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Abstract

Tim applicttbility of the M’ulti-Sc, lc Str.uctuve Dc-
.~criptiou (MSSD) schcm.c to th.c i,.ecvsc@dding
pcobl,m.~ was invcstiyatcd. A,. MSSD vcprcsc.lt.t.~
ct ./D protein stvm’tu’rc with multipb: symbolic se-
qlte:/t(’c.% II,/le:7"c tin(" setact.arcs m’~: rcprcsc.n.tcd with
th.c .~cqtu:ncc e,t low levels, tlu. m.iddlc scale struc-
tm’n.l m.otif.~ a.t m.’iddb: Iwvcls. a,d 91obal topology
at high. lc’pels. Each .symbol in tit.(: symboh:c sc-
qucucc denotes a type of local structure of the level
scah~. The structure fragmcTtts ,..re cl,.ssificd at
c,ch. re:ale level VeSl.,ccth,ely acco’rdi~tfl to th.c shape
a~ut the ctt.Trivonmcnt arouttd the: fragments: h.o’tv
th.c. struct’utv is e:tTJoscd to tim solre:he or b’uricd
i,. th.r: mole.cult. I modeled th.c. pvopc.,.sity of wn
~rm.iTto-acid scq’tzt:Tu’c to th.c xl.r.uctavc fcayTncttt type

(i.c.. pvimo.ry constraint) ~tt each s,h h"m’l. Th.e
local pvopc.n.sity is. therefore, m.odclcd at sm,ll scale
(low) b"vcl.~. .u.,hilc th.c .qlob,.l pr(qm,.sity 7nodelcd 
l,.7~1c m’,.lc (high.) levels. Th.us. mqmtTmsi,9 all the
prim.a.ry constvai.n.ts. , .’]D pvotciTt .strm’t,.rc. yidds
mt amino-acid .sequence. profile. Ee’,luatiTt 9 the fit
of vn a’mDto acid scqm,.cc to tim profih’ dcri’m:d
from. the known 31) protci’,, st.r,.ctuw’. .,u’ can idcn-

tz~f!l mh.ich 3D str.m’rm’, the flivctt am.ino-acid sc-
quc.’n.cc wo.,.hl fldd i,to, l ch.ccl,:(’d wluth~ r a m.’-
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Introduction

With tim recent l’apid increase in the nmnl)er of
known 3D protein structures, more ~Uld ulore rc-
sc~u-chcr think that the method to ithmtify pro-
tcin sequences that fohl into ~ known 3D structure
wonhl bc more t)romising than the 3D structure
t)rc(lictioll .b initio. The inverse protein fl)hling
l)roblcm has been attracting a lot of rescar(’hers
and many t)almrs have t)C(~ll published on this is-
sue. This is chictly I)ccausc of Chothia’s shock-
ing (Icclaration that ""17u:vc would be: v.o m.orc than
tho’,.sand protein flt.m.ilics!’" (Chothia 9l). In any
nlcthod for the I)roblcln, some kind of s(’oring fimc-
tion is defined to cwduate tlw fit of all amino-acid
sequence (1D ])eillg) to t)rotcil~ confl)rmations 
lining). To define one. some focused 1)1| the COlll-
patibility of each amino-acid type to the cnviron-
mont ~round the residue (Bowie et al 91), some
on the eml~irical l)otential derived fi’om the known
3D I)rotcin stru(’ture (Sipt)l and Weitckus 92), 

314 ISMB-94

From: ISMB-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



other on tile statistical potential based on Bayesian
principle (Goldstein et al 94).

