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Abstract

The applicability of the Multi-Scale Structure De-
seription. (MSSD) scheme to the inverse-folding
problems was investigated,  An MSSD vepresents
a 3D protein structure with multiple symbolic se-
quences, where fine structures are represented with
the scquence at low levels. the naddle scale strue-
tural motifs at maddle levels. and global topology
at high levels.  Each symbol i the symbolic se-
quence denotes a type of local structure of the level
scale.  The structure fragments ave clussified at
cach scale level respectively according to the shape
and the envoronment around the fragments: how
the structure is exposed to the solvent or bwricd
e the molecule. T maodeled the propensity of an
amino-actd sequence to the structure fragment type
(t.t.. primary constraint) at cach sealc leecl. The
local propenstty is. therefore. modeled at small seale
(low) levels. whide the global propensity modeled at
large: scale (high) levels, Thus, superposing oll the
pronary constraints. a 32D protein structure yiclds
an. amno-acid sequence profile. Evaluating the fit
of an wnino acid scquence to the profile derived
Sfrom the known 3D protem structure, we can wden-
tify which 3D structure the given amino-acid se-
quence would fold ito. I checked whether a se-
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quence wdentifies s own structure over two hun-
dred proton sequences. Inomany cases. an amino
actd sequence ddentified its oum 3D protem struc-
ture.
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tein Conformation, Long-range Intcraction. Pri-
mary Constramts. Stochastic Model. Superposcd
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Introduction

With the recent rapid increase in the nnmber of
known 3D protein structures. more and more re-
scarcher think that the method to identify pro-
tein sequences that fold into a known 3D structure
would be more promising than the 3D structure
prediction ab initio. The inverse protein folding
problem has been attracting a lot of rescarchers
and many papers have been published on this is-
sue. This is chiefly because of Chothia’s shock-
ing declaration that ~There would be no more than
thousand protein families!” (Chothia 91). In any
method for the problem, some kind of scoring fune-
tion is defined to evaluate the fit of an amino-acid
sequence (1D being) to protein conformations (3D
being). To define one. some focused on the com-
patibility of cach amino-acid type to the environ-
ment around the residue (Bowie et al 91). some
on the empirical potential derived from the known
3D protein structure (Sippl and Weitckus 92), and



other on the statistical potential based on Baycsian
principle (Goldstein et al 94).

Since I found weak but meaningful relationships
between the type of local structure of various sizes
and the primary sequence at that region, I began
to investigate the applicability of the Multi-Scale
Structure Description (MSSD) scheme to the in-
verse folding problem . An MSSD represents a pro-
tein conformation at multiple scale levels. At cach
level. the conformation is described by a symbolic
sequence. each symbol of which denotes a type of
local structure of the level scale. Local structures
are classified into several types at each level re-
spectively according to their shape and the envi-
ronment. The classification is. therefore. closely
related to the secondary structures particularly at
the swmall scale levels. The description at middle
scale level is considered to represent the supersec-
ondary structures. and that at high levels repre-
sents the global topology. Since I classified the
structures according not only to their shape but
to their environment, two structures with similar
shapes but in the different environments are clas-
sified into different types: the helix exposed to the
solvent is classified into a different type from those
buried in the molecule. Let us call the compatibil-
ity of the structure type to the amino acid sequence
“primary constrains™ which we regard as the con-
straints from the pritnary sequence to the choice
of structure types. Hence. given an amino acid se-
quence fragment. we can roughly estimate which
type of local structure it would form. The 3D
structure prediction mcthod based on the MSSD
scheme is discussed in the literature (Onizuka et al
94).

