ≤ i ≤ n}

Observe that the interpretations of our generalized boolean
connectives emulate their boolean counterparts. Returning
to Example 1:
− ws(P2 : P4) = ws(P4) = 0

− ws(P8&P9) = max{0.5, 0.2} = 0.5

− ws(P8 | P9) = min {0.5, 0.2} = 0.2

We conclude this section with the following definition
which shows us how to compare two situations with respect
to an aggregated preference formula:

Definition 8 (Preferred Situations). A situation s1 is at
least as preferred as a situation s2 with respect to a pref-
erence formula Φ, written s1 �Φ s2, if one of the following
holds:
• Φ is a GPF, and ws1

(Φ) ≤ ws2
(Φ)

• Φ = lex(Φ1, ...,Φn) and either ws1
(Φi) = ws2

(Φi) for all
i or there is some i such that ws1

(Φi) < ws2
(Φi) and for all

j < i ws1
(Φj) = ws2

(Φj)
• Φ = lexand(Φ1, ...,Φn) and either s1 �Ψ0 & ... & Ψn s2

or s1 ≈Ψ0 & ... & Ψn s2 and s1 �lex(Φ1,...,Φn) s2
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• Φ = lexor(Φ1, ...,Φn) and either s1 �Ψ0 | ... |Ψn
s2

or s1 ≈Ψ0 | ... |Ψn
s2 and s1 �lex(Φ1,...,Φn) s2

• Φ = leximin(Φ1, ...,Φn) and either |{i : ws1
(Φi) = v}| =

|{i : ws2
(Φi) = v}| for all v ∈ V or there is some v such

that |{i : ws1
(Φi) = v}| > |{i : ws2

(Φi) = v}| and for all
v′ < v |{i : ws1

(Φi) = v′}| = |{i : ws2
(Φi) = v′}|

• Φ = sum(Φ1, ...,Φn), and
∑n

i=1 ws1
(Φi) ≤

∑n
i=1 ws1

Strict preference (�) and equivalence (≈) are defined in the
standard way.

We remark that the relation �Φ defines a total preorder
over situations. Thus, any two situations (and hence plans)
can be compared in our framework. We also observe that, at
least for finite V , our preference relation is definable within
the situation calculus language, enabling us to reason about
preferences within the language.

4 Planning with Preferences
With our language in hand, we return to the problem of plan-
ning with preferences.

Definition 9 (Preference-Based Planning Problem). A
preference-based planning problem is a tuple 〈D, G,Φ〉,
where D is an action theory, G is the goal, and Φ is a pref-
erence formula.

Definition 9 is trivially extended to generate plans with
temporally extended goals (e.g., (Kvarnström & Doherty
2000; Bacchus & Kabanza 2000)) by encoding the goal
as a BDF Φc. A plan is then any ~a such that D |=
Φc[S0, do(~a, S0)] ∧ executable(do(~a, S0)).

Definition 10 (Preferred Plan). Consider a preference-
based planning problem 〈D, G,Φ〉and plans ~a1 and ~a2. We
say that plan ~a1 is preferred to plan ~a2 iff do( ~a1, S0) �Φ

do( ~a2, S0).

Definition 11 (Optimal Plan, k-Optimal Plan). Given a
preference-based planning problem, an optimal plan is any
plan ~a such that 6 ∃~b.do(~b, S0) �Φ do(~a, S0). A k-optimal
plan is any plan ~a ∈ Πk such that 6 ∃~b ∈ Πk.do(~b, S0) �Φ

do(~a, S0).

5 Computing Preferred Plans
Our approach to computing preferred plans is to construct
a bounded best-first search forward-chaining planner that
takes as input an initial state, a goal, a general preference
formula Φ,3 and a length bound, and outputs an optimal pre-
ferred plan relative to that bound. Two key components of
our approach are: 1) the use of progression to efficiently
evaluate how well partial plans satisfy Φ, and 2) the defi-
nition of an admissible evaluation function that ensures our
best-first search is optimal.

5.1 Progression
Progression has been used extensively to evaluate domain
control knowledge in forward chaining planners such as

3For simplicity, we restrict our attention to GPFs, but the algo-
rithm can be trivially extended to AgPFs.

TLPlan (Bacchus & Kabanza 2000) and TALPlan (Kvarn-
ström & Doherty 2000), where progression of hard con-
straints prunes the search space. We use it here to efficiently
evaluate our preference formula over candidate partial plans.

Progression takes a situation and a temporal logic formula
(TLF), evaluates the TLF with respect to the state of the sit-
uation, and generates a new formula representing those as-
pects of the TLF that remain to be satisfied in subsequent
situations. In this section, we define the notion of progres-
sion with respect to our preference formulae and prove that
progression preserves the semantics of preference formulae.

