
A Novel Prioritization Technique for Solving Markov Decision Processes

Jilles S. Dibangoye
Greyc-Cnrs & DAMAS

Université Laval, Q.C., Canada
gdibango@info.unicaen.fr

Brahim Chaib-draa
DAMAS Laboratory

Université Laval, Q.C., Canada
chaib@ift.ulaval.ca

Abdel-illah Mouaddib
Greyc-Cnrs

Université de Caen, France
mouaddib@info.unicaen.fr

Abstract

We address the problem of computing an optimal value func-
tion for Markov decision processes. Since finding this func-
tion quickly and accurately requires substantial computa-
tion effort, techniques that accelerate fundamental algorithms
have been a main focus of research. Among them prioriti-
zation solvers suggest solutions to the problem of ordering
backup operations. Prioritization techniques for ordering the
sequence of backup operations reduce the number of needed
backups considerably, but involve significant overhead. This
paper provides a new way to order backups, based on a map-
ping of states space into a metric space. Empirical evaluation
verifies that our method achieves the best balance between the
number of backups executed and the effort required to prior-
itized backups, showing order of magnitude improvement in
runtime over number of benchmarks.

Introduction
Markov decision processes (MDPs) have proven very use-
ful to model a variety of problems in sequential decision-
making by individual agents. However, the computational
difficulty of applying fundamental algorithms, e.g., value it-
eration (VI) and policy iteration (PI), has spurred much re-
search into methods that accelerate fundamental solvers by
means of states aggregation or abstraction; decomposition;
and more recently prioritization.

Aggregation and abstraction techniques perform domains
encoding through a compact representation using various
model equivalence criteria, e.g., bisimulation (Givan, Dean,
& Greig 2003). Unfortunately, the search space for opti-
mal policies grows exponentially with the size of any com-
pact encoding. A common way to cope with this issue re-
lies on decomposition techniques (Dean & Lin 1995). Nev-
ertheless, these approaches are proven to be efficient only
on weakly coupled problems (Parr 1998). More promis-
ing methods rely on hybrid techniques that complete in the
same computational mechanism both states abstraction and
decomposition (Hoey et al. 1999). While interesting and
useful none of the above approaches have direct bearing on
our approach, and thus we will not pursue them further here.

VI and PI are inefficient mainly because they proceed
by backing up the entire state space at each iteration even

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

if unnecessary or redundant and computationally demand-
ing. In the remainder of this paper backup refers to Bell-
man update or Bellman backup, that is, the way the value
of a state is updated. It has been proven that by backing up
states in the right order, one can improve the performance
of MDP solution methods (Wingate & Seppi 2005). In con-
trast to fundamental MDP solvers prioritization techniques
attempt to compute good sequence of backups. Prioritiza-
tion techniques for ordering the sequence of backup oper-
ations reduce the number of needed backups considerably,
but can involve excessive overhead. Indeed none of prior-
itization solvers use a backup order that is built only once,
i.e., stationary backup order, rather they all proceed by dy-
namically updating state priorities as discussed later. One
exception is topological value iteration (TVI) (Dai & Gold-
smith 2007). TVI suggests performing backups in the order
of a causal relation among layers of states. Although TVI
is a great improvement on previous methods, it suffers from
two major drawbacks: first, as already mentioned computing
the backup order incurs non-negligible overhead; moreover
when facing domains where all states are mutually causally
related TVI is no better than value iteration and thus inher-
its value iteration’s disadvantages. These are strong argu-
ments that outline the necessity of improving state of the art
TVI algorithm. While this algorithm fails to scale to general
MDPs, it shows promising results demonstrating the poten-
tial of prioritization methods in solving MDPs.