Since I found weak but meaningful relationships
between the type of local structure of various sizes
and the prilnary sequence at that region, I begaal
to investigate the applicability of thc Multi-Scale
Structure Description (MSSD) sehelne to the in-
vel~se fohling problenl. An MSSD rcpresents a pro-
tein conformation at multiple scale levels. At each
level, the conformation is described by a symbolic
sequence, cach symbol of wlfich denotes a type of
local structure of the level scMc. Local structurt~s
are classified into several types at each level re-
spectively according to their shape and thc envi-
ronnlent. The classification is, therefore, closely
related to the secondary structures particularly at
the snmll scale levels. The description at nliddle
scale level is considered to represent the supersec-
ondary structures, and that at high levels repre-
sents the global topology. Since I classified the
structures according not only to their shape but
to their environment, two structures with similar
shat)es but in the different environments are clas-
sifted into different types: the helix exposed to the
solvent is classified into a different type from those
buried in the nxolecule. Let us c’M1 the compatibil-
ity of the structure type to the amino acid sequence
"primary constrMns" which we regard as the con-
stralnts from tlm prinxary sequence to the choice
of structure types. Hence. given au alnino acid se-
quence fragnlent, we can roughly estimate which
type of local structure it wouhl forln. The 3D
structure prediction nxcthod based on the MSSD
scheme is discussed in the literature (Olfizuka et al
94).
To apply the MSSD schelnc to the inverse pro-
rein folding problem, the primary constrMnts are
used inversely. Given a fragment of amino-acid
sequence, we can evaluate its fit to the structure
types of the fragments. Or rather, given a struc-
ture type at a level, we can obtain an anfino-acid
sequence profile attached to the stntcture type un-
der nly nlodel. The fit of a giwm amino-acid se-
quence to tiffs profile is, therefore, equivalent to
the fit to the structure type. Since the structures
are classified according to their shape and environ-
ment. my approach is, in some sense, the extension
of the method proposed in the literature (Bowie et
al 91), where the compatibility of an anfino-acid
sequence to the secondary structure type and the
environment around each residue ill the sequence is
considered to evaluate tile fit. Tile extension, here,
indeed concerns the multiple scale evaluation of the
fit. The sequence profile is calculated by superpos-
ing all the subprofiles derived from tile structure
fragment types in the given MSSD. The fit of a se-
quence to the whole 3D structure is not only eval-

uated at the snlall scale level in tile MSSD, but
at ’all scale levels available. Chances are that even
though a given sequence does not fit to a MSSD at
low levels, the sequence may well fit at high levels.
Thus, we can identify a sequence that fold into an
unknown 3D structure but similar to a known 3D
conformation, even though the local fine structures
of the unknown one would be quite different from
those of the known one: the fine structures may
(lifter even if the amino-acid sequence of the two
protein is very similar to each other.

Method

This section describes tile methods used ill my
inverse-folding schenm. The first subsection il-
lustrates the technique applied to the structure
fragnlent classification at various seale~s. The sec-
ond subsection shall define the primary constraints
between the structure types and the t)rimary se-
quence fragments. And then I formalizes the scor-
ing function for the inverse folding problem. The
last subsection shall illustrate the dynamic pro-
gramnfing with A* algorithm applied to the align-
lnent between the sequence profile derived from the
3D structure and the anfino-acid sequence.

Classification of Structure Fragments

The classification of structure fragments is the
nmst crucial part of nly inverse-folding scheme. A
good classification may produce good results with
high degree of accuracy. In order to incorporate
the relationship between a large structure flag-
ment and the primary sequence at that regiom
we have to classify not only the small structure
fragnlcnts but large ones. However the classifica-
tion of those large ones is difficult without some
technique to abstract the structure because large
structures have many degrees of freedom. I over-
came the difficulty by introducing linear transfor-
mation of structure fragment into fixed nunlber of
numerical parameters. Here, the fixed number of
paranleters are extracted from the structure frag-
nlents of any scale, and then, they are classified
into several types by sophisticated clustering tech-
niques at each scale level. Among the parameters
representing the structure fragments, sonle repre-
sent the structure shape, aald others represent the
environment around the structure, how the struc-
ture fragment is buried in the protein molecule or
how exposed to the solvent.

First. I overview the technique applied to the pa-
ralneterization of stnmture shape. This is detailed
in the literature (Onizuka et al 93). Them I anl
going to illustrate how to parameterizc the environ-
nlent around the fragments. The technique applied
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to the structure classification will be briefly illus-
trate(l. Finally, I will be showing the description
examples of protein structure using the classifica-
tion at multiple scales.

Topological Parameters In order to represent
tilt; shape of structure fraglnents with small mun-
her of parameters, I applied liuem" transfo,wlatio.n
to the cooTdinate representation of a struct.u.rc frog-
merit. The set of expansion coefficients obtained
fl’Oln the transformation turns ()tit to l)e, after a
slight modification, tile set of parameters repre-
sentiug its abstracted shape. We can restrict the
lmml}er of t}aramctem by choosing a cut-off order
in the expansion. This tralmformatiml shall not
loose the important feature of the large structure
I}{~ausc the significant coe]~icients usually appear
at the lower orders in the linear expansion. The
cut-off, here, is equivalent to the neglect of the use-
less infonnation on the shN)e at higher or(lets.

k
Structure fragment with 5 residues

Origin

Positional Vectors weighted by tp~..