In order to define our progression operator, we add the
propositional constants TRUE and FALSE to both the situa-
tion calculus and to our set of BDFs, where D |= TRUE and
D 2 FALSE for every action theory D. We also add the BDF
occNext(a), a ∈ A, to capture the progression of occ(a).

Definition 12 (Progression of a BDF). Let s be a situation,
and let ϕ be a BDF. The progression of ϕ through s, written
ρs(ϕ), is given by:

• If ϕ ∈ F , then ρs(ϕ) =

{

TRUE ifD |= ϕ[s]
FALSE otherwise

• If ϕ ∈ R, then ρs(ϕ) =

{

TRUE ifD |= ϕ
FALSE otherwise

• If ϕ = occ(a), then ρs(ϕ) = occNext(a)
• If ϕ = occNext(a), then

ρs(ϕ) =

{

TRUE ifD |= ∃s′.s = do(a, s′)
FALSE otherwise

• If ϕ = next(ψ), then ρs(ϕ) = ψ

• If ϕ = always(ψ), then ρs(ϕ) = ρs(ψ) ∧ ϕ
• If ϕ = eventually(ψ), then ρs(ϕ) = ρs(ψ) ∨ ϕ
• If ϕ = until(ψ1, ψ2), then ρs(ϕ) = (ρs(ψ1)∧ϕ)∨ ρs(ψ2)
• If ϕ = ¬ψ, then ρs(ϕ) = ¬ρs(ψ)
• If ϕ = ψ1 ∧ ψ2, then ρs(ϕ) = ρs(ψ1) ∧ ρs(ψ2)
• If ϕ = ψ1 ∨ ψ2, then ρs(ϕ) = ρs(ψ1) ∨ ρs(ψ2)
• If ϕ = (∃x)ψ, then ρs(ϕ) =

∨

c∈C ρs(ψ
c/x)4

• If ϕ = (∀x)ψ, then ρs(ϕ) =
∧

c∈C ρs(ψ
c/x)

• If ϕ = final(ψ), then ρs(ϕ) = ϕ

• If ϕ = TRUE or ϕ = FALSE, then ρs(ϕ) = ϕ

Returning to Example 1,

− ρs(always(kitchenClean))

= ρs(kitchenClean) ∧ always(kitchenClean)

= FALSE

− ρs((∃x).hasIngrnts(x)) =
∨

c∈C

ρs(hasIngrnts(c))

Progression of APFs and GPFs is defined in a straightfor-
ward fashion by progressing their constituent BDFs5.

Definition 13 (Progression of General Preference Formu-
lae). Let s be a situation, and let Φ be a general prefer-
ence formula. The progression of Φ up to s is defined by:

4We assume a finite domain. tc/v denotes the result of substitut-
ing the constant c for all instances of the variable v in t. Note that
progression of quantified BDFs can result in a significant increase
in formula size. In practice, we can (and do) use Boolean simplifi-
cation and bounded quantification to reduce the size of progressed
formulae, cf. (Bacchus & Kabanza 2000).

5This is also the case for AgPFs.
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• ρs(ϕ0 � . . .� ϕn) = ρs(ϕ0)� ...� ρs(ϕn)
• ρs(γ : Ψ) = ρs(γ) : ρs(Ψ)
• ρs(Ψ0 & ...& Ψn) = ρs(Ψ0)& . . . & ρs(Ψn)
• ρs(Ψ0 | ... | Ψn) = ρs(Ψ0) | . . . | ρs(Ψn)

Definitions 12 and 13 show us how to progress a prefer-
ence formula one step, through one situation. We extend this
to the notion of iterated progression.
Definition 14 (Iterated Progression). The iterated pro-
gression of a preference formula Φ through situation s =
do(~a, S0), written ρ∗s(Φ), is defined by:

ρ∗S0
(Φ) = ρS0

(Φ)

ρ∗do(a,s)(Φ) = ρdo(a,s)(ρ
∗

s(Φ))

To prove our progession theorem, we will make use of a
more general form of iterated progression, which takes two
situation arguments:
Definition 15 (General Iterated Progression). The iter-
ated progression of a preference formula Φ starting from
situation s1 through situation s2 = do(~a, s1), written
ρ∗s1,s2

(Φ), is defined by:

ρ∗s1, s1
(Φ) = ρs1

(Φ)

ρ∗s1, do(a, s3)
(Φ) = ρdo(a, s3)(ρ

∗

s1, s3
(Φ))

Finally we prove that the progression of our preference
formulae preserves their semantics, i.e., that our action the-
ory entails a preference formula over the situation history of
s iff it entails the progressed formula up to (but not includ-
ing) s. We will exploit this in proving the correctness of our
algorithm.
Theorem 1 (Correctness of Progression). Let s1 and s2 =
do([a1, . . . , an], s2) be two situations where n ≥ 1, and let
ϕ be a BDF. Then

D |= ϕ[s1, s2] iff D |= ρ∗s1, s3
(ϕ)[s2, s2]

where s2 = do(an, s3).