The main contribution of this paper is an improved ver-
sion of topological value iteration (iTVI). This algorithm is
based on the insight that given any MDP, one can always find
a mapping of states space S into a metric space (S, d); hence
one can perform backups in the order of metric d. We de-
termine this metric by means of generalizing TVI’s causal
relation among layers to a causal relation among states.
iTVI uses standard shortest-path techniques, e.g., Dijkstra,
to quantitatively measure d. Doing so permits us to prior-
itize the backups of states in a single layer in contrast to
TVI algorithm thus greatly increasing TVI’s applicability to
general MDPs. When dealing with techniques that attempt
to accelerate fundamental algorithms it is always question-
able whether the effort required to perform offline steps, e.g.,
abstraction, decomposition, prioritization or computation of
heuristic values, is not prohibitively high in relation to gains
expected. Following this observation, we suggest a new way

Proceedings of the Twenty-First International FLAIRS Conference (2008)

537

to order backups, based on metric space (S, d) that achieves
the best balance between the number of backups executed
and the effort required to prioritize backups. The experi-
ments confirm that our algorithm scales up better than TVI
on different MDP models.

The rest of the paper is structured as follows: we cover
first the basic model for stochastic problems, as well as the
state of the art solution methods. We then describe domains
that motivate this work. In Section 4, we introduce improved
topological value iteration algorithm. We finally run an em-
pirical evaluation of the resulting solver and end with a brief
discussion in Section 5.

Background and Related Work
In this Section, we provide a brief review of Markov deci-
sion processes and some of the state of the art techniques.

Markov decision processes
An MDP M is a tuple (S, A, P,R, γ) where: S is a discrete
and finite state space; A is a discrete and finite action space;
P (s′|s, a) is a function of transition probabilities, i.e., the
probability of transiting from state s to state s′ when taking
action a; R(s, a) is a real-valued reward function, that de-
fines the outcomes received when taking action a in state s;
and γ is a discount factor.

Given an MDP model, the goal is to find a function
π : S → A mapping states s into action a. Such a func-
tion is called a policy. An optimal policy is a policy π? that
maximizes (resp. minimizes) the expected long-run reward:

π?(s) = arg maxa∈A E [
∑∞

t=0 γtR(st) | s0 = s] (1)

A policy π can be computed using its expected value de-
noted V π by choosing an action for each state that con-
tributes its value function. The optimal value function V π?

is determined by repeated application of the so called Bell-
man equation:

V (s) = maxa∈A [R(s, a) + γ
∑

s′∈SP (s′|s, a)V (s′)] (2)

until some stopping criterion is reached.
One fundamental algorithm for solving MDPs is value it-

eration. In synchronous value iteration all states are updated
in parallel resulting in considerable useless and redundant
backups. Rather in asynchronous value iteration algorithms,
at each iteration, only a small subset of states is selected for
update as discussed in the following.

Asynchronous methods
The first asynchronous approaches credited concurrently to
(Sutton 1991) and (Peng & Williams 1993), suggest that we
backup the values of states in a random order. More re-
cent asynchronous algorithms rely on prioritized sweeping
(PS) methods (Sutton & Barto 1998). In such a method,
a queue of every state-action pairs whose estimated value
would change nontrivially if backed up, is maintained pri-
oritized by the size of the change. When the top pair
in the queue is backed up, the effect on each of its pre-
decessor pairs is computed. If the effect is greater than
a certain small threshold, then the pair is inserted in the

queue with the new priority (McMahan & Gordon 2005;
Wingate & Seppi 2005). Although prioritized sweeping
methods are a great improvement on previous methods,
the overhead of managing the priority queue can be pro-
hibitively high.

The idea of computing good backup sequences has also
been used in heuristic techniques for efficiently solving spe-
cial types of MDPs. For MDPs with positive cost and a few
start states, forward search algorithms, e.g., LRTDP (Bonet
& Geffner 2003a), LAO? (Hansen & Zilberstein 2001) and
HDP (Bonet & Geffner 2003b), are the state of the art;
and for MDPs with few goal states, backward search algo-
rithms, e.g., improved PS (McMahan & Gordon 2005), have
shown interesting results. As already mentioned, finding
good backup orders typically incurs considerable computa-
tional overhead; hence, even though the number of backups
is reduced, in most such schemes the benefits do not fully
manifest in total execution time. This has led to the devel-
opment of prioritized techniques that make use of stationary
backup orders instead of dynamically adjusted ones as pre-
viously required.