1~ 484 ............
./:,’:

~
ii’,

%,J {, So

Figure 1: Abstraction of Structure Fragmel,t

The t)rocedure of the l}aranmtcfization involves
sevcrM steps as follows. First. a set of orthonor-
lnM bases for linear exi)ansion is i}rovided. Sec-
ond, the set of topological vectors is calculated as
the abstracted form of a structure fraglnent by lin-
early expanding the coordinate rcprascntation of
the fragment. Then wc extrax:t the orie.lktation in-
variant parameters froln the set of topological t)a-

rameters. Finally, we define a parity parameter
that discrilninate the mirror images.
The set of bases for the lim.’ar expansion in this
study nmst be orthonormal in the discrete system.
A special set is thus required. One of the simplest
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set of I)ases is defimxl by polynomials. Let N be
the nmnber of COnlponellts of tile I}a~se. Let C2N.~.,
denote the. ith Colnponcnt of thc base of kth or(h.’r.
This is simply definc.d by a kth order l)olynomial
of x. ~ON.ki = VO~v,k(zi) = e + c~:r, + r2x~ + ca:rai +
... + ckx~. The orthonorn,al con(litton for this set
is.

N-I
{} = ~ ~?N.ji~oY.~,., j ¢ I,:

i=o (l}

N-~ ):1 = (~o ~,-.~,
i=0

Let Si denote the positional vector rel}re.senting
the position of ith residue in a structure fragment.
By operating the orthonornml I}a~e qON.k, to the
series of the positional vectors Si . we can obtain a
topological vector T~ as the expansion (:oeffici{mts
of the linear exI)ansion.

N-1

Tk = ~_, ~N,kiSi. (2)
i=1}

The set of topoh)gical w~ctors are th{’ abstracted
form the fragment. Col~sidering the properties of
the I)~ses used to (’alculate these vectors. T~ rel}-
resents ai)proxinmtely the abstra,:tcd length of the
structure fraglnent: T2 represents apl)roxinlatcly
the atxstrax:t{,(I curvature; T3 obviously rei)resents
the twi~t: T4 represents the meaudel’.
The direction of the tOl}ological vectors depends
on the absolute orientation of the structure frag-
meat. We have to extract tit{; orientation iuvariant
l)arame.tet>. In addition, we nee{1 to (lefinc a par-
ity parameter to discriminate Olle front its mirror
image. Hence. eleven parameters are required to
represent a structure: four for the hmgth of toi}o-
h)gical ve(’tors ITil six for the M)solutc difference
between the two vectm~ IT, -Tjl and one for the
parity. The parity l)aramcter takes such a value as
follows.

The sign of the parity parameter of a structure
is different front that of its mirror linage. If the
sign is negative for a structure, l}ositiw’ is the
sign for its mirror image.

¯ The i)ltensity of the pality 1}aramcter is slnall
when the structure is nearly symmetric, while
large is it when strongly asymmetric.

We can obtain such a t)arameter by calculating the
vector product of topologieM vectors. I defined
the parity paralne.ter P as ({(T1 - T2) × (T~ 
T3)}. Ta -Ta)/L2. where L is a constant specific
to the scale of structure, whose. (limensiou is leugth.
L is defined as the mean length of topoh}gical vec-
tors. Hence. the dimension of all the topological
t)arametm~ is the leugth.