Proof Sketch: The proof proceeds by induction on the struc-
tural complexity of φ. For space considerations, we do not
give all of the cases here. Instead, we give a few represen-
tative examples. See (Bienvenu & McIlraith 2006) for more
details.

Case 1: φ = f ∈ F
D |= f [s1, s2]

iff D |= f(s1)
iff ρs1

(f) = TRUE
iff ρ∗s1, s3

(f) = TRUE
iff D |= ρ∗s1, s3

(f)[s2, s2]

Case 7: φ = ψ1 ∧ ψ2 for BDFs ψ1 and ψ2

We assume the result for ψ1 and ψ2 and show that the result
holds for ψ1 ∧ ψ2.
D |= ψ1 ∧ ψ2[s1, s2]

iff D |= ψ1[s1, s2] andD |= ψ2[s1, s2]
iff D |= ρ∗s1, s3

(ψ1)[s2, s2] andD |= ρ∗s1, s3
(ψ2)[s2, s2]

iff D |= ρ∗s1, s3
(ψ1) ∧ ρ

∗
s1, s3

(ψ2)[s2, s2]
iff D |= ρ∗s1, s3

(ψ1 ∧ ψ2)[s2, s2]

Case 12: φ = always(ψ)
We assume the result for ψ and prove that the result also

holds for always(ψ). The proof proceeds by induction on n,
the difference in length between s1 and s2, with base case
n = 1:

D |= always(ψ)[s1, do(a1, s1)]
iff D |= ψ[s1, do(a1, s1)] ∧ ψ[do(a1, s1), do(a1, s1)]
iff D |= ρ∗s1, s1

(ψ)[do(a1, s1), do(a1, s1)]
∧ always(ψ)[do(a1, s1), do(a1, s1)]

iff D |= ρs1
(ψ) ∧ always(ψ)[do(a1, s1), do(a1, s1)]

iff D |= ρ∗s1, s1
(always(ψ))[do(a1, s1), do(a1, s1)]

We now suppose that the theorem holds for n < k, and we
show that it is also true when s2 = do([a1, . . . , ak], s1):
D |= always(ψ)[s1, s2]

iff D |= ψ[s1, s2] ∧ always(ψ)[do(a1, s1), s2]
iff D |= ρ∗s1, s3

(ψ)[s2, s2] ∧
ρ∗do(a1, s1), s3

(always(φ))[s2, s2]
iff D |= ρs3

(. . . ρdo(a1,s1)(ρs1
(ψ) ∧ always(ψ)) . . .)[s2, s2]

iff D |= ρs3
(. . . ρdo(a1,s1)(ρs1

(always(ψ))) . . .)[s2, s2]
iff D |= ρ∗s1, s3

(always(ψ))[s2, s2] 2

Using Theorem 1, we can prove that the weight of a gen-
eral preference formula with respect to a situation (plan tra-
jectory) is equal to the weight of the progressed preference
formula with respect to the final situation, disregarding its
history.

Corollary. Let s = do([a1, . . . , an], S0) be a situation
and let Φ be a general preference formula. Then
wS0,s(Φ) = ws,s(ρ

∗

s′(Φ)) where s = do(an, s
′).

5.2 An Evaluation Function for Best-First Search

In this section, we propose an admissible evaluation function
for best-first search. To this end, we introduce the notion of
optimistic and pessimistic weights of a situation relative to
a GPF Φ. These weights provide a bound on the best and
worst weights of any successor situation with respect to Φ.
As a result, our evaluation function is non-decreasing and
will never over-estimate the actual weight, thus enabling us
to define an optimal search algorithm.

Optimistic (respectively pessimistic) weights are defined
based on optimistic (respectively pessimistic) satisfaction of
BDFs. Roughly, optimistic satisfaction (ϕ[s′, s]opt) assumes
that any parts of the BDF not yet falsified will eventually be
satisfied. Pessimistic satisfaction (ϕ[s′, s]pess) assumes the
opposite, namely that anything not yet satisfied will eventu-
ally be falsified. The definition of optimistic and pessimistic
satisfaction largely follows the definition of (normal) satis-
faction of BDFs given earlier. The key difference is in the
definition of next(φ) and occ(a):

final(ϕ)[s′, s]opt def
= TRUE

final(ϕ)[s′, s]pess def
= FALSE

occ(a)[s′, s]opt def
= do(a, s′) v s ∨ s′ = s

occ(a)[s′, s]pess def
= do(a, s′) v s6

next(ϕ)[s′, s]opt def
= (∃a).do(a, s′) v s ∧ ϕ[do(a, s′), s]opt

∨s′ = s

next(ϕ)[s′, s]pess def
= (∃a).do(a, s′) v s ∧ ϕ[do(a, s′), s]pess
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We define the other temporal formulae in terms of next.

