From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Validation of Cryptographic Protocols by Efficient Automated Testing

Sigrid Giirgens
GMD - German National Research Center
for Information Technology
Rheinstrasse 75, 64295 Darmstadt, Germany
guergens@darmstadt.gmd.de

Abstract

We present a method for validating cryptographic pro-
tocols. The method can find flaws which are inher-
ent in the design of the protocol as well as flaws aris-
ing from the particular implementation of the protocol.
The latter possibility arises from the fact that there is
no universally accepted standard for describing either
the cryptographic protocols themselves or their imple-
mentation. Thus, security can (and in practice does)
depend on decisions made by the implementer, who
may not have the necessary expertise. Our method re-
lics on automatic theorem proving tools. Specifically,
we used “Otter”, an automatic theorem proving soft-
ware developed at Argonne National Laboratories.

Keywords: Security analysis, authentication proto-
col. automatic theorem proving, protocol validation

Introduction

Cryptographic protocols play a key role in communi-
cation via open networks such as the Internet. These
networks are insecure in the sense that any adversary
with the necessary technical background can monitor
and even modify the messages. Cryptographic proto-
cols are used to provide confidentiality and authentic-
ity of the communication. Messages are encrypted to
ensure that only the intended recipient can understand
them. Message authentication codes or digital signa-
tures are used so that modifications can be detected.
All of these communication “services” can be provided
as long as the cryptographic protocols themselves are
correct and secure. However, the literature provides
many examples of protocols that were first considered to
be secure and were later found to contain flaws. Hence
validation of cryptographic protocols is an important
issue.

In the last ten to fifteen years, active areas of research
have focused on:

“Supported in part by NSF Grant CCR-9207204 and by
the German National Research Center for Information Tech-
nology.

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

René Peralta *
René Peralta
Computer Science Department
Yale University
New Haven, CT. 06520-8285
peralta-rene@cs.yale.edu

1. Developing design methodologies which yield cryp-

toprotocols for which security properties can be for-
mally proven.

2. Formal specification and verification/validation of

cryptoprotocols.

An early paper which addresses the first of these
issues is (Berger, Kannan, & Peralta 1985), where it
is argued that protocols should not be defined simply
as communicating programs but rather as sequences of
messages with verifiable properties; i.e. security proofs
can not be based on unverifiable assumptions about how
an opponent constructs its messages. As with much of
the work done by people in the “cryptography camp”,
this research does not adopt the framework of formal
language specification. More recent work along these
lines includes that of Bellare and Rogaway (Bellare &
Rogaway 1995), Shoup and Rubin (Shoup & Rubin
1996) (which extends the model of Bellare and Rog-
away to smart card protocols), and Bellare, Canetti and
Krawczyk (Bellare, Canetti, & Krawczyk 1998).

The second issue, formal specification and automatic
verification or validation methods for cryptographic
protocols, has developed into a field of its own. Par-
tial overviews of this area can be found in (Meadows
1995), (Marrero, Clarke, & Jha 1997) and (Paulson
1998). Most of the work in this field can be catego-
rized as either development of logics for reasoning about
security (so-called authentication logics) or as develop-
ment of model checking tools. Both techniques aim at
verifying security properties of formally specified cryp-
toprotocols.

A seminal paper on logics of authentication is (Bur-
rows, Abadi, & Needham 1989). Work in this area has
produced significant results in finding protocol flaws,
but also appears to have limitations which will be hard
to overcome within the paradigm.

Model checking involves the definition of a state space
(typically modeling the “knowledge” of different partic-
ipants in a protocol) and transition rules which define
both the protocol being analyzed, the network proper-
ties, and the capabilities of an enemy. Initial work in
this area can be traced to (Dolev & Yao 1983).

Much has already been accomplished. A well-known

Al APPLICATIONS 7

software tool is the NRL Protocol Analyzer (Meadows
1991).! Other promising work includes Lowe’s use of
the Failures Divergences Refinement Checker in CSP
(Lowe 1996); Schneider’s use of CSP (Schneider 1997);
the model checking algorithms of Marrero, Clarke, and
Jha (Marrero, Clarke, & Jha 1997); Paulson’s use of in-
duction and the theorem prover Isabelle (Paulson 1998);
and the work of Heintze and Tygar considering com-
positions of cryptoprotocols (Heintze & Tygar 1994).
As far as we know, the model checking approach has
been used almost exclusively for verification of cryp-
toprotocols. Verification can be achieved efficiently if
simplifving assumptions are made in order to obtain a
sufficiently small state space. Verification tools which
can handle infinite state spaces must simplify the no-
tions of security and correctness to the point that proofs
can be obtained using induction or other logical tools
to reason about infinitely many states. Both methods
liave produced valuable insight into ways in which cryp-
toprotocols can fail. The problem, however, is not only
complex but also evolving. The early work centered
around proving security of key-distribution protocols.
Currently, it is fair to say that other, much more com-
plex protocols, are being deployed in E-commerce appli-
cations without the benefit of comprehensive validation.