Environmental Parameters Here, I discuss
how we can1 incorporate the solvent accessibility
of structure fraglnents into the stnlcture classifica-
tion.
More aald more biologists are aware of tile im-
portance of hydrophobic interaction between the
residues (luring the folding process. A protein
chain so folds into a tertiary structure that the
hydrophobic residues would be buried inside thc
molecule, whereas the hydrophillic ones exl)osed to
the solvent. The hydropathy of each residue must
be a strong factor detennining the environment
around the residue. When a structure fraglnent
is deeply buried in the molecule, most residues
ill the fragment should be hydrophobic, while hy-
drophillic when exposed to the solvent. Indeed is it
that, when tile fragment is half buried and half ex-
posed, the residues around the buried region should
be hydrophobic and other residues hydrophillic.
The propensity of each amino acid type to the ell-
vironlnent is considered even stronger than that to
the secondary structure (Saito ct al 93). Consid-
ering tile propensity from the primary sequence~
we call estimate how thc the structure fl’agmeut
would be buried or exposed . Ill order to char-
acterize the environment around a structure frag-
ment. I introduce a new paranmtcr attachcd to
each residue ill the structure, the Quasi Buried
Depth (QBD), which takes positive value when the
residue is buried inside the molecule while takc~
negative value when exposed to the solvent. The
dimension of the parameter is length so that thc
calculation with the topological l)arameters physi-
cally wouht make sense. First. I give the definition
of QBD, and then I illustrate how to parameterize
the solvent accessibility of a structure fragment.
A residue deeply buried inside the molecule is sur-
rounded by more residues than those exposed to
the solvent. The number of residues nearby a given
residue within a certain distance can be considered
to measure how the residue is buried or exposed.
This number is given by counting the nulnber of
residues ill a sphere with certain radius centered
at the position of a given residue. The predictabil-
ity of this number from a given primary sequence
is discussed in the literature (Saito et al 93). The
Quasi Buried Depth is derived from the nmnl)er.
and has tile dimension of length.
From the investigation of tile lnmxinnun nunlber of
residues M in a sphere whose raxlius is r, I found
that M is almost proportional to the r2"45, and is
calculated as M = 0.15r2"45. This suggests, the
residues are not optimally packed but arc subop-
timaUy packed in the sense of fractal dimension.
We Call consider that when the actual number of
residues N in the sphere with radius r centered at a
given resi(hm w(nfld I)e equal to M, tile depth from

the surface of tile l)rotein lnolecule to tile residue
would be estimated greater than r, while the depth
would be e~stimated around zero when N is a half of
M. The nulnber N can bc, therefore, transformed
into the quasi del)th of the residue from the surface.
The Quasi Buried Depth dQ is, therefore, calcu-
lated as dQ = (2N/M - 1)’r, where M = 0.15r2’45.
When dQ takes a positive value, the residue is con-
sidcred buried, wlfile consi(tered exposed for the
uegative dQ.

Likewise the topological parameters which are ol)-
taine(l by linear transformation, the set of envi-
ronmental parameters representing how a struc-
ture fragment is buried or exposed is calculated I)y
trzmsforming the set of r~i(lues’ QBD ill a struc-
turc fragment. The environmental parameter of
kth order E~ is calculated as below.

N-I

Ek = ~ ~N.k~d?, (3)
i----0

wlwrc d~2 is the QBD of ith residue ill the frag-
meut. Since the physical dimension of environmen-
tal parameters is length, these parameters Call be
used with topological parameters. Ill my study, the
nlaxinmm order of expansion is five, and five envi-
roulnental parameters are to represent the solvent
accessibility of the structure fragment.

Classification of Structure Fragments The
structure fragment abstracted and represented
with a few t)arameters may be classified I)3, a clus-
tering techniques. I adopted Leaning Vector Quan-
tization (LVQ). LVQ classifies each data ill the data
set according to the nearest ccntroid to the data.
The distance between two data Dis is, in my study.
defined the Euclidian distaalce below.

D~j=i~_,(Ti,~-Tj,k)2, (4)

where Ti.k is the kth component of the ith data.
The centroids for the clustering here are obtained
I)y the iterative process as follows. The initial ccn-
troi(ls are arbitrary placed ill the n-dimensional
space where n is the numl)er of colnponents of the
data. Each data in the set is classified accor(ling
to the nearest initial centroid to the data. By this
initial classification, the data set is classified into
the clusters represented by each eentroid respec-
tively. Each centroi(l in the next step is calculated
as the meaal of the data belonging to the cluster.
Then the data set is again classified according to
the new ceutroids. Tiffs process is iterated until
the differelwc between the population of ea~ll new
cluster and that of previous one is less than 2% of
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the polmlatiom when I consider that the positiou
of each centroid ~hllost COllVel’ges.

Scale 0 1 2 3
129
97
65
49
33
25
17
13
9
7
5

CCCCCCCCCC
ABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
CCNNNNNOOCCCCCJJJJJJOCCCCCCCCCCCCCC
EJJJQQQ0qQOqQOJJLLLLCCCCCCLLCCCCCCC
GFFFCJJOqJJLLLLLRRRRRJJBBBBBBBBBBFF
GOOOPPPPPGGGEEHHHJJJJJJLIIKKKKKKUUU
AACEELLLLLLLLLFFFBBJJSSSSRKIBHHHIII
PCAGGGKKKKKKKKKKKDDDAIOUUUULHHIIMML
WULMABIIIIOOOOOOIGGGGBBHHTTTTHLFFFH
WUUUNEEPKOOOOOOOOOOGGGAEJLQQQQLDAFF
WWWVSQJOLEMMMMMMMMMMEEDAJFPPPPPSJDA