eventually(ϕ)[s′, s]opt/pess def
= ϕ[s′, s]opt/pess∨

next(eventually(ϕ))[s′, s]opt/pess

always(ϕ)[s′, s]opt/pess def
=

ϕ[s′, s]opt/pess ∧ next(always(ϕ))[s′, s]opt/pess

until(ϕ,ψ)[s′, s]opt/pess def
= ψ[s′, s]opt/pess∨

( ϕ[s′, s]opt/pess ∧ next(until(ϕ,ψ))[s′, s]opt/pess )

For the purpose of creating an admissible evaluation func-
tion for planning, we are really only interested in optimistic
evaluation. The reason why we also need pessimistic eval-
uation is simple: the BDF ¬ϕ is optimistically satisfied if
and only if ϕ is not pessimistically satisfied. That is, it is
optimistic to assume that there is a way to falsify ϕ which in
turn will satisfy the negation. We thus define:

(¬ϕ)[s′, s]opt def
= ¬(ϕ[s′, s]pess)

(¬ϕ)[s′, s]pess def
= ¬(ϕ[s′, s]opt)

For all other elements of the language, the definitions are
the same as for normal BDF satisfaction.

We can now define optimistic and pessimistic weights of
BDFs in terms of optimistic and pessimistic BDF satisfac-
tion:

w
opt
[s′,s](ϕ) =

{

vmin if D |= φ[s′, s]opt

vmax otherwise

and

w
pess
[s′,s](ϕ) =

{

vmin if D |= φ[s′, s]pess

vmax otherwise

For APFs and GPFs the definitions of optimistic and pes-
simistic weights are straightforward.

For readability, we abbreviate wopt
[S0,s] and wpess

[S0,s] by wopt
s

and wpess
s respectively.

Definition 16 (Optimistic/Pessimistic Atomic Preference
Satisfaction). Let s be a situation and Φ = ϕ0[v0] �
ϕ1[v1] � ... � ϕn[vn] be an atomic preference formula.
Then

w
opt/pess
s (Φ) =

{

vi if i = minj{D |= ϕj [S0, s]
opt/pess}

vmax if no such i exists.

Definition 17 (General Preference Satisfaction). Let s be
a situation and Φ be a general preference formula. Then
wopt

s = (Φ), respectively wpess
s = (Φ), is defined as fol-

lows:
• wopt/pess

s (ϕ0 � ϕ1 � ...� ϕn) is defined above

• wopt/pess
s (γ : Ψ)

=

{

vmin if wopt/pess
s (γ) = vmax

w
opt/pess
s (Ψ) otherwise

• wopt/pess
s (Ψ0 & Ψ1 & ...& Ψn)

= max{wopt/pess
s (Ψi) : 1 ≤ i ≤ n}

6It follows that when s′ = s, occ(a)[s′, s]pess def
= FALSE and

next(ϕ)[s′, s]pess def
= FALSE.

• wopt/pess
s (Ψ0 | Ψ1 | ... | Ψn)

= min {wopt/pess
s (Ψi) : 1 ≤ i ≤ n}

The following theorem describes some of the important
properties of our optimistic and pessimistic weight func-
tions.

Theorem 2. Let sn = do([a1, ..., an], S0), n ≥ 0 be a collec-
tion of situations, ϕ be a BDF, and Φ a general preference
formula. Then for any 0 ≤ i ≤ j ≤ k ≤ n,

1. D |= ϕ[si]
pess ⇒ D |= ϕ[sj ] and

D 6|= ϕ[si]
opt ⇒ D 6|= ϕ[sj ],

2.
(

wopt
si

(Φ) = wpess
si

(Φ)
)

⇒
wsj

(Φ) = wopt
si

(Φ) = wpess
si

(Φ),
3. wopt

si
(Φ) ≤ wopt

sj
(Φ) ≤ wsk

(Φ) and
wpess

si
(Φ) ≥ wpess

sj
(Φ) ≥ wsk

(Φ)

Since these definitions are compatible with those defined for
progression, we have the following corollary to Theorem 2:

Corollary. Let s′ = do([a1, . . . , an−1], S0), s =
do(an, s

′) be situations, n ≥ 1, ϕ a BDF. Then
D |= ϕ[S0, s]

opt/pess iff D |= ρ∗s′(ϕ)[s, s]opt/pess.