In this paper we present a validation without verifica-
tion approach. That is, we do not attempt to formally
prove that a protocol is secure. Rather, our tools are de-
signed to find flaws in cryptoprotocols. We reason that
by not attempting the very difficult task of proving se-
curity and correctness, we can produce an automated
tool that is good at finding flaws when they exist. We
use the theorem prover Otter (see (Wos et al. 1992)) as
our search engine. Some of the results we have obtained
to date are presented in the following sections.

Cryptographic protocols

In what follows, we restrict ourselves to the study of
key-distribution protocols. The participants of such a
protocol will be called “agents”. Agents are not nec-
essarily people. They can be, for example, computers
acting autonomously or processes in an operating sys-
tem. In general, the secrecy of cryptographic keys can-
not be assumed to last forever. Pairs of agents must
periodically replace their keys with new ones. Thus the
aim of a key-distribution protocol is to produce and se-
curely distribute what are called “session” keys. This
is often achieved with the aid of a trusted key distribu-
tion server S (this is the mechanism of the widely used
Kerberos System).

The general format of these protocols is the following:

e Agent 4 wants to obtain a session key for com-
municating with agent B.

'The work in (Meadows & Syverson 1998) expands NRL
to include some specification capabilities. The resulting tool
was powerful enough to analyze the SET protocol used by
Mastercard and Visa (Mastercard and VISA 1996).

8 FLAIRS-2000

¢ It then initiates a protocol which involves S, A,
and B.

e The protocol involves a sequence of messages
which, in theory, culminate in A and B sharing
a key K AB.

o The secrecy of K 4 g is supposed to be guaranteed
despite the fact that all communication occurs
over insecure channels.

To illustrate the need for security analysis of such
protocols we describe a protocol introduced in (Need-
ham & Schroeder 1978) and an attack on this protocol
first shown in (Denning & Sacco 1982). In what fol-
lows, a message is an ordered tuple (m;,ms,...,m,)
of concatenated message blocks m;, viewed at an ab-
stract level where the agents can distinguish between
different blocks. The notation {m}x denotes the en-
cryption of the message m using key K. The notation
n. A — B : m denotes that in step n of a protocol
execution (which we will call a protocol run through-
out this paper) A sends message m to B. The proto-
col assumes that symmetric encryption and decryption
functions are used (where encryption and decryption
are performed with the same key).

1. A— S: AB,Ry

2. S— A: {Ra,B,Ksp,{KaB,A}Kkps}K4s
3. A— B: {KAB,A}KES

4. B— A: {RB}ka.s

5 A— B: {RB—l}KAB

In the first message agent A sends to S its name A,
the name of the desired communication partner (B) and
a random number R4 which it generates for this pro-
tocol run.2 S then generates a ciphertext for A, using
the key K45 that it shares with A. This ciphertext
includes A’s random number, B’s name, the new key
K 4B, and a ciphertext intended for B. The usage of
the key K45 shall prove to agent A that the message
was generated by S. The inclusion of R4 ensures A
that this ciphertext and in particular the key K45 is
generated after the generation of R4, i.e. during the
current protocol run. Agent A also checks that the ci-
phertext includes B’s name, making sure that S sends
the new key to B and not to someone else, and then
forwards {K sp, A}k, to B.

For B the situation is slightly different, as it learns
from A’s name who it is going to share the new key
with, but nothing in this ciphertext can prove to B
that this is indeed a new key. According to the protocol
description in (Needham & Schroeder 1978) this shall
be achieved with the last two messages: The fact that
B’s random number Rp — 1 is enciphered using the key
K 4 p shall convince B that this is a newly generated key.

%In this paper, “random numbers” are abstract objects
with the property that they cannot be generated twice and
they cannot be predicted. It is not trivial to implement
these objects, and protocol implementations may very well
fail because the properties are not met. However, tackling
this problem is beyond the scope of this paper.