DSSP -eeeee-ssshhhhhhhhhhhhhhhtt---eeeet
Seq. MKIVYWSGTGNTEKMAELIAKGIIESGKDVNTINV

Scale 4 5 6
129
97
65
49
33
25
17
13
9
7
5

BBBBBBB
CBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCB
CCCCCCCFFFEEEEEEEEJJJJFFFCCCCCEEECC
FFFIIIIIIJJJJFFFEELTTWWWQPJEBBFFFFB
UUUWTTTLLLCACIKKKRRRSJJJJJJEEEHHUUU
EHHOOOTWWWVKKDDDFFFIMIIIIMMMMMIGEEE
MMEGBOOOVSXWWRCCCCBEJJEEEEJJJJJJMME
HFDDEEBNOVVVXXUULAACCHRLABEDDDDDDDD
HDCBBBFCMMVWXXXUUSDEECLLNEABBGBBBBB
FIHABAAAFOLWWWXXVVSJJDLQNJBBCDDAAAB

DSSP tt--sttttt-seeeeee--btttb--ttthhhhh
Seq. SDVNIDELLNEDI LILGCSAMGDEVLEESEFEPFI

Scale 7 8 9 0
129
97
65
49
33
25
17
[3
9
7
5

BBBB
CCJJCEEEEEEEEENNFFFF
BBBIIIHONGGGGFFCIIJQqPPPPLLLLLSSSTO
UXXTUMMMCCCFFFJRRRRRIIEEEHHHHQOQNNL
O000WTTTVKKAAAGGMMMMMMMMFFIIHEGJORR
LGIOOSSXXWRRCCCBEEJJJJJJJJJDDEEDILO
DFFQQNNVVXWWUULACCQEEEGGGGEEGEEBBHT
BBFFJFPRWWWWXUUSDEJMGGKGGGBGGBBGICM
AADBFFBLTWWWWXVVNKFOOLCEDGCEDGCDDBO

DSSP hhhstt-tt-eeeeeeeesss-shhhhhhhhhhhh
Seq. EEISTKISGKKVALFGSYGWGDGKWMRDFEERMNG

Scale 1 2 3
129
97
65
49
33
25
17
13
9
7
5

Q
LLACEFA(KK
RRRRKKKBBBHHHMMMM
UUUUUUPHCCDDIGGJJJKKJ
RMLQQTWRMMMMBFEEEEIIIIIGG
UULNMRRWUSNNNAACMKKKKKKKKGG
LSSNJOOTWSQQONABBFDGEEGGEEGCA

DSSP tt-ee-s--eeees--ggghhhhhhhhhhhht-
Seq. YGCVVVETPLIVQNEPDEAEQDCIEFGKKIANI
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Description Examples The data set used in
this study was taken from the selected pro-
tein structures of Protein Data Bank by EMBL
(Hobohm et al 92). From the selection. I fitrther
selected 245 structure determined by X-ray chrys-
tMlography. The sequence homology l)etween each
pair of protein chains is always less than 25%. The
radius of sphere to determine the QBD is 11) ~.

The data sct at N-residue level is obtaiued by
calculating tile sixteen parameters of all possibh,’
structure fragments with N resi(lm~ in all the se-
lccte(l protein chains. I classified the structure
fragnlelits with 5. 7. 9, 13, 17, 25. 33, 49, 65, 97.
129, aml 193 residues and obtaiued the twenty four
types at each scale. The letters froln A to X denote
the structure types. The couformation of 4FXN
(Flavodoxin) is (k~cribed in this scheme a.~ above.

The lines at "DSSP- denote the sccon(lary struc-
tures a.~signed by DSSP. At the 5-residue level, the
site symboled A.E,G. or M usually takcs helical
conformation denoted by h, and those of V.W or
X usually take strands denoted by e. The stru(’-
ture types at tim 5-residue level, therefore, well (:or-
r(,’spott(I to secoudary structures. The des(~ril)tion
at high levc, ls can i)e consi(lcred to represent su-
per seronda’tT] struchw(’,s, and those at the 65 or
129-residue level wouhl correspond to the some
doma’in.s or gh, bal structm’e~s. We can ,’onelude
that the MSSD precisely represents the hierar(:hi-
cal prol)exty of 3D protein structure.

In this way. a protein conformation described in
this multi-s(’ale structure (lescription schenw shows
how the conformation is built Ul, of the substruc-
tures and structural motifs.