This corollary states that we can still use progression
when computing optimistic and pessimistic weights. Intu-
itively this is because the optimistic (pessimistic) part of the
evaluation is only concerned with the future whereas the pro-
gression deals with the past. Since the past won’t change,
there is no room for optimism or pessimism.

We can now define our evaluation function fΦ.

Definition 18 (Evaluation function). Let s = do(~a, S0) be
a situation and let Φ be a general preference formula. Then
fΦ(s) is defined as follows:

fΦ(s) =

{

ws(Φ) if ~a is a plan
wopt

s (Φ) otherwise

From Theorem 2 we see that the optimistic weight is non-
decreasing and never over-estimates the real weight. Thus,
fΦ is admissible and when used in best-first search, the
search is optimal.

6 Implementation
In this section, we describe PPLAN a bounded best-
first search planner for computing preferred plans. The
PPLAN algorithm is outlined in Figure 1. The code and test
cases are available at http://www.cs.toronto.edu/
˜sheila/pplan.

PPLAN takes as input an initial state init, a goal state goal,
a general preference formula pref 7, and a plan length bound
maxLength. The algorithm returns two outputs: a plan and
its weight with respect to pref.

A naive implementation of such a planner would require
computing alternative plan trajectories and then evaluating
their relative weights. This is computationally explosive, re-
quiring computation of numerous plan trajectories, caching

7To treat aggregated preference formulae it suffices to associate
a tuple of optimistic and pessimistic weights with each node and to
sort the frontier according to Definition 8.

140



PPLAN(init, goal, pref, maxLength)
frontier← INITFRONTIER(init, pref )
while frontier 6= ∅

current← REMOVEFIRST(frontier)
if goal ⊂ state and optW=pessW

return partialPlan, optW
end if
neighbours← EXPAND(partialPlan, state, progPref )
frontier← SORTNMERGEBYVAL(neighbours, frontier)

end while
return [],∞

EXPAND(partialPlan, state, progPref ) returns a list of new
nodes to add to the frontier. If partialPlan has length equal to
maxLength, EXPAND returns [ ]. Otherwise, EXPAND determines
all the executable actions in state and returns a list which con-
tains, for each of these executable actions a a node

(optW, pessW,newPartialPlan, newState, newProgPref )
and for each a leading to a goal state, a second node

(realW, realW,newPartialPlan, newState, newProgPref ).

Figure 1: The PPLAN algorithm.

of relevant trajectory state, and redundant evaluation of pref-
erence formula weights. Instead, we make use of Theorem
1 to compute weights as we construct plans, progressing the
preference formula as we go. Exploiting progression en-
ables the development of a best-first search strategy that or-
ders search by weight, and evaluates preference formulae
across shared partial plans. Progression is commonly used
to evaluate domain control knowledge in forward chaining
planners such as TLPlan (Bacchus & Kabanza 2000) and
TALPlan (Kvarnström & Doherty 2000), where progression
of hard constraints prunes the search space. In contrast, we
are unable to prune less preferred partial plans, because they
may yield the final solution, hence the need for a best-first
strategy.

Returning to our algorithm in Figure 1, our frontier is a
list of nodes of the form [optW, pessW, partialPlan, state,
pref ], sorted by optimistic weight, pessimistic weight, and
then by length. The frontier is initialized to the empty partial
plan, its optW, pessW,and pref corresponding to the progres-
sion and evaluation of the input preference formula in the
initial state. On each iteration of the while loop, PPLAN re-
moves the first node from the frontier and places it in cur-
rent. If the partial plan of current satisfies the goal and has
optW=pessW, then PPLAN returns current’s partial plan and
weight. Otherwise, we call the function EXPAND with cur-
rent’s node arguments as input. If partialPlan has length
equal to maxLength then no new nodes are added to the
frontier. Otherwise, EXPAND generates a new set of nodes
of the form [optW, pessW, partialPlan, state, pref ], one for
each action executable in state. For actions leading to goal
states, EXPAND also generates a second node of the same
form but with optW and pessW replaced by the actual weight
achieved by the plan. The reason that we need two nodes is
that on the one hand, we need to record the actual weight
associated with the plan that we have found, and on the
other hand, to ensure completeness, we need to be able to

reach the node’s successors. The new nodes generated by
EXPAND are then sorted by optW, pessW, then length and
merged with the remainder of the frontier. If we reach the
empty frontier, we exit the while loop and return the empty
plan. The correctness of PPLAN is given in the following
theorem.

Theorem 3 (Correctness of PPLAN Algorithm). Given
as input a preference-based planning problem P and a
length bound k, PPLAN outputs a k-optimal plan, if P is
k-solvable, and the empty plan otherwise.