To apply the MSSD scheme to the inverse pro-
tein folding problem. the primary constraints are
used inversely. Given a fragment of amino-acid
sequence, we can evaluate its fit to the structure
types of the fragments. Or rather. given a struc-
ture type at a level, we can obtain an amino-acid
sequence profile attached to the structure type un-
der my model. The fit of a given amino-acid se-
quence to this profile is, therefore, equivalent to
the fit to the structure type. Since the structures
are classified according to their shape and environ-
ment. my approach is. in some sense, the extension
of the method proposed in the literature (Bowie et
al 91). where the compatibility of an amino-acid
sequence to the secondary structure type and the
environment around each residue in the sequence is
considered to evaluate the fit. The extension, here,
indeed concerns the multiple scale evaluation of the
fit. The sequence profile is calculated by superpos-
ing all the subprofiles derived from the structure
fragment types in the given MSSD. The fit of a se-
quence to the whole 3D structure is not only eval-

uated at the small scale level in the MSSD, but
at all scale levels available. Chances are that even
though a given sequence does not fit to a MSSD at
low levels, the sequence may well fit at high levels.
Thus, we can identify a sequence that fold into an
unknown 3D structure but similar to a known 3D
conformation. even though the local fine structures
of the unknown one would be quite different from
those of the known one: the fine structures may
differ even if the amino-acid sequence of the two
protein is very similar to each other.

Method

This section describes the methods used in my
inverse-folding scheme. The first subsection il-
lustrates the technique applied to the structure
fragment classification at various scales. The sec-
ond subsection shall define the primary constraints
between the structure types and the primary se-
quence fragments. Aund then I formalizes the scor-
ing fuuction for the inverse folding problem. The
last subsection shall illustrate the dynamic pro-
gramming with A* algorithm applied to the align-
ment between the sequence profile derived from the
3D structure and the amino-acid sequence.

Classification of Structure Fragments

The classification of structure fragments is the
most crucial part of my inverse-folding scheme. A
good classification may produce good results with
high degree of accuracy. In order to incorporate
the relationship between a large structure frag-
ment and the primary sequence at that region,
we have to classify not only the small structure
fragments but large ones. However the classifica-
tion of those large ones is difficult without some
technique to abstract the structure because large
structures have many degrees of freedom. I over-
came the difficulty by introducing linear transfor-
mation of structure fragment into fixed number of
numerical parameters. Here, the fixed number of
parameters are cxtracted from the structure frag-
ments of any scale, and then, they are classified
into several types by sophisticated clustering tech-
niques at each scale level. Among the parameters
representing the structure fragments, some repre-
sent the structure shape, and others represent the
environment around the structure, how the struc-
ture fragment is buried in the protein molecule or
how exposed to the solvent.

First. I overview the technique applied to the pa-
rameterization of structure shape. This is detailed
in the literature (Onizuka et al 93). Then, I am
going to illustrate how to parameterize the environ-
ment around the fragments. The technique applied
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to the structure classification will be briefly illus-
trated. Finally, I will be showing the description
examples of protein structure using the classifica-
tion at multiple scales.

Topological Parameters In order to represent
the shape of structure fragments with small num-
ber of parameters, I applied linear transformation
to the coordinate representation of a structure frag-
ment. The set of expansion coefficients obtained
from the transformation turns out to be, after a
slight modification, the sct of paramcters repre-
senting its abstracted shape. We can restrict the
number of parameters by choosing a cut-off order
in the expansion. This transformation shall not
loose the important feature of the large structure

because the significant coefficients usually appear

at the lower orders in the linear expansion. The
cut-off, here, is equivalent to the neglect of the use-
less information on the shape at higher orders.

Siructure fragment with S residues Weights

‘Ps.l o So

Figure 1: Abstraction of Structure Fragment

The procedure of the parameterization involves
several steps as follows. First. a set of orthonor-
mal bases for linear expansion is provided. Secc-
ond, the set of topological vectors is calculated as
the abstracted form of a structure fragment by lin-
early expanding the coordinate representation of
the fragment. Then we extract the orientation in-
variant parameters from the set of topological pa-
rameters. Finally, we define a parity parameter
that discriminate the mirror images.

The sct of bases for the lincar expansion in this
study must be orthonormal in the discrete system.
A special set is thus required. One of the simplest
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set of bases is defined by polynomials. Let N be
the number of components of the base. Let oy g,
denote the 7th component of the base of Ath order.
This is simply defined by a kth order polynomial
of 2. on i = oy k(i) =c+ e + (32:1:,2_ + (:3:1,‘? +
-+ + ¢xe®. The orthonormal condition for this sct

is.
N-1
0= Z ONGiPNK JFEFR
Fad) (1)
L= (pnw)’
i=0

Let S; denote the positional vector representing
the position of ith residue in a structure fragment.
By operating the orthonormal base oy, to the
series of the positional vectors S; . we can obtain a
topological vector T as the expansion cocflicients
of the lnear expansion.