Primary Constraints

Tilt: primary coustr~iuts relate the primal~ se-
(luence and the structure type at eax:h regiou.
MSSD scheme is t)articularly suitat)le to model
both h)eal and glol)al factors of structure, h)rma-
tion. The 1)rimary constraints fl)r short structure
fragnmnts natundly represent local fact()rs, and
those for hmg on(,’s rci)resent global or long-range
factors. For hlrther discussion, I define several uo-
tations here.
Let 7~ (lenote a structure type, where imrinally

71k = Ak, 7~" = Bk ..... ~ff6 = pk. Let c~k ,lenot,, a
primary sequence fragment at tile kth level. An(1
we fllrther denote .wk a~ the number of residues in
the structure fi’agment at tile kth level. We denote
F~" E {AI’, Bk ..... X~} as the variable that takes
a stru(:ture type. where i (leuotes the position 
the l)rimary sequence. We also denote E~ as tilt,,
variable that takes a primary sequence fragntent.
Note that the positioll i hcre denotes the position
of the first rt,’shluc of tile structure fragment in the,



prilnary sequence.
The prol)M)ility of a primary sequence fraglnent
ak forming a type of structure %~" is represented
as pp(r~ _k,~k = ak= "lt l i ). Since we assume that
the primary constraint is invariant of its M)solute
position ill tile primary sequence but only depends
ou tile structure type and tile primaw se(luence
at that region, it lnay silnply t)e represented a.s
pp(r~lzk).
In the previous literatures (Onizuka et al 93:
Onizuka et al 94). I defined geometric con-
straints between the overlapping structure frag-
ments, which is essential factor for 3D protein
structure prediction ab initio. In this paper, I don’t
discuss on this issue because they have nothing to
do with the inverse-folding schc,nc using MSSD.
In the field of molecular biologT, the sequence pro-
files are frequently used to analyze the relation-
ship between a sequence pattern and the structure
or function at that region, where the frequency
of each amino-acid type is counted with r(~l)cct
to the position. This techlfique is directly appli-
cable to model the prinlary constraints at small
scales, though it requires large lmmber of param-
eters, again, for the primary constraints at large
scale. For cxamplc, at five-residue lcvel, the num-
ber of paralneters rcpresenting the frequency is
100 = 20 x 5 where 20 is the number of aluilm-
acid type~, and 5 is tile nulnl)er of residues ill tile
structure fragment at that level. At the large scale
levels, where the number of resi(lues are more than
100, nmre than 2000 parameters are required. In
this case. however, we can comt)ress the seqummc
profile using the same techlfique as I applied to the
strm:ture al)straetion. We can always reduce tile
xmnlber of parameters into 100 using linear CXl)aal-
sion again.

Inverse-folding Scheme

Given an MSSD ret)rescnting a 3D l)rotein struc-
turc. we can estinlatc the most probable sequence
fi’om the MSSD using the inverse primary con-
straints PI(EIF), which is simply given by calcu-
lating tile fit of a se(luence to a profile. Pp(FIE) is
calculated by ai)i)lying the prior P(F) to PI(EIF).
Let i denote a position in the sequence. Let tA
denote all amino-acid type. ~nd let TA be a vari-
al)le that take~ one of the amino acid type tA.

We Call derive the probability P(TA = t A) of the
anfino-aeid type oecun-iug at the position i, from
tile stnmture fragment type covering the position

A Ai. Let PI(Ti = t ][’j) denote the probM)ility 
the alnino-acid type t A occurring at the positio,t
i in the fragment. To superpose the PI(TA), we
have to divide this value by the prior P(TA = tA),
because tile prior is doubly or triply calculated.

Thus, PI(TA) is calculated as below.

p(TA ---- tA) = p(tA) PI(TA = talrJ)
P(tA)

All P1 ~overinff i

(5)
In this ease, however, the prior P(tA) does some-
tiring unpreferable. The probability P(Tff =
t A) almost always suggests that Alanine is tile
most probable amino-acid type at ally position.
This lneems that the inverse l)rilnatT constraint
PI(TAIEj) is much weaker than the prior. Hence,
I adopt C~(Tff = t A) = Pt(Tff = tA)/p(t A) in-
stead of Px(TA = ta). This value is greater than
1.0 when the amino-acid type stochastically occurs
more than random level.
The superposition of ’all the inverse primal5, con-
straints from the MSSD derived fi’onl the given 3D
structure yields a stocha,stie sequence profile. The
fit of a sequen(’e to this profile is considered the
fit to the given conformation rel)resented by the
MSSD and l)y turn the fit to the given 3D struc-
ture.