However, there is a well-known attack on this protocol,
first. shown in (Denning & Sacco 1982), which makes it
clear that this conclusion can not be drawn. In fact,
all that B can deduce from message 5 is that the key
N 45 is used by someone other than B in the current
protocol run.

The attack assuines that an eavesdropper E monitors
oue run of the protocol and stores {K ap, A} k5. Since
we assume the secrecy of agents’ keys holds only for a
limited time period, we consider the point at which E
gets to know the key K45. Then it can start a new
protocol run with B by sending it the old ciphertext
{KaB,A}kys as message 3. Since B has no means to
notice that this is an old ciphertext, it proceeds accord-
ing to the protocol description above. After the proto-
col run has finished, it believes that it shares K p as a
new session key with A, when in fact it shares this key
with E.

There is no way to repair this flaw without changing
the messages of the protocol if we do not want to make
the (unrealistic) assumption that B stores all keys it
ever used. So, this is an example of a flaw inherent in
the protocol design.

Another type of flaw can be due to the under-
specification of a cryptoprotocol. Many protocol de-
scriptions are vague about what checks are to be per-
formed by the recipient of a message. Thus, a protocol
implementation may be secure or insecure depending
exclusively on whether or not a particular check is per-
formed.

The communication and attack model

The security analysis of protocols does not deal with
weaknesses of the encryption and decryption functions
used. In what follows we assume that the following
security properties hold:

1. Messages encrypted with a secret key K can only be
decrypted with the inverse key K 1.

2. A key can not be guessed.

3. Given m, it is not possible to find the correspond-
ing ciphertext for any message containing m without
knowledge of the key.

While the first two items describe generally accepted
properties of encryption functions, the last one which
Boyd called the “cohesive property” in (Boyd 1990)
does not hold in general. Boyd and also Clark and Ja-
cob (see (Clark & Jacob 1995)) show that under certain
conditions, particular modes of some cryptographic al-
gorithms allow the generation of a ciphertext without
knowledge of the key.

These papers were important in that they drew atten-
tion to hidden cryptographic assumptions in “proofs” of
security of cryptoprotocols. In fact, it is clear now that
the number (and types) of hidden assumptions usually
present in security proofs is much broader than what
Boyd and Clark and Jacob point out.

(E)
(&) (8)

Figure 1: The communication model.

All communication is assumed to occur over insecure
communication channels. What an insecure communi-
cation channel is can be defined in several ways. In our
model we assume that there is a third agent E with the
ability to intercept messages. After intercepting, E can
change the message to anything it can compute. This
includes changing the destination of the message and
the supposed identity of the sender. Furthermore, E
is considered a valid agent, thus also shares a symmet-
ric key Kgs with S and/or owns a key pair (Kg, K5')
for an asymmetric algorithm, and is allowed to initiate
communication either with other agents or S. Figure 1
depicts our communication model.

E intercepts all messages and the agents and S only
receive messages sent by E. What E can send depends
on what it is able to generate, and this in turn depends
on what E knows.

The knowledge of E can be recursively defined as
follows:

1. E knows the names of the agents.

2. E knows the keys it owns.

3. E knows every message it has received.
4

. E knows every part of a message received (where a
ciphertext is considered one message part).

5. E knows everything it can generate by enciphering
data it knows using data it knows as a key.

6. E knows every plaintext it can generate by decipher-
ing a ciphertext it knows, provided it knows the in-
verse of the key used as well.

7. E knows every concatenation of data it knows.
8. E knows the origin and destination of every message.

9. At every instance of the protocol run, E knows the
“state” of every agent, i.e. E knows the next protocol
step they will perform, the structure of a message
necessary to be accepted, what they will send after
having received (and accepted) a message, etc.

At every state in a possible run, after having received
an agent’s message, F has the possibility to forward
this message or to send whatever message it can gen-
erate to one of the agents or S. Obviously, the state

Al APPLICATIONS 9

space will grow enormously. Thus, we must limit the
concept of knowledge if the goal is to produce a valida-
tion tool which can be used in practice. Therefore we
restrict the definition in various ways in order to make
E’s knowledge set finite. For example, we do not allow
E to know ciphertexts of level 3 (e.g. {{{m}k}k}x)-
We do this on an ad-hoc basis. This problem needs
further exploration. 3

Note that the above knowledge rules imply that E
never forgets. In contrast, the other agents forget ev-
erything which they are not specifically instructed to
remember by the protocol description.