N-—-1

Ty = Z en LS. (2)
=)

The set of topological vectors are the abstracted
form the fragment. Cousidering the properties of
the bases used to calculate these vectors. Ty rep-
resents approximately the abstracted length of the
structure fragment: T represents approximately
the abstracted curvature; T3 obviously represents
the twist: T4 represents the meander.
The direction of the topological vectors depends
on the absolute orientation of the structure frag-
ment. We have to extract the orientation invariant
parameters. In addition. we need to define a par-
ity parameter to discriminate one from its mirror
image. Hence, eleven parameters are required to
represent a structure: four for the length of topo-
logical vectors |T;| six for the absolute difference
between the two vectors |T, — T} and one for the
parity. The parity parameter takes such a value as
follows.

¢ The sign of the parity paramcter of a structure
is different from that of its mirror image. If the
sign is negative for a structure. positive is the
sign for its mirror image.

e The intensity of the parity paramecter is small
when the structure is nearly symmetric. while
large is it when strongly asymmetric.

We can obtain such a parameter by caleulating the
vector product of topological vectors. I defined
the parity paramcter P as ({{T7 — Ta) x (Ty —
T3)}. T3 —~ Tq)/L% where L is a constant specific
to the scale of structure whose dimension is length.
L is defined as the mean length of topological vec-
tors. Hence. the dimension of all the topological
parameters is the length.



Environimental Parameters Here, I discuss
how we can incorporate the solvent accessibility
of structure fragments into the strncture classifica-
tion.

More and more biologists are aware of the im-
portance of hydrophobic interaction between the
residues during the folding process. A protein
chain so folds into a tertiary structure that the
hydrophobic residues would be buried inside the
molecule, whereas the hydrophillic ones exposed to
the solvent. The hydropathy of each residue must
be a strong factor determining the environment
around the residue. When a structure fragent
is deeply buried in the molecule, most residues
in the fragment should be hydrophobic, while hy-
drophillic when exposed to the solvent. Indeed is it
that, when the fragment is half buried and half ex-
posed, the residues around the buried region should
be hydrophobic and other residues hydrophillic.
The propensity of each amino acid type to the en-
vironment is considered even stronger than that to
the secondary structure (Saito ct al 93). Consid-
ering the propeusity from the primary sequence,
we can estimate how the the structure fragment
would be buried or exposed . In order to char-
acterize the environment around a structure frag-
ment. I introduce a new parameter attached to
each residue in the structure, the Quasi Buried
Depth (QBD), which takes positive value when the
residue is buried inside the molecule while takes
negative value when exposed to the solvent. The
dimension of the parameter is length so that the
calculation with the topological parameters physi-
cally would make sense. First. I give the definition
of QBD, and then I illustrate how to parameterize
the solvent accessibility of a structure fragment.

A residue deeply buried inside the molecule is sur-
rounded by more residues than those exposed to
the solvent. The number of residues nearby a given
residue within a certain distance can be considered
to measure how the residue is buried or exposed.
This number is given by counting the number of
residues in a sphere with certain radius centered
at the position of a given residue. The predictabil-
ity of this number from a given primary sequence
is discussed in the literature (Saito et al 93). The
Quasi Buried Depth is derived from the number.
and has the dimension of length.

From the investigation of the maximum number of
residues M in a sphere whose radius is 7, I found
that M is almost proportional to the r24%, and is
calculated as M = 0.15r2-4%. This suggests, the
residues are not optimally packed but are subop-
timally packed in the sense of fractal dimension.
We can consider that when the actual number of
residues IV in the sphere with radius r centered at a
given residue would be equal to M, the depth from

the surface of the protein molecule to the residue
would be estimated greater than r, while the depth
would be estimated around zero when N is a half of
M. The number N can be, therefore, transformed
into the quasi depth of the residue from the surface.
The Quasi Buried Depth d@ is. therefore, calcu-
lated as d9 = (2N/M — 1)r. where M = 0.15r245,
When d? takes a positive value, the residue is con-
sidered buricd. while considered exposed for the
negative d?.