3D-1D Alignment

The aliglunent between the se(luence and the pro-
file is carried out simply by dynamic prograulnfing.
The dynamic prograumling searches for the opti-
ur, fl alignment that minimize the score E below.
Some al)t)rol)riate gap penalty should be used wheu
we l)ernfit gaps.

= - E log CI(TiA = t A) + 9appen.alty. (6)E
i

We consider the resultant score E as the fit
of amino-acid sequeuce to thc sequence profile
CI(TA) derived from the MSSD representing 3D
structure. Hence, giveu a primary sequence of a
protein whose 3D structure is unknown, we can
search for thc most compatible 3D structure in the
proteiu structure database. This is far simpler than
that of those schenles using Sippl potential (Sippl
and Weitckus 92: Jones et al 92; Yukc aml Dill 92;
Skolnick and Kolinski 92), where it is necessary to
apply the double dynamic progralnnfing that re-
quires large amount of calculation.
I applied the A* algorithm to tile 3D-1D align-
meut, which was first applied to the protein se-
quence alignment in the literature (Araki et al 93).
This algorithm finds the optimal solution while
the calculation amount is nmch snlaller theal that
of eonveutiona,1 dynanfic prograanming algorithms,
though the inlplcmentatiou is much difficult.
The choice of the gap penalty has not yet estab-
lished, hi most cases, there are three parame-
tcm concenfing the gap penalty: 1) the slide gap
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penalty is the (:()st for thc offset I)etween the 
sequence; 2) tile initial gap penalty is the cost to
put a gap in a sequence: and 3) the incremental
gap penalty is the cost for the h;ngth of each gap.
Whcn the initial gap penalty equals to incrcnmll-
tel one, the (lynanfic programnfing turus out to
be quite simple with a simple network. Thus, I
adopted this pcnalty. The slide penalty shouhl be
zero to allow any offset between the sequence and
profile without costs.

Results
I used the same data set of t)rotein structures a.s
that used for structure classification. To cross-
validate the, result, the data set was divided into
five groups randomly so that each group wouhl con-
tain forty nine stnlcturc data. I obtained five sets
of p1~mary constraints, where each set was derived
from the structure data in five groups. When a
structure yields the sequence profile. I did not use
those primary constraints that are derived fl’om the
structure group including that structurc,.
First, as a l)reliminary experiment. I investigated
how a protein sequence fits its own 3D structure
evaluating the Z score. Here. I did not align the
profile aad the sequence: the gaps arc. thus. not
considcre(I. We can obtain the Z score of a se-
quencc to a profile by normalizing the score E
by the mean score < E,.ando m > all(I the (levia-
tion CrEr,,,a .... of raa~(lonl S(Xluen(:es to that profile.
where E is defined a.s below.

- E log C1(7~A = t A ). (7)E
i

Thus. Z score Ez is,

E- ( Erandom
Ez = (8)CI Er,, .dora

I investigated the fit of se(luences to the stnlctures
at only Olle scale level, in order to see which h;vel
best corresponds the sequence. The plot below
shows the inean Z score with respect to the scale
level. The correspondence is the best at the low-
est 5-residue level and it (lecrca;ses lnonotonously
with the increase in tilt; level. This suggests that
a local sequence strongly influence the fonnation
of the secondary structures at that region, because
the classification at the 5-residue lcw;l well corre-
si)onds the secondary structures. Probably due to
the over-learning, the scores at the high levels are
below zero.
Second. I checked whether a seqUellCe wouhl iden-
tify its own structurc. Thc hit-ratio of the self-
identification dirc(’ity suggests the t)erfonnan(’c 
my inversc-fi)lding schemc. I cl.eckcd whether the
fit of a sequence to its own structure woukl scorcs
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thc, best among all sequence-profih: combillations.
Wc selectcd 188 protein structures from the data
set which I used to model the primary constraints,
because the other structure data contain resi(hm-
lacks or unacceptable bond lengths. I inw’st.igated
the hit-ratio of self-identification. When the (’onl-
patil)ility score of the sequence to its own struc-
ture obtained from the 3D-1D alignment s(’orcs the
best. I consider that the identification hits. I did
exhausting 3D-1D aligammnt for 188 × 188 times.
The tal)lc below shows the hit ratiom~s.

I Total [ Hit ] Hit Ratio I
Single Level 188 63 0.335 [
Multi-Level i88 90 0.478 I

This result actually shows that the pel’formance of
self-identification is better when many scale levels
are incorporated.