Proof Sketch: First, we prove that the algorithm termi-
nates. There are two ways that PPLAN halts: either the first
node on the frontier is a plan and has optW= pessW, in which
case PPLAN returns this plan, or we reach the empty fron-
tier, in which case PPLAN returns the empty plan. Let us
then suppose that the first condition is never met. In this
case, we will stay in the while loop, expanding one node on
each iteration. But since the successor nodes generated by
EXPAND always have length one greater than their parent,
and since EXPAND returns an empty list whenever a node
has a partial plan of length equal to k, we will eventually
run out of nodes and reach the empty frontier. Thus, the
algorithm always terminates.

Next, we prove that the outputted plan satisfies the con-
ditions of the theorem. This is obvious for the case where
P is not k-solvable as in this case, we will never find a plan
and thus will stay in the while loop until we reach the empty
frontier, finally outputting the empty plan.

We now treat the case where P is k-solvable. By defini-
tion, this means that there exists at least one plan of length
less than or equal k. As PPLAN systematically explores
the search space, at some point EXPAND will create a node
whose partial plan satisfies the goal and will set optW and
optW to the actual weight. This means that the frontier will
contain a node satisfying the conditions of the if loop, and
hence, at some point, we will enter the if loop and return
a non-empty plan. It remains to be shown that the plan re-
turned is k-optimal.

Suppose for a contradiction that we return a plan p with
weight w which is not k-optimal. This means that there ex-
ists a plan p′ of length less than k which has a weight than
w′ < w. There are two possibilities: either we have gen-
erated a node corresponding to p′ and placed it behind p on
the frontier, which is contradiction as the frontier is sorted
in non-decreasing order by optW, or there there is an ances-
tor node of p′ which is behind p in the frontier. But this is
also impossible, as according to Theorem 2, any ancestor
of p′ must have an optimistic weight less than or equal to
w′ < w (and hence must be before p on the frontier). We
have thus shown that if P is k-solvable, the outputted plan
is k-optimal, concluding the proof. 2

6.1 Experiments
In Figure 2, we present the results for 60 instances of
our dinner domain 8. We compared the number of nodes

8We also ran an early version of PPLAN on the simple school
travel example presented in (Son & Pontelli 2004), but we were
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expanded using PPLAN’s heuristic best-first search with a
breadth-first search (BFS) algorithm9. Overall, the results
are quite positive. In 56 of the 60 test cases, PPLAN per-
forms at least as well as breadth-first search, and generally
significantly better, often an order of magnitude so. The four
cases where BFS outperforms PPLAN are all cases where
there was a short k-optimal but non-ideal plan. In these
cases, PPLAN quickly finds the plan, but must continue the
search in order to ensure that no other better plan exists. In 2
of 60 test cases, PPLAN runs out of memory before finding
a plan. This is most likely due to the fact that our implemen-
tation is not optimized, but it also speaks to the difficulty of
the task. A good way to cope with this problem is to add
control knowledge to reduce the search space. In order to
test out this idea, we reran PPLAN on the test suite, this time
pruning all nodes whose partial plans contained two con-
secutive drive actions or those containing orderTakeout,
orderRestaurant, or cook actions not immediately fol-
lowed by an eat action. As the results show, adding these
simple pieces of control knowledge allows PPLAN to termi-
nate in all 60 test cases, generally with far fewer nodes ex-
panded in the process. Taken all together, we feel that these
results speak to the effectiveness of our evaluation function
in guiding the search but also to the interest of combining
this approach with domain-dependent control knowledge.

An independent contribution of this paper is the creation
of the dinner domain, a planning domain that can serve as
a benchmark for problems in planning with preferences. In
addition to affording a number of natural and compelling
temporally extended preferences, the dinner domain is eas-
ily scaled either by increasing the number of objects in-
volved (adding more restaurants, meals, etc.) or by mak-
ing the events more complex (e.g., buying groceries, cook-
ing, etc.). A complete axiomatization is available at http:
//www.cs.toronto.edu/˜sheila/pplan.

7 Related Work
There is a significant amount of related work on the general
topic of representing and reasoning about user preferences.
The literature is extensive, much of it originating within the
field of economics not artificial intelligence (AI). We discuss
the related work in AI below, elaborating further in (Bien-
venu & McIlraith 2006).

In comparing our work to that of others, many of the dis-
tinctions we raise relate to whether preference formalisms
are ordinal, qualitative or quantitative; whether they model
temporal preferences or solely static preferences; whether
the formalism is propositional or first order; and whether it
induces a total order and if not the degree of incomparability
in the ordering. In this context, our language is qualitative,
models temporal preferences, is first order, and induces a to-
tal order. As further criteria for comparison, (Coste-Marquis
et al. 2004) evaluate some propositional logic-based prefer-

unable to get comparative statistics in order to compare the two
approaches.