Likewise the topological parameters which are ob-
tained by linear transformation. the set of cnvi-
ronmental parameters representing how a struce-
ture fragment is buried or exposed is calculated by
transforming the sct of residues’ QBD in a struc-
ture fragment. The environmental parameter of
kth order E; is calculated as below.

N-1

Ev= Y onrdy. (3)
i=0

where d_? is the QBD of :th residue in the frag-
ment. Since the physical dimension of environmen-
tal parameters is length. these parameters can be
used with topological parameters. In my study. the
maximum order of expansion is five, and five envi-
ronmental parameters are to represent the solvent
accessibility of the structure fragment.

Classification of Structure Fragments The
structure fragment abstracted and represented
with a few parameters may be classified by a clus-
tering techniques. I adopted Leaning Vector Quan-
tization (LVQ). LVQ classifies cach data in the data
sct according to the ncarest centroid to the data.
The distance between two data D;; is, in my study.
defined the Euclidian distance below.

Di; = \/Z(T,-,k ~ Tj)’. (4)
k

where T, is the Ath component of the ith data.

The centroids for the clustering here arc obtained
by the iterative process as follows. The initial cen-
troids are arbitrary placed in the n-dimensional
space where n is the number of components of the
data. Each data in the set is classified according
to the nearest initial centroid to the data. By this
initial classification. the data set is classified into
the clusters represented by each centroid respec-
tively. Each centroid in the next step is calculated
as the mean of the data belonging to the cluster.
Then the data set is again classified according to
the new centroids. This process is iterated until
the difference between the population of each new
cluster and that of previous one is less than 2% of
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the population, when I consider that the position
of cach centroid almost converges.

Scale [ 0 1 2 3

129 | ccccececee

97 | ABBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBB
65 | CCNNNNNOOCCCCCJJIJJJJocceeeeecceeccee
49 | EJJJQQQQAQQQQQQJILLLLCCCCCCLLCCCCCCC
33 | GFFFCJJQQJJLLLLLRRRRRJIBBBBBBBBBBFF
25 | GOOOPPPPPGGGEEHHHJJJJJJLIIKKKKKKUUU
17 | AACEELLLLLLLLLFFFBBJJSSSSRKIBHHHIII
13 | PCAGGGKKKKKKKKKKKDDDAIQUUUULHHIIMNML