Automatic testing of protocol
instantiations

As the title of this section suggests, we make a distinc-
tion between a protocol and a “protocol instantiation”.
We deem this a necessary distinction because protocols
in the literature are often under-specified. A protocol
may be implemented in any of several ways by the ap-
plications programiner.

Otter is based on first order logic. Thus for describing
the protocol to be analyzed, the environment, and the
possible state transitions, we use first order functions,
predicates, implications and the usual connectives. At
any step of a protocol run, predicates like

state(zevents, zEknows, . .., zwho, zto, zmess, .. .)

are used to describe the state of the protocol run given,
the list 2zevents of actions already performed and the
list .« Eknows of data known by E. These predicates are
also used to describe the states of the agents (e.g. data
like session keys, nonces, etc. the agents have stored
so far for later use, the protocol runs they assume to
be taking part in, and the next step they will perform
in each of these runs). In general the predicates can
include as many agents’ states and protocol runs as de-
sired, but so far we have restricted this information to
agents A, B, E and S in the context of two interleav-
ing protocol runs. Furthermore, the predicates contain,
among other data used to direct the search, the agent
awho which sent the current message, the intended re-
cipient zto and the message zmess sent.

Using these predicates we write formulas which de-
scribe possible state transitions. The action of S when
receiving message 1 of the protocol described in the sec-
ond section can be formalized as follows:

sees(revents, zEknows,...,zwho,zto, rmess, .. .)
Azto=S

A is.agent(el(1, zmess))

A is_agent(el(2,zmess))

__)

send(update(zevents), tEknows,..., S, el(1,zmess),

3We note, however, that leaving this part of our model
open allows for a very general tool. This is in part respon-
sible for the success of the tool, as documented in later sec-
tions.

10 FLAIRS-2000

[enc(key(el(1, zmess), S), [el(3, zmess),
el(2, xmess), new key, enc(key(el(2, zmess), S),
[new_key, el(1,zmess)))])],...)

where update(zevents) includes the current send action
and el(k,zmess) returns the kth block of the message
xmess just received.

Whenever E receives a message (indicated
by a formula sees E(...)), an internal proce-
dure adds all that E can learn from the mes-
sage to the knowledge list zEknows. Implica-
tions sees_.E(...) — send.E(...,messagel,...) A
send_E(...,message2,...) A ... formalize that after
having received a particular message, E has several
possibilities to proceed with the protocol run, i.e. each
of the predicates send_E(...,message, ...) constitutes
a possible continuation of the protocol run. The
messages E sends to the agents are constructed using
the basic data in z Eknows and the specification of E’s
knowledge as well as some restrictions as discussed in
the previous section.

We use equations to describe the properties of the en-
cryption and decryption functions, the keys, the nonces
etc.. For example, the equation

dec(z, enc(z,y)) =y

formalizes symmetric encryption and decryption func-
tions where every key is its own inverse. These equa-
tions are used as demodulators in the deduction process.

The above formulas constitute the set of axioms de-
scribing the particular protocol instantiation to be ana-
lyzed. An additional set of formulas, the so-called “set
of support”, includes formulas that are specific for a
particular analysis. In particular, we use a predicate
describing the initial state of a protocol run (the agent
that starts the run, the initial knowledge of the enemy
E, etc.) and a formula describing a security goal. An
example of such a formula is “if agents A and B share
a session key, then this key is not known by E”.

Using these two formula sets and logical inference
rules (specifically, we make extensive use of hyper res-
olution), Otter derives new valid formulas which cor-
respond to possible states of a protocol run. The pro-
cess stops if either no more formulas can be deduced
or Otter finds a contradiction which involves the for-
mula describing the security goal. When having proved
a contradiction, Otter lists all formulas involved in the
proof. An attack on the protocol can be easily deduced
from this list.

Otter has a number of facilities for directing the
search, for a detailed description see (Wos et al. 1992).

Known and new attacks

We used Otter to analyze a number of protocols. When-
ever we model a protocol we are confronted with the
problem that usually the checks performed by the par-
ties upon receiving the messages are not specified com-
pletely. This means that we must place ourselves in
the situation of the implementer and simply encode the

obvious checks. For example, consider step 3 of the
Needham-Schroeder protocol explained in the second
section.