9In order to facilitate the comparison, breadth-first search was
passed the k-optimal weight as a parameter and run until it found
an plan with this weight (or ran out of memory).

TEST # 1 2 3 4 5 6 7 8 9 10
PPLAN 52 55 171 7 3 29 8 9 8 59

PPLANC 22 10 43 7 3 19 8 9 3 7
BFS 432 426 * 61 61 * 61 71 51 *

TEST # 11 12 13 14 15 16 17 18 19 20
PPLAN 64 54 15 8 16 49 10 29 3 29

PPLANC 12 10 15 8 16 29 10 19 3 19
BFS 421 495 71 61 495 * 82 * 61 *

TEST # 21 22 23 24 25 26 27 28 29 30
PPLAN 60 55 65 15 7 37 257 597 55 9

PPLANC 8 10 12 15 7 22 19137 169 10 3
BFS * 432 432 408 51 * * 51 426 61

TEST # 31 32 33 34 35 36 37 38 39 40
PPLAN 29 702 15 22 597 23 57 15 108 585

PPLANC 11 163 15 22 169 23 37 15 54 151
BFS * 61 61 61 505 71 * 426 * 408

TEST # 41 42 43 44 45 46 47 48 49 50
PPLAN 7 68 15 27 115 7 * 13 1254 *

PPLANC 7 23 15 31 36 7 8157 15 85 340
BFS 51 408 426 * * 51 * 60 * *

TEST # 51 52 53 54 55 56 57 58 59 60
PPLAN 2 28 8 55 55 408 61 51 55 51

PPLANC 2 11 3 10 10 119 22 21 10 21
BFS 51 * 51 61 426 408 61 408 426 51

Figure 2: Nodes expanded by PPLAN, PPLAN augmented by
hard constraints (PPLANC), and breadth-first search (BFS).
The symbol * indicates that the program ran out of memory.

ence languages with respect to succinctness and expressive-
ness. We do not discuss this here.

A widely adopted language for studying user preferences
in AI is the propositional CP-nets formalism (Boutilier et al.
2004). CP-nets enable the description of conditional ceteris
paribus statements about user preferences (e.g., the user
prefers red wine if meat is being served and white wine if
fish is being served, all other things being equal). User pref-
erences are represented in a graphical notation which is com-
pact and which reflects the conditional independence and
dependence of statements. Unlike our formalism, CP-nets
is restricted to static, ordinal statements about preferences.
As such, CP-nets cannot express temporal preferences, nor
can it express relative importance of different preferences.
The CP-nets formalism is simple and elegant, however it
achieves this at the expense of expressiveness. There is often
a high degree of incomparability between different states.
This and the lack of temporal expressions makes it poorly
suited to the task of planning with preferences.

Other noteworthy work includes that of Brewka on qual-
itative choice logic (QCL) (Brewka, Benferhat, & Berre
2004). This preference framework is designed to represent
preferences over alternatives and induces a complete pre-
order over models. QCL provides a subset of the expressive
power of our preference language and is similar in seman-
tics to a previously proposed ordinal version of the language
we describe here. In other related work (Brewka 2004),
Brekwa proposes a language for answer set optimization
called PLD. The basic elements of PLD are rules which
code context-dependent preferences over answer sets. More
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complex preference formulae are formed using different ag-
gregation operators: sum, (ranked) set inclusion, (ranked)
cardinality, pareto, and lexicographic order. Finally, the pos-
sibilistic logic approach to preferences (Benferhat, Dubois,
& Prade 2001) is notable in that it proposes a qualitative
preference framework, thus allowing the relative importance
of preferences to be specified. All of the approaches we have
seen so far are limited in that they do not consider temporal
preferences, and hence are unable to express the types of
preferences that interest us. Nonetheless, they all present
their own advantages, many of which we have incorporated
into our own framework.

There have also been several pieces of work related to
the topic of planning with preferences. In (Delgrande,
Schaub, & Tompits 2004) Delgrande et al. developed a use-
ful framework for characterizing preferences and properties
of preference-based planning. The preference language they
propose is propositional and distinguishes between choice
preferences and temporal preferences, but is less expressive
than the language proposed here.

Most noteworthy of the related work is the work of
Son and Pontelli (Son & Pontelli 2004) which developed a
propositional language, PP , for planning with preferences
together with an implementation using answer-set program-
ming. PP served as a starting point for the development
of our language and we adopted their naming hierarchy of
BDF, APF, and GPF, augmenting it with AgPf. Despite the
similarity in names, there are significant differences between
our preference languages, both in terms of syntax and se-
mantics.