9 | WULMABIIIIOOO000IGGGGBBHHTTTTHLFFFH
7 | WUUUNEEPKOOOOOOOOQOGGGAEJLQQQQLDAFF
5 | WWWVSQJOLEMMMMMMMMMMEEDAJFPPPPPSJIDA

DSSP | -eeeee~ssshhhhhhhhhhhhhhhtt---eeeet

Seq. | MKIVYWSGTGNTEKMAELIAKGIIESGKDVNTINV
Scale 4 5 6

129

97 | BBBBBBB

65 | CBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCB

49 | CCCCCCCFFFEEEEEEEEJJJJFFFCCCCCEEECC

33 | FFFIIIII1JJJJFFFEELTTWWWQPJEBBFFFFB

25 | UUUWTTTLLLCACIKKKRRRSJJJJJJEEEHHUUU

17 | EHHOOOTWWWVKKDDDFFFIMIIIIMMMMMIGEEE

13 | MMEGBOODOVSXWWRCCCCBEJJEEEEJJJJJIMME

9 | HFDDEEBNQVVVXXUULAACCHRLABEDDDDDDDD

7 | HDCBBBFCMMVWXXXUUSDEECLLNEABBGBBBBB

O | FIHABAAAFOLWWWXXVVSJJOLQNIJBBCDDAAAB

DSSP | tt--sttttt-seeeeee--btttb--ttthhhhh

Scq. | SDVNIDELLNEDILILGCSAMGDEVLEESEFEPFI

Scale |7 8 9 0
129
97
65 | BBBB

49 | CCJICEEEEEEEEENNFFFF
33 | BBBIITHQNGGGGFFCIIJQQPPPPLLLLLSSSTQ
25 | UXXTUMMMCCCFFFJRRRRRIIEEEHHHHQQQNNL
17 | OOOOWTTTVKKAAAGGMMMMMMMMFFIIHEGJORR
13 | LGIOOSSXXWRRCCCBEEJJJJJJJJJDDEEDILQ
9 | DFFQQNNVVXWWUULACCQEEEGGGGEEGEEBBHT
BBFFJFPRWWWWXUUSDEJMGGKGGGBGGBBGICM
AADBFFBLTWWWWXVVNKFOOLCEDGCEDGCDDBO
DSSP | hhhstt-tt-eeeeeceeesss—-shhhhhhhhhhhh
Seq. | EEISTKISGKKVALFGSYGWGDGKWMRDFEERMNG
Scale 1 2 3
129
97
65
49
33 (Q
25 | LLACEEKKK
17 | RRRRKKKBBBHHHMMMM
UUUUUUPHCCDDIGGJJJKKJ
RMLQQTWRMMMMBFEEEEIIIIIGG
UULNMRRWUSNNNAACMKKKKKKKKGG
LSSNJOOTWSQQQNABBFDGEEGGEEGCA
DSSP | tt-ee-s--eeees--ggghhhhhhhhhhhht-
Seq. | YGCVVVETPLIVQNEPDEAEQDCIEFGKKIANI

v~

—
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318 ISMB-9%4

Description Examples The data set used in
this study was taken from the selected pro-
tein structures of Protein Data Bank by EMBL
(Hobohm et al 92). From the selection. I further
selected 245 structure determined by X-ray chrys-
tallography. The sequence homology between each
pair of protein chains is always less than 25%. The
radins of sphere to determine the QBD is 10 A.

The data sct at N-residue level is obtained by
calculating the sixteen parameters of all possible
structure fragments with N residues in all the se-
lected protein chains. I classified the structuve
fragments with 5. 7. 9, 13, 17, 25. 33. 49. 65. 97.
129, and 193 residues and obtained the twenty four
types at cach scale. The letters from A to X denote
the structure types. The conformation of 4FXN
(Flavodoxin) is described in this scheme as above.
The lines at “DSSP™ denote the sccondary struc-
turcs assigned by DSSP. At the 5-residue level, the
site symboled AE.G. or M usually takes helical
conformation denoted by h, and those of V.W or
X usually take strands denoted by e. The struc-
ture types at the 5-residue level. therefore, well cor-
respond to secondary structures. The description
at high levels can be considered to represent su-
per secondary structures, and those at the 65 or
129-residne level would correspond to the some
domams or global structures. We can conclude
that the MSSD precisely represents the hicrarchi-
cal property of 3D protein structure.

In this way. a protein conformation deseribed in
this multi-scale structure description scheme shows
Liow the conformation is built up of the substrue-
tures and structural motifs.

Primary Constraints

The primary constraints relate the primary se-
quence and the structure type at each region.
MSSD scheme is particularly suitable to model
both local and global factors of structure forma-
tion. The primary constraints for short structure
fragments naturally represent local factors. and
those for long ones represent global or long-range
factors. For further discussion, I define several no-
tations lhere.

Let vF denote a structure type, wlhere normally
v = Ak 4 =B 7t = P Let o* denote a
primary scquence fragment at the &th level. And
we further denote w* as the number of residues in
the structure fragment at the kth level. We denote
I'* € {AF B* ... X*} as the variable that takes
a structure type. where ¢ denotes the position in
the primary sequence. We also denote TF as the
variable that takes a primary sequence fragment.
Note that the position ¢ here denotes the position
of the first residue of the structure fragment in the



])l'illl ary sequence.

The probability of a primary sequence fragment
o forming a type of structure 4} is represented
as Pp(T¥ = 4¥|8F = oF). Since we assume that
the primary constraint is invariant of its absolute
position in the primary sequence but only depends
on the structure type and the primary sequence
at that region. it may simply be represented as
Pp(T*|TF).

In the previous literatures (Omnizuka et al 93:
Onizuka et al 94). I defined geometric con-
straints between the overlapping structure frag-
ments. which is essential factor for 3D protein
structure prediction ab initzo. In this paper, I don’t
discuss on this issue because they have nothing to
do with the inverse-folding scheme using MSSD.