Topological value iteration
Topological value iteration has been introduced by (Dai &
Goldsmith 2007). TVI differs from previous prioritized
algorithms since the overhead of computing its stationary
backup order is only linear in the size of the MDP graphical
representation1 denoted G. TVI proceeds first by grouping
states that are mutually causally related together and then by
making them as layers of states denoted {S`}`. The problem
of finding layers of an MDP M corresponds to the problem
of finding the strongly connected components of its graphi-
cal representation G. Then, TVI lets these layers form a new
MDP called reduced MDP and denoted M ′. In this case, the
reversed topological sorting of layers provides the so called
topological backup order (≺1). Finally, TVI proceeds by
backing up layers {S`}` in only one virtual iteration in the
order of its topological backup order.

Nevertheless, the causal relation used in TVI does not
fully leverage the advantage sparse domain dynamics may
offer. Indeed, while TVI demonstrates good performances
on layered MDPs, it suffers from a number of drawbacks in
general MDPs. In particular, when all states are in a single
layer TVI is no better than value iteration. This is mainly
because, the topological backup order used in TVI is unable
to prioritize the order in which states in a single layer S`

should be backed up. The problem with the causal relation
used in TVI is that it is based only on the mutual depen-
dency among states. More precisely, it does not distinguish
between different levels of dependency among states. At the
moment TVI processes a single layer, it looks at solving it
as if the level of dependency among states in that layer is the
same. So the topological backup order used in TVI does not

1The graphical representation of an MDP M is a directed graph
G(S, E). The set S has vertices where each vertex represents a
state s ∈ S. The edges, E, in G represent transitions from one
state s to another s′ (s ; s′), i.e., there exists an action a ∈ A
such that taking action a in state s may lead into state s′.

538

leverage the advantage sparse layers may offer. With this in-
tuition we want to design a backup order that is able to fully
exploit the sparsity of domains while being computationally
less expensive.

Motivating examples
In this Section, we describe problem examples and their
structural properties that originally motivate this work.

small-bi.maze

s0

sG

s0

sG

small.maze

Figure 1: Two examples of #.maze domains.

Race track problem
The Race Track is a planning problem that simulates auto-
mobile racing (Barto, Bradtke, & Singh 1993). The mod-
ified version assumes only a probabilistic single car evolv-
ing in a road racing represented by a shape (see Figure ??)
and composed with a starting and a finishing line and many
weakly-coupled roads. For the sake of simplicity, we assume
only 4 straightforward moves (right, left, up, and down). In
contrast with the original race track domain, we allow the
obstacle states to be dead ends, that is when a car falls into
such states there is no action leading outside. The shape can
be layered such as small.maze or only weakly coupled as
depicted in small-bi.maze Figure 1.

Stochastic traveling salesman problem
Some planning and scheduling problems are such that the
overall goal of the problem is to complete some set of sub-
tasks (see Figure 2). In this case the problem will typi-
cally have dimensionality that is at least linear in the num-
ber of subtasks. To look at such applications, we consider
the stochastic traveling salesman problem (STSP) defined as
follows. Let M be a communicating MDP2, C ⊆ S be the
set of subtask states that must be visited, and let s0 ∈ C be
a designated start state. Then, the stochastic traveling sales-
man problem (STSP) on 〈M,C, s0〉 is to find a policy (most
likely non-stationary, history dependent) that minimizes the
expected time to visit all s ∈ C at least once, starting from
s0 and returning to s0 after all states in C are visited. While
STSP is a non-stationary application, to fit within the MDP
framework, we create an augmented MDP M̂ that extends
the state space of M with |C| additional boolean variables
which indicate which states in C have been visited. Then,
we make the goal in M̂ to have all |C| additional variables
true while in s0, in such a way that optimal solutions to M̂
correspond directly to solutions of the STSP.