3. 4— B: {Kap,A}kgs

Here is a case where we have to decide what B’s
checks are. We did the obvious:

e B decrypts using Kpgs.

o B checks that the second component of the decrypted
message is some valid agent’s name.

e B assumes, temporarily, that the first component of
the decrypted message is the key to be shared with
this agent.

To our great surprise, Otter determined
that this was a fatal flaw in the implemen-
tation.

We call the type of attack found the “arity” attack,
since it depends on an agent not checking the number
of message blocks embedded in a cyphertext. The arity
attack found by Otter works as follows: in the first
message E impersonates B (denoted by Eg) and sends
to S:

1. Eg—S: B,ARE
Then, S answers according to the protocol description
and sends the following message to B:

2. S— B: {RE,A,KAB, {KAB’B}KAS}KES
This is passed on by E, and B interprets it as being the
third message of a new protocol run. Since this message
passes the checks described above, B takes Rg to be a
new session key to be shared with A and the last two
prototol steps are as follows:

4. B— EA : {RB}RE

5 Eyn— B: {Rp—1}g,
where the last message can easily be generated by E
since it knows its random number sent in the first pro-
tocol step {see (Giirgens & Peralta 1999) for a formal-
ization of B’s actions).

It is interesting to note that an applications program-
mer is quite likely to not include an “arity-check” in the
code. This is because modular programming naturally
leads to the coding of routines of the type

get(cyphertext, key, 1)

which decodes cyphertext with key and returns the it*
element of the plaintext.

By including the arity check in B’s actions when re-
ceiving message 3, we analyzed a different instantia-
tion of the same protocol. This time Otter found the
Denning-Sacco attack.

It seems that many protocols may be subject to the
“arity” attack: our methods found that this attack is
also possible on the Otway-Rees protocol (see (Giirgens
& Peralta 1999) for a detailed description of the proto-
col and its analysis) and on the Yahalom protocol, as
described in (Burrows, Abadi, & Needham 1989).

Furthermore, we analyzed an authentication protocol
for smartcards with a digital signature application be-
ing standardized by the German standardization organ-
isation DIN ((DIN NI-17.4 1998)) and found the pro-
posed standard to be subject to some interpretations
which would make it insecure (see (Giirgens, Lopez, &
Peralta 1999)).

Among the known attacks which were also found
by our methods are the Lowe ((Lowe 1996)) and the
Meadows (Meadows 1996) attacks on the Needham-
Schroeder public key protocol and the Simmons attack
on the TMN protocol (see (Tatebayashi, Matsuzaki, &
Newman 1991)). The latter is noteworthy since this
attack uses the homomorphism property of some asym-
metric algorithms.

Conclusions

As is well known, there does not exist an algorithm
which can infallibly decide whether a theorem is true
or not. Thus the use of Otter, and per force of any the-
orem proving tool, is an art as well as a science. The
learning curve for using Otter is quite long, which is a
disadvantage. Furthermore, one can easily write Otter
input which would simply take too long to find a proto-
col failure even if one exists and is in the search path of
Otter’s heuristic. Thus, using this kind of tool involves
the usual decisions regarding the search path to be fol-
lowed. Nevertheless, our approach has shown itself to
be a powerful and flexible way of analyzing protocols.
In particular, our methods found protocol weaknesses
not previously found by other formal methods.

We do not yet have a tool which can be used by
applications programmers. Analyzing protocols with
our methods requires some expertise in the use of Otter
as well as some expertise in cryptology. Although it is
clear that much of what we now do can be automated
(e.g. a compiler could be written which maps protocol
descriptions to Otter input); it is not clear how much
of the search strategy can be automated.

Our work with Otter has led us to the conclusion that
it is not sufficient to ask protocol designers to follow
basic design principles in order to avoid security flaws.
One reason for this is that those principles might not
be appropriate for particular applications (e.g. secu-
rity considerations in smart card applications are quite
different from, say, security considerations in network
applications). Adherence to some basic design princi-
ples, although a good idea, will not guarantee security
in the real world. The new attack we found on the
Needham-Schroeder protocol, for example, would not
be prevented by using additional message fields to indi-
cate the direction of a message. Our methodology can
be useful for deciding what implementation features are
necessary in a particular environment for a given pro-
tocol to be secure.

Al APPLICATIONS 11

References

Bellare, M., and Rogaway, P. 1995. Provably secure
session key distribution - the three party case. In An-
nual Symposium on the Theory of Computing, 57-66.
ACM.