In the field of molecular biology, the sequence pro-
files are frequently uscd to analyze the relation-
ship between a sequence pattern and the structure
or function at that region, where the frequency
of each amino-acid type is counted with respect
to the position. This technique is directly appli-
cable to model the primary constraints at small
scales. though it requires large number of param-
eters, again, for the primary constraints at large
scale. For example. at five-residue level, the num-
ber of parameters representing the frequency is
100 = 20 x 5 where 20 is the number of amino-
acid types. and 5 is the number of residues in the
structure fragment at that level. At the large scale
levels. where the number of residues are more than
100. more than 2000 parameters are required. In
this case. however, we can compress the sequence
profile using the same technique as I applied to the
structure abstraction. We can always reduce the
number of parameters into 100 using lincar expan-
sion again.

Inverse-folding Scheme

Given an MSSD representing a 3D protein struc-
ture. we can estimate the most probable sequence
from the MSSD using the inverse primary con-
straints Pr(Z|T), which is simply given by caleu-
lating the fit of a sequence to a profile. Pp([|Z) is
caleulated by applying the prior P(T') to Pr(X|T).
Let 4 denote a position in the sequence. Let t4
denote an amino-acid type. and let T4 be a vari-
able that takes onc of the amino acid type t4.
We can derive the probability P(T = t4) of the
amino-acid type occurring at the position ¢, from
the structure fragment type covering the position
i. Let P(TA = tA|l';) denote the probability of
the amino-acid type t4 occurring at the position
i in the fragment. To superpose the Pr(T4). we
have to divide this value by the prior P(T4 = t4),
because the prior is doubly or triply calculated.

Thus, Pr(T#) is calculated as below.

PI(TiA = tAIF')
I

(5)
In this case, however, the prior P(t4) does some-
thing unpreferable. The probability P(T# =
t4) almost always suggests that Alanine is the
most probable amino-acid type at any position.
This means that the inverse primary constraint
PH(TA|® ;) is much weaker than the prior. Hence,
I adopt Cp(TA = t4) = P(T# = t4)/P(t4) in-
stead of Pr(TA = t*). This value is greater than
1.0 when the amino-acid type stochastically occurs
more than random level.

P(TA =1t4) = P(t?)

i
AllT; rovering ¢

The superposition of all the inverse primary con-
straints from the MSSD derived from the given 3D
structure yields a stochastic sequence profile. The
fit of a sequence to this profile is counsidered the
fit to the given conformation represented by the
MSSD and by turn the fit to the given 3D struc-
ture.

3D-1D Alignment

The alignment between the sequence and the pro-
file is carried out simply by dynamic programming.
The dynamic programming searches for the opti-
mal alignment that minimize the score FE below.
Some appropriate gap penalty should be used when
wce permit gaps.

E=— Zl()g C;(TiA =t4) + gappenalty. (6)

We consider the resultant score E as the fit
of amino-acid sequence to the sequence profile
Ci(T#) derived from the MSSD representing 3D
structure. Hence, given a primary sequence of a
protein whose 3D structure is unknown. we can
search for the most compatible 3D structure in the
protein structure database. This is far simpler than
that of those schemes using Sippl potential (Sippl
and Weitckus 92: Jones et al 92; Yuke and Dill 92;
Skolnick and Kolinski 92), where it is necessary to
apply the double dynamic programming that re-
quires large amount of calculation.

[ applied the A* algorithm to the 3D-1D align-
ment, which was first applied to the protein se-
quence alignment in the literature (Araki et al 93).
This algorithm finds the optimal solution while
the calculation amount is much smaller than that
of conventional dynamic programming algorithms,
though the implementation is much difficult.

The choice of the gap penalty has not yet estab-
lished. In most cases, there are three parame-
ters concerning the gap penalty: 1) the slide gap
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penalty is the cost for the offsct between the two
sequence; 2) the initial gap penalty is the cost to
put a gap in a sequence: and 3) the incremental
gap penalty is the cost for the length of each gap.
When the initial gap penalty equals to inercien-
tal one. the dynamic programming turns out to
be quite simple with a simple network. Thus, I
adopted this penalty. The slide penalty should be
zero to allow any oftset between the sequence and
profile without costs.