2An MDP is communicating if all states are in a single layer.

1

2

5

4

3
2

2
2

3
2

2

3
Home City

No Time Window

Time Window [6, 10]

Time Window [5, 9]

Time Window [5, 7]

Time Window [3, 10]

Figure 2: Illustration of STSP domain with time windows.

Structural properties
These two domains embody the graphical features TVI and
its extension iTVI try to leverage. The domain illustrated
by small.maze is said to be layered since some states (cells
with an arrow) can only perform a single deterministic ac-
tion (direction of the arrow). Once the system reaches this
state, it enters a new layer and it cannot go back; hence the
domain can be partitioned into multiple layers. Similarly
with regard to small.maze, in STSP when a subtask state
s ∈ C is visited the associated boolean variable vs is set
to true. Then, the system will never fall into states of the
augmented MDP where vs is set to false (since s is already
visited). Therefore both STSP and small.maze are layered
MDPs. However, there are a number of applications, as for
instance small-bi.maze, that yield sparse domain dynam-
ics but are not layered (when considering only non dead-end
states). Such domains are known in the MDP literature as
weakly (or loosely) coupled MDPs and match a variety of
realistic applications (Parr 1998). Weakly coupled MDPs
are domains where one can find state subspaces whose in-
terSections have at least k > 0 vertices. Unfortunately, the
problem of finding weakly coupled subspaces of an MDP
corresponds to the problem of finding k-connected compo-
nents of its graphical representation G. The complexity of
such decomposition algorithms is bounded in the worst-case
by O(|S`|k). Hence, computing then ordering such state
subspaces is intractable in general.

Improved TVI
The purpose of iTVI is to provide a stationary backup or-
der that prioritizes states rather than state subspaces. To
overcome the difficulties in computing good backup orders,
mostly due to the excessive overhead, we draw our inspi-
ration from (Dai & Goldsmith 2007)’s observation: ‘states
and their value functions are causally related’. Pushing this
observation further, we note that states and their value func-
tions have different levels of dependency. In an MDP M ,
one state s′′ is a successor of state s′ which is the succes-
sor of state s, i.e., s ; s′ ; s′′. Then, V (s) is dependent
on both V (s′) and V (s′′). However, V (s) is much more
dependent on V (s′) than V (s′′), that is the level of depen-
dency between s and s′ is greater than the one between s
and s′′. Indeed, the effect of V (s′) on V (s) arises only af-
ter a single sweep of the value function, while the effect on

539

V (s) of V (s′′) requires two sweeps. For these reasons, we
want to backup s′′ ahead of s′ and s′ ahead of s. This causal
relation is transitive. Unfortunately, such a relation is com-
mon among states since MDPs are cyclic. This suggests that
a potential way for finding a good sequence of backups is
to group states for different levels of dependency. Never-
theless, the problem of finding such clusters of states corre-
sponds to the problem of finding weakly coupled states sub-
spaces, and as discussed above this problem is intractable.
Here, we take a different approach that has interesting con-
sequences both from practical and theoretical point of view.

For the sake of simplicity, we assume given a single start
state s0 although the following exposition can be easily
extended to cope with multiple start states. Roughly, we
keep track of a metric d(s) over each reachable state s —
where d(s) denotes the minimum number of sweeps of the
value function that is required before V (s0) benefits from
V (s). Given the graphical representation G of an MDP, the
problem of determining the minimum number of sweeps is
equivalent to the single-source shortest path problem, where
the graph is G and each arc is labeled with (+1) and the
source vertex is s0. For solving such problems one can use
Drijkstra’s algorithm that runs in time O(|S| log |S|). Here,
we make use of a more accurate method as explained below.