Hit Ratio

i i i
¯ . .:. 4 . ̄

Gap Penalty

Figure 3: Hit Ratio versus Gap Pevalty

Third I investigated how the gap l)enalty influcn(:e
the hit ratio. In this case, I used only first group of



data set which contains thirty nine proteins. This
graph shows that tile higher tile gap penalty is. tile
bctter is the hit ratio.

Discussion
In this paper, I proposed the nndti-scale evaluation
scheme to solve the inverse protein folding prob-
lem. I incorporated the conq)atibility of sequences
to 3D structures not only at the small scale level
but also at the large seal(; levels.
The results show that the multi-scale compatibility
scoring works better than the single scale ()ale, even
though the compatibility scores at large scale levels
poorly corresponds the fit between the structures
and sequcnces better than those at snlall scale lev-
els. Considering sizc of data set containing 188
protein structures, the result is not so bad.
One of the difficult problems unsolved is how we
caal detel’mine the gap l)enalty. As I showed the hit
ratio versus gap penalty, the higher the gap penalty
is tile better is the hit ratio. Iu this sense, for
the better performance, the gap penalty shoud be
high. However. the high gap penalty does not per-
mit the robust identification. Why can we insert
gaps in the alignments? The gaps in a structure
Inay change the structure, and then, the different
environment may be formed.
The length of exterior loops of a I)rotein structure
is variable. Even the main chain topology looks
alike. We have to permit the gaps in tim 3D-1D
alignment. However, the robust identification by
turn produces worse self-identification hit-ratio.
Considering the poor mean Z score at high lev-
els, the 3D-1D correspondence at high levels does
not seem to be stochastically lnodelabie. Thus. wc
should not use those levels in order to obtain better
self-identification hit-ratio.
I investigated the applicability of MSSD scheme
to the inverse folding problem, and found that
the nlulti-scMe scoring works far better than sin-
gle scale scoring. This means that the score at
high levels does a great deal to enhance the perfor-
nlance.

References
Onizuka. K.; K. Asai; M. Ishikawa; and S.T.C.
Wong 1993. "’A Multi-Level Descrit)tion Scheme
of Protein Conformatioll". P’roc. of ISMB-93:
301-310.
Cyrus Chotlfia 1992. "One thousa~M families for
the molecular biologist". Nature 357: 543-544.
Bowie. J.U.R. Liithy, and D. Eisenberg 1991. "A
Method to Identify Protein Sequence That Fold
into a Known Three-DilnensionM Structure" SCI-
ENCE 253: 164-170.

Sil)pl, M., and S. Weitckus 1992. "Detection of
Native-like Models for Amino Acid Sequcnees".
PROTEINS 13: 258-271.
Goldstein, R. A., Z. A. Luthey-Sclmltcn, and P.
G. Wolynes 1994. "A Bayesian Approach to Se-
quence Alignment Algorithm for Protein Struc-
ture Recognition". Proc. of 27th HICSS 5: 306-
315.
Onizuka. K.. K. Asai. H. Tsuda, K. Ito. M.
Ishikawa. and A. Aiba 1994. "’Protein Structure
Prediction Based on Mlflti-Level Descrit)tion".
P~vc. of 27th HICSS 5: 355-354.
Saito. S.. T. Nakai, and K. Nishikawa 1993. "’A
Geonletical Constraint Approach for Rcl)roducing
the Native Backbone Conformation of a Protein".
PROTEINS 15: 191-204.
Hobohm, U., M.Scharf, R.Schncider. C.Sandcr
1992. "Selection of a representative set of struc-
tures from the Brookhaven Protein Data Bank".
Protein Science 1: 409-417.
Jones, D., W. Taylor, and J. Thornton 1992. "’A
New Approach to Protein Fold Recognition". Na-
ture 358: 86-89.
Ynke, K., and K. Dill 1992. "Inverse Protein Fold-
ing Probleln". P ivc. Natl. Acad. Sci. USA 89:
4163-4167.
Skolnick, J.. and A. Kolinski 1992. "’Topology Fin-
gcrprint Approach". Science 250: 1121-1125.
Araki, S., M. Goshinla. S. Mori, H. Nakashima, S.
Tomita, Y. Akiyama. and M. Kanehisa 1993. "’Ap-
plication of Parailelized DP and A* Algorithm to
Mlfltit)le Sequence Alignment". Proc. of Gemome
Informatics Workshop V: 94-102.

Onizuka 321