Results

I used the same data set of protein structures as
that used for strncturc classification. To cross-
validate the result, the data set was divided into
five groups randomly so that cach group would con-
tain forty nine structure data. I obtained five sets
of primary constraints. where cach set was derived
from the structure data in five groups. When a
structure yields the sequence profile. I did not use
those primary constraints that are derived from the
structure group including that structure.

First, as a preliminary experiment. I investigated
Liow a protein sequence fits its own 3D structure
evaluating the Z score. Here. I did not align the
profile and the sequence: the gaps are. thus. not
considered. We can obtain the Z score of a se-
quence to a profile by normalizing the score E
by the mecan score < E, ndom > and the devia-
tion g _ ... of random sequences to that profile.
where E is defined as below.,

E = —Zl()gCI(T,-A:tA)- (7)

Thus. Z score Ez is,

EZ — E-< Erandom >‘ (8)

TErandom

I investigated the fit of sequences to the structures
at only oue scale level, in order to see which level
best corresponds the sequence. The plot below
shows the mean Z score with respect to the scale
level. The correspondence is the best at the low-
cst 5-residue level and it decreases monotonously
with the increase in the level. This suggests that
a local sequence strongly influence the formation
of the secondary structures at that region. because
the classification at the 5-residue level well corre-
sponds the secondary structures. Probably due to
the over-learning, the scores at the high levels are
below zero.

Second. T checked whether a sequence would iden-
tify its own structure. The hit-ratio of the self-
identification direclty snggests the performance of
my inverse-folding scheme. I checked whether the
fit of a sequence to its own structure would scores
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Figure 2: Z Score versus Scale

the best among all sequence-profile combinations.
We sclected 188 protein structures from the data
sct which I used to model the primary constraints,
because the other structure data contain residuc-
lacks or unacceptable bond lengths. I investigated
the hit-ratio of self-identification. When the com-
patibility score of the sequence to its own struc-
ture obtained from the 3D-1D alignment scoves the
best. T consider that the identification hits. 1 did
exhausting 3D-1D alignment for 188 x 188 times.
The table below shows the hit rationes.

[ [ Total | Hit | Hit Ratio |
Single Level 188 1 63 0.335
Multi-Level 188 | 90 0.478

This result actually shows that the performance of
self-identification is better when many scale levels
are incorporated.

—— e — T
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Figure 3: Hit Ratio versus Gap Penalty

Third I investigated how the gap penalty influence
the hit ratio. In this case, I used only first group of



data set which contains thirty nine proteins. This
graph shows that the higher the gap penalty is. the
better is the hit ratio.

Discussion

In this paper, I proposed the multi-scale evaluation
scheme to solve the inverse protein folding prob-
lem. I incorporated the compatibility of sequences
to 3D structures not only at the small scale level
but also at the large scale levels.

The results show that the multi-scale compatibility
scoring works better than the single scale one, cven
though the compatibility scores at large scale levels
poorly corresponds the fit between the structures
and sequences better than those at small scale lev-
els. Considering size of data set containing 188
protein structures, the result is not so bad.

One of the difficult problems unsolved is how we
can determine the gap penalty. As I showed the hit
ratio versus gap penalty. the higher the gap penalty
is the better is the hit ratio. In this sense. for
the better performance, the gap penalty shoud be
high. However. the high gap penalty does not per-
it the robust identification. Why can we insert,
gaps in the alignments? The gaps in a structure
may change the structure. and then. the different
environment may be formed.

The length of exterior loops of a protein structure
is variable. Even the main chain topology looks
alike. We have to permit the gaps in the 3D-1D
alignment. However, the robust identification by
turn produces worse self-identification hit-ratio.
Considering the poor mean Z score at high lev-
els. the 3D-1D correspondence at high levels does
not seem to be stochastically modelable. Thus. we
should not use those levels in order to obtain better
self-identification hit-ratio.

I investigated the applicability of MSSD scheme
to the inverse folding problem. and found that
the multi-scale scoring works far better than sin-
gle scale scoring. This means that the score at
high levels does a great deal to enhance the perfor-
mance.
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