To build our backup order we proceed by means of a
twofold method : (1) we perform a depth-first-search algo-
rithm that collects all states reachable from start state s0;
(2) we apply a breadth first search algorithm (BFS) to build
our metric d (see Algorithm 1). Indeed, the first-in-first-out
(FIFO) order in which BFS processes vertices in Ḡ is the re-
verse of the backup order we are looking for. The basic idea
is to perform a BFS in the transpose of Ḡ. The search starts
at state s0 taken as the root vertex. Then, states are added
in the queue as they are discovered and processed in FIFO
order. The search algorithm namely BackUpOrder labels
each processed state s by d(s), the distance (metric) from
the root to s. Hence, states can be partitioned into levels
based on the metric d(s). Furthermore, the algorithm main-
tains values V (s) such that possible ties of distance d could
be broken. This provides the construction steps of functions
d and V . Given metric space (S, d), it is easy to build a
backup order as follows: Consider the partial order ≺2 over
states S such that for all pairs s, s′ ∈ S, s′ is backed up
ahead of s if s is closer to start state s0 than state s′, more
formally: ∀s, s′ ∈ S : d(s) < d(s′) ⇒ s ≺2 s′. Un-
fortunately, the metric space (S, d) fails to differentiate be-
tween states s, s′ ∈ S that yields the same metric value, i.e.,
d(s) = d(s′). We use a heuristic function V to resolve ties
by means of backing up s′ and s in the order of V : if the goal
is to maximize the expected long-run reward s′ is backed up
ahead of s when the heuristic value of s′ is bigger or equal
to the heuristic value of s and vice-versa, more formally:
∀s, s′ ∈ S : (d(s) = d(s′) ∧ V (s) ≤ V (s′)) ⇒ s ≺2 s′.
Obviously ≺2 is only a partial order since we do not re-
solve ties of the heuristic value. Moreover algorithm Back-
UpOrder runs in time O(|A||S|2) that corresponds to the
complexity of a single sweep of the value function.

The pseudocode of iTVI is shown in Algorithm 1. The
algorithm proceeds first by computing its stationary backup

Algorithm 1: Improved TVI.
iTVI(M , ε)
begin

BACKUPORDER(V, d,G, M)
Initialize backup order ≺2, and reachable states S̄.
repeat

Cache the current value function V ′ ← V .
forall s ∈ S̄ in order of ≺2 do

V (s)←
maxa∈A

[
R(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

]
until ‖V − V ′‖∞ ≤ ε

end
BACKUPORDER(V , d, G, M)
begin

MAKEEMPTYQUEUE(Q).
Ḡ← DFS(G, s0, sG)
Ḡ← Ḡ>

forall vertices s in Ḡ do
visited(s)← false.
d(s)←∞, V (s)← nil.
d(s0)← nil.
V (s0)← maxa∈A R(s0, a).
ENQUEUE(Q, s0).
visited(s0)← true.

repeat
s′ ← DEQUEUE(Q).
V (s′)←
maxa∈A

[
R(s′, a) + γ

∑
s∈S P (s|s′, a)V (s)

]
forall vertices s ∈ Ḡ.adj[s′] do

if ¬visited(s) then
visited(s)← true.
d(s)← d(s′) + 1.
ENQUEUE(s,Q).

until EMPTY(Q)
end

order, then it iteratively updates the values of reachable
states in the order of ≺2. iTVI can be applied to MDPs
with an arbitrary number of goal states, but to simplify the
exposition, the description in Algorithm 1 is for MDPs with
a start state s0 and a single goal state sG.

Theorem 1 iTVI is guaranteed to converge to the optimal
value function over all reachable states.

iTVI is a simple value iteration algorithm that backups
all reachable states iteratively exactly like VI. Because plan-
ning over unreachable states is unnecessary, the convergence
property and the optimality of VI guarantee the optimality of
iTVI over all reachable states.