In particular, our language is first-order, which affords us
far more compact and simple expression of preferences. It
also enables the expression of preferences over unnamed ob-
jects, which is important for online planning where ground-
ings may not be known a priori. Planning with Web services
is a good example, where the execution of the plan can pro-
vide further knowledge of objects that a planner has prefer-
ences over (e.g., specific flights or hotels in the case of Web
travel planning). Furthermore, our language is qualitative
rather than simply ordinal, allowing us to express, for ex-
ample, that one BDF is strongly preferred over another, as
opposed to just providing an ordering over preferences.

At the GPF level, our language includes conditional pref-
erences, which are useful (cf. CP-nets). Like PP we have
the notion of General And (Conjunction) and General Or
(Disjunction), but we provide a different semantics for these
constructs. According to PP’s semantics, General And
must be better on all its component preferences and General
Or must be better on one component and at least as good
on the others. We did not feel that these were natural ways
of interpretting conjunction and disjunction. For example,
one would expect that fully satisfying one of the component
preferences should ensure satisfaction of a disjunction, but
this does not follow from the PP semantics. In contrast
our semantics is more in keeping with the boolean connec-
tives that give these constructs their names. Moreover, our
semantics induces a complete pre-order, whereas the seman-
tics of PP’s general preferences leads to great incompara-
bility between plans. Finally, at the AgPF level, we provide

several further methods for aggregating preferences, which
those using or reviewing our work have found to be be com-
pelling and useful, though our claim of usefulness has not
been verified by a usability study.

Son and Pontelli have implemented a planner using
answer-set programming. We believe our approach to plan-
ning is superior because it uses heuristic search to determine
an optimal plan rather than computing plans and evaluat-
ing their relative merit. We’ve discussed this matter with
the authors but have not been able to make an experimental
comparison.

Also on the topic of planning with preferences, Brafman
et al. (Brafman & Chernyavsky 2005) recently addressed
this problem, specifying qualitative preferences over possi-
ble goal states using TCP-nets. A TCP-net is a tradeoff-
enhanced CP-net, which allows the user to express priorities
between variables. The most notable limitation of their lan-
guage relative to ours is that they cannot express temporal
preferences. Furthermore, since they are using TCP-nets,
they suffer with incomparability of states, just as CP-nets
do. Their approach to planning is to compile the problem
into an equivalent CSP problem, imposing variable instanti-
ation constraints on the CSP solver, according to the TCP-
net. This is a promising method for planning, though it is
not clear how it will extend to temporal preferences.

Finally, there has been a variety of work that uses quanti-
tative preferences for planning or temporal reasoning. This
includes Eiter et al.’s work on answer set planning with re-
spect to plan length and numeric action costs (Eiter et al.
2003), work by Rossi and colleagues on reasoning with
temporal soft constraints (Rossi, Venable, & Yorke-Smith
2003), PDDL3 (Gerevini & Long 2005) which builds a plan
quality metric via a numeric combination of the penalties
assigned to basic temporal preferences, and of course the
extensive research on decision-theoretic planning such as
(Haddawy & Hanks 1992) and MDPs (Puterman 1994). As
we mentioned in the introduction, the quantitative nature
of these frameworks makes preference elicitation difficult.
This is why in our own work we decided to focus on qual-
itative preferences, which are more expressive than ordinal
preferences yet much easier to elicit than quantitative prefer-
ences. As a useful middle ground, (Fritz & McIlraith 2006)
integrate qualitative and quantitative preferences within an
agent programming framework. The authors’ express their
qualitative preferences in a restricted version of the language
proposed here.

8 Summary
In this paper, we addressed the problem of preference-based
planning. We presented the syntax and semantics of an ex-
pressive first-order language for specifying qualitative user
preferences. We proved that our semantics is preserved
under progression. We also proposed an admissible eval-
uation function that establishes the optimality of best-first
search. This led to the development of PPLAN, a best-first
search, forward-chaining planner that accepts temporally ex-
tended goals and computes optimal preferred plans relative
to length bounds. We further proved the correctness of the
PPLAN algorithm. Our preference language is amenable to
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integration with a variety of existing planners, and beyond
planning, can be used to support arbitrary dynamical reason-
ing tasks. In future work, we hope to apply our work to other
planning problems, including the task of Web service com-
position (e.g., (McIlraith & Son 2002). We also have interest
in applying our work to temporal diagnosis and to goal anal-
ysis within requirements engineering. We have developed
several extensions to PPLAN that integrate hard constraints
and that experiment with additional heuristics. In the future
we hope to build a successor to PPLAN with heuristics that
will further guide the planner towards preferred goals. Fi-
nally, work has also commenced on applying this framework
to agent programming.
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