Bellare, M.; Canetti, R.; and Krawczyk, H. 1998. A
Modular Approach to the Design and Analysis of Au-
thentication and Key Exchange Protocols. In Annual
Symposium on the Theory of Computing. ACM.

Berger, R.; Kannan, S.; and Peralta, R. 1985. A
framework for the study of cryptographic protocols.
In Advances in Cryptology - CRYPTO ’95, Lecture
Notes in Computer Science, 87-103. Springer-Verlag.

Bovd. €. 1990. Hidden assumptions in cryptographic
protocols. In IEEE Proceedings, volume 137, 433-436.

Burrows, M.: Abadi, M.; and Needham, R. 1989. A
Logic of Authentication. Report 39, Digital Systems
Research Center, Palo Alto, California.

Clark, J., and Jacob, J. 1995. On the Security of Re-
cent Protocols. Information Processing Letters 56:151-
156.

Denning, D., and Sacco, G. 1982. Timestamps in key
distribution protocols. Communications of the ACM
24:533-536.

DIN NI-17.4. 1998. Spezifikation der Schnittstelle

zu Chipkarten mit Digitaler Signatur-Anwendung /
Funktion nach SigG und SigV, Version 1.0 (Draft).

Dolev, D., and Yao, A. 1983. On the security of
public-key protocols. IEEE Transactions on Informa-
tion Theory 29:198-208.

Glirgens, S., and Peralta, R. 1999. Efficient Auto-
mated Testing of Cryptographic Protocols. Techni-
cal Report 45-1998, GMD German National Research
Center for Information Technology.

Giirgens, S.; Lopez, J.; and Peralta, R. 1999. Efficient
Detection of Failure Modes in Electronic Commerce
Protocols. In DEXA 99 10th International Workshop
on Database and Ezpert Systems Applications, 850-
857. IEEE Computer Society.

Heiutze, N., and Tygar, J. 1994. A Model for Se-
cure Protocols and their Compositions. In 1994 IEEE
Computer Society Symposium on Research in Security
and Privacy, 2-13. IEEE Computer Society Press.

Lowe, G. 1996. Breaking and fixing the Needham-
Schroeder public-key protocol using CSP and FDR. In
Second International Workshop, TACAS ’96, volume
1055 of LNCS, 147-166. SV.

Marrero, W.; Clarke, E. M.; and Jha, S. 1997. A Model
Checker for Authentication Protocols. In DIMACS
Workshop on Cryptographic Protocol Design and Ver-
ification.

1996. Mastercard and VISA Corporations, Se-
cure Electronic Transactions (SET) Specification.
http://www.setco.org.

12 FLAIRS-2000

Meadows, C., and Syverson, P. 1998. A formal spec-
ification of requirements for payment transactions in
the SET protocol. In Proceedings of Financial Cryp-
tography.

Meadows, C. 1991. A system for the specification and
verification of key management protocols. In IEEFE
Symposium on Security and Privacy, 182-195. IEEE
Computer Society Press, New York.

Meadows, C. 1995. Formal Verification of Crypto-
graphic Protocols: A Survey. In Advances in Cryptol-
ogy - Asiacrypt ’94, volume 917 of LNCS, 133 - 150.
SV.

Meadows, C. 1996. Analyzing the Needham-Schroeder
Public Key Protocol: A Comparison of Two Ap-
proaches. In Proceedings of ESORICS. Naval Research
Laboratory: Springer.

Needham, R., and Schroeder, M. 1978. Using encryp-

tion for authentication in large networks of computers.
Commaunications of the ACM 993-999.

Paulson, L. C. 1998. The inductive approach to ver-
ifying cryptographic protocols. Journal of Computer
Security 6:85-128.
Schneider, S. 1997. Verifying authentication protocols
with CSP. In IEEE Computer Security Foundations
Workshop. IEEE.

Shoup, V., and Rubin, A. 1996. Session key distri-
bution using smart card. In Advances in Cryptology
- EUROCRYPT ’96, volume 1070 of LNCS, 321-331.
SV.

Tatebayashi, M.; Matsuzaki, N.; and Newman. 1991.
Key Distribution Protocol for Digital Mobile Commu-
nication Systems. In Brassard, G., ed., Advances in
Cryptology - CRYPTO ’89, volume 435 of LNCS, 324-
333. SV.

Wos, L.; Overbeek, R.; Lusk, E.; and Boyle, J. 1992.
Automated Reasoning - Introduction and Applications.
McGraw-Hill, Inc.