Empirical Evaluation
To evaluate iTVI, we compare it for different MDP models
to other state of the art MDP solvers namely, Gauß-Seidel
VI, TVI (Dai & Goldsmith 2007), PS (Wingate & Seppi

540

2005) as well as RTDP-style methods (for MDPs with pos-
itive costs). We introduce an additional algorithm namely
iTVI+, an improved version of iTVI that uses in addition
layers {S`}` provided by TVI. iTVI+ updates each layer in
the order of TVI’s backup order ≺1 and states in each layer
in the order of iTVI backup order ≺2. All algorithms are
run over various maze domains with different MDP models
as illustrated in Table 1. Indeed, to provide a more complete
test-bed for all algorithms including specialized solvers, we
allow different MDP models from the general form (no as-
sumption on the MDP model) to those including additional
assumptions, e.g., for MDPs with positive cost we assume:
A1. action rewards R(s, a) are all positive costs denoted
c(s, a) ≥ 0; A2. terminal costs are non negative and goal
costs are all zero c(sG) = 0. Doing so permits us to cover a
large range of applications as discussed in Section 3.

problem V ?(s0) % rel. states hmin(s0) #layers MDP type
large 33.40 2.27 n.a. 464 M1
larger 68.44 39.35 n.a. 645 M1
c-large 19.99 1.89 19.98 386 M1; A1-A2
c-larger 19.99 50.38 19.98 5262 M1; A1-A2

c-large-bi 19.99 34.51 19.98 2552 M2; A1-A2
c-larger-bi 19.99 50.38 19.98 5189 M2; A1-A2

large-bi 25.99 2.25 n.a. 468 M2
larger-bi 68.43 39.35 n.a. 572 M1

Table 1: Information about problem instances: expected
value, percentage of relevant states, heuristic value where
hmin(s0) = mina∈A(s) c(s, a) + mins′∈S hmin(s′) (Bonet
& Geffner 2003a), and number of layers. Abbreviation M1,
M2 and A1-A2 stand for layered, weakly coupled and MDPs
with positive cost, respectively.

As prioritization solvers attempt to avoid unfruitful and
redundant backups, we focus on the speed of convergence to
an ε-optimal. We executed all algorithms within the same
framework, allowing us to count execution time and the
number of executed backups accurately. We distinguish be-
tween offline time that corresponds to the time required to
build backup orders or compute heuristic values; and the
online time that deals with the time needed to find the op-
timal value function given pre-computed heuristic values or
backup orders. All algorithms are coded in JAVA and run on
the same Intel Core Duo 1.83GHz processor with 1Gb main
memory.

Results

As already mentioned we considered different MDP mod-
els that cover a large set of applications, and the results are
shown in Table 2,3,4 and 5. The statistic shown that: iTVI-
style algorithms outperform the rest of the algorithms in all
MDP models. This is mainly because of the good combi-
nation of our backup order and the reachability analysis.
The backup order used in iTVI achieves the best balance
between the number of backups executed and the effort re-
quired to prioritized backups. Even though the number of
backups may be much more reduced in other prioritization
algorithms, in all such methods the benefits do not fully
manifest in total execution time.

algorithm time (sec.) # backups
online offline total

large (20424 states, 4 actions)
Gauß-Seidel VI 119 0 119 108

PS (Wingate & Seppi 2005) 97.8 0 97.8 141880
TVI (Dai & Goldsmith 2007) 0.05 6.18 6.23 18864

i-TVI 0.23 0 0.23 107800

i-TVI+ 0.05 6.18 6.23 18840
larger (41856 states, 4 actions)

Gauß-Seidel VI 371 0 371 109

TVI (Dai & Goldsmith 2007) 29.8 104 133.8 1858100
i-TVI 31.1 0 31.1 6425272

i-TVI+ 31.3 104 135 1858100

Table 2: Statistics for MDP model M1.

algorithm time (sec.) # backups
online offline total

large-bi (20720 states, 4 actions)
Gauß-Seidel VI 138 0 138 108

PS (Wingate & Seppi 2005) 102 0 102 145212
TVI (Dai & Goldsmith 2007) 0.39 7.96 8.35 99892

i-TVI 0.25 0 0.25 110192

i-TVI+ 0.05 7.96 8.01 18864
larger-bi (41856 states, 4 actions)

Gauß-Seidel VI 381 0 381 1010

TVI (Dai & Goldsmith 2007) 30.1 105 135.1 5687312
i-TVI 32.2 0 32.2 5704068

i-TVI+ 30.5 105 135.5 5687312

Table 3: Statistics for MDP model M2.

algorithm time (sec.) # backups
online offline total

c-large (20424 states, 4 actions)
Gauß-Seidel VI 22.7 0 22.7 108

HDP (h = 0) 310 0 310 109

LRTDP (h = 0) 2.70 0 2.70 1328413
LAO? (h = 0) 6.50 0 6.50 998816

HDP (h = hmin) 0 21.0 21.0 20
LRTDP (h = hmin) 2.14 21.0 23.14 1061066
LAO? (h = hmin) 4.20 21.0 25.2 632664

TVI (Dai & Goldsmith 2007) 1.43 0.43 1.86 236732
i-TVI 0.60 0 0.60 229104

i-TVI+ 1.23 0.43 1.66 191380
c-larger (41856 states, 4 actions)

Gauß-Seidel VI 66.4 0 66.4 108

HDP (h = hmin) 0 66.5 66.5 20

TVI (Dai & Goldsmith 2007) 52.9 91.3 144 1.25 · 107

i-TVI 50.8 0 50.8 1.24 · 107

i-TVI+ 17.7 91.3 109 808608

Table 4: Statistics for MDP model M1 and A1-A2.

algorithm time (sec.) # backups
online offline total

c-large-bi (20720 states, 4 actions)
Gauß-Seidel VI 26.8 0 26.8 108

HDP (h = hmin) 0 26.9 26.9 20

LRTDP (h = hmin) 370 26.9 397 109

TVI (Dai & Goldsmith 2007) 16.0 11.2 27.2 4222144
i-TVI 15.7 0 15.7 4233392

i-TVI+ 3.33 11.2 14.5 239076
c-larger-bi (41856 states, 4 actions)

Gauß-Seidel VI 65.3 0 65.3 108

HDP (h = hmin) 0 65.6 65.6 20

TVI (Dai & Goldsmith 2007) 55 90.5 145 1.25 · 107

i-TVI 50.3 0 50.3 1.24 · 107

i-TVI+ 3.4 90.5 93.9 810444

Table 5: Statistics for MDP model M2 and A1-A2.

Discussion
iTVI-style algorithms outperform TVI, because they make
use of additional optimizations. First, in larger domain TVI
took 184 seconds while iTVI+ and iTVI took only 135 and
31 seconds respectively. This is mainly because our algo-

541

rithms are able to use a backup sequence over states. The
difference becomes more pronounced for non-layered do-
mains, e.g., large-bi. iTVI-style algorithms also outperform
prioritized solver like PS. As discussed in depth above, pri-
oritized sweeping methods suffer from computation over-
head due to the management of the priority queue. Unlike
prioritized sweeping solvers, iTVI uses a stationary backup
order, i.e., computed only once. In many cases, PS exe-
cutes fewer backups, but the overhead of computing prior-
ities makes it slower than iTVI-style algorithms, e.g., see
large domain.

We note that many of the state of the art algorithms were
unable to converge or were inappropriate for some domains
with specific models. Indeed as argued in the beginning of
this paper specific algorithms call for specific MDP mod-
els. The performance of forward search methods (LRTDP,
LAO*, HDP) are pretty bad in our experiments because we
allow the obstacle states to be dead ends. As a result if
the sampled trajectory includes a dead-end state, in all such
schemes the algorithm will stay for a while in that state.
Readers interested in the performance of forward search
methods in domains that do not include dead-ends can re-
fer to (Bonet & Geffner 2003a). As a result, for many MDP
models we do not include here, performances of all algo-
rithms since they are too slow or inappropriate. The per-
formance of forward search methods in MDPs with positive
costs (A1-A2) are very bad for two reasons: first of all do-
mains include multiple dead end states; moreover comput-
ing the heuristic estimate hmin incurs significant overhead;
hence the total execution time is always more than the one
needed by improved topological value iteration. Focussed-
RTDP (Smith & Simmons 2006) mitigates the problem of
dead-end states by cutting off long trial through the adaptive
maximum depth procedure. However, in accordance with
(Smith & Simmons 2006) choosing the right initial depth D
for a given problem is not obvious in FRTDP and dynami-
cally adjusting D may raise inefficient backups.

In contrast, iTVI is able to solve general MDPs. Unfortu-
nately, there are some cases where it is not the appropriate
method. One of them assumes a simulation model: given
any state s and action a, the algorithm has to access a black
box model that samples a successor state s′ from the out-
come distribution. RTDP-style algorithms assume such a
representation of the domain dynamics but not iTVI. This is
typically the case in domains handling continuous state and
action spaces. However, in domains where the dynamics
can be written down in some compact representation, iTVI
should be used (at least as a subroutine) in order to achieve
a good trade-off between efficiency of the sequence of back-
ups and the overhead of prioritizing backups.

Conclusion
We present iTVI (improved Topological Value Iteration) and
iTVI+ algorithms — two new topological MDP solvers. In
contrast to state-of-the art TVI, our algorithms suggest in
addition an ordering that takes into account the degree of
influence of states (measured by path length between them
and the start state). This acts as a layering function for the
states in the layers of the problem skeleton. iTVI and iTVI+

achieve the best balance between the number of backups
executed and the effort required to prioritize backups al-
though the provided backup order is not optimal, i.e., it does
not minimize the number of backups. The experiments run
on different MDP models including layered MDPs, weakly
coupled MDPs, and MDPs with positive costs are encourag-
ing. We believe this set be large enough to show the ability
of our approach to generalize to other domains as well.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1993. Learn-
ing to act using real-time dynamic programming. Technical
Report UM-CS-1993-002, University of Alberta.
Bonet, B., and Geffner, H. 2003a. Labeled rtdp: Improving
the convergence of real-time dynamic programming.
Bonet, B., and Geffner, H. 2003b. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In IJCAI, 1233–1238.
Dai, P., and Goldsmith, J. 2007. Topological value iteration
algorithm for markov decision processes. In IJCAI, 1860–
1865.
Dean, T., and Lin, S.-H. 1995. Decomposition techniques
for planning in stochastic domains. In Proceedings of The
14th International Joint Conference Artificial Intelligence,
1121–1129.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence
notions and model minimization in markov decision pro-
cesses. Artif. Intell. 147(1-2):163–223.

Hansen, E. A., and Zilberstein, S. 2001. Lao*: A heuris-
tic search algorithm that finds solutions with loops. Artif.
Intell. 129(1-2):35–62.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In
UAI, 279–28. San Francisco, CA: Morgan Kaufmann.
McMahan, H. B., and Gordon, G. J. 2005. Fast exact
planning in markov decision processes. In ICAPS, 151–
160.
Parr, R. 1998. Flexible decomposition algorithms for
weakly coupled markov decision problems. In Proceedings
of the 14th Annual Conference on Uncertainty in Artificial
Intelligence, 422–43.
Peng, J., and Williams, R. J. 1993. Efficient learning
and planning within the dyna framework. Adapt. Behav.
1(4):437–454.
Smith, T., and Simmons, R. G. 2006. Focused real-time
dynamic programming for mdps: Squeezing more out of a
heuristic. In AAAI.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Sutton, R. S. 1991. Planning by incremental dynamic pro-
gramming. In ML, 353–357.
Wingate, D., and Seppi, K. D. 2005. Prioritization methods
for accelerating mdp solvers. J. Mach. Learn. Res. 6:851–
881.

542

