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Abstract

The Kernel Fisher’s Discriminant (KFD) has proven
to be competitive to several state-of-the-art classifiers.
However, it is assuming equal covariance structure for
all transformed classes, which is not true in many appli-
cations. In this paper, we propose a novel Bayesian Ker-
nel Logistic Discriminant model (BKLD) which goes
one step further by representing each transformed class
by its own covariance matrix. This can perform better
than the KFD. An extensive comparison of the BKLD
to the KFD and to other state-of-the-art non-linear clas-
sifiers is performed.

Introduction

The KFD was proposed by (Mika et al. 1999) and its main
idea is to perform the traditional Fisher’s linear discrimi-
nant in the feature space obtained by the kernel trick. How-
ever, it suffers from the small sample size problem since the
kernel-induced feature space is typically of very high di-
mensionality. Furthermore, it is incapable of dealing with
heteroscedastic data (classes with different covariance ma-
trices) that are commonly found in real-world applications.
In this paper, we propose a Bayesian Kernel Logistic Dis-
criminant model (BKLD) which is capable of dealing with
heteroscedastic data by representing each transformed class
by its own covariance matrix. This can perform better than
the KFD. The posterior distribution of the BKLD model is
elegantly approximated by a tractable Gaussian form using
variational transformation and Jensen’s’ inequality, which
allow a straightforward computation of the weights. In or-
der to avoid small sample size problem and to speed up the
computation of the model weights, we introduce a sparsity-
promoting Gaussian prior over them. In the next section, we
detail the derivation of the BKLD. In the third section, we
compare the BKLD to the KFD and other non-linear clas-
sifiers on a collection of data sets. Finally, we present our
conclusions.
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The Bayesian Kernel Logistic Discriminant
Model

Let X1 = {Xi}N1
i=1 and X2 = {Xi}N

i=N1+1 be two different
classes constituting an input space of N samples or vectors.
Applying the kernel trick, we use a function Φ to map the
classes X1 and X2 to two feature classes F1 = {Φ(Xi)}N1

i=1

and F2 = {Φ(Xi)}N
i=N1+1, respectively, wherein

Φ(Xi) = (1,K(Xi, X1),K(Xi, X2), ...,K(Xi, XN )) ∀ i ∈
{1, 2, ..., N}, where K is a kernel function. Let us denote
by Φ1 and Φ2 two random vectors whose realizations rep-
resent the vectors of F1 and the vectors of F2, respectively.
We suppose that Φ1 ∼ g1(Φ1) and Φ2 ∼ g2(Φ2), where
g1 and g2 are two Gaussian distributions whose means and
covariance matrices are empirically computed from F1 and
F2. With Φ1 we associate a tag t1 = 0, and with Φ2 we as-
sociate a tag t2 = 1. The unknown parameters (weights) are
considered as random variables and are denoted by the ran-
dom vector w = (w0, w1, ..., wN ). We define a ‘likelihood’
function as:

P (t1 = 0, t2 = 1|w)

=
∑

Φ1∈F1,Φ2∈F2

[ 2∏

i=1

P (ti = i− 1|Φi,w)gi(Φi)
]
, (1)

where, given F (x) = ex

1+ex , P (ti = i−1|Φi,w) = F ((2i−
3)wT Φi) ∀ i ∈ {1, 2} represent logistic modelings of t1
and t2 given the realizations of Φ1 and Φ2, respectively. We
adopt a Bayesian perspective, and ’constrain’ the parameters
by defining an zero-mean Gaussian prior distribution over
w:

π(w|β) =
N∏

i=0

N (wi|0, β−1
i ), (2)

with β = (β0, β1, ..., βN ) a vector of N + 1 prior parame-
ters. Having defined the prior, Bayesian inference proceeds
by computing, from the Bayes’ rule, the posterior over the
unknown weights:

P (w|t1 = 0, t2 = 1)

=

∑
Φ1∈F1,Φ2∈F2

[ ∏2
i=1 P (ti = i− 1|Φi,w)gi(Φi)

]
π(w|β)

P (t1 = 0, t2 = 1)
.

(3)
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The computation of the posterior distribution is intractable.
However, we can approximate it by a variational posterior
approximation with a Gaussian form. To obtain this approx-
imation, we perform two successive approximations to the
likelihood function, in order to bound it by an exponential
form which is a conjugate of the Gaussian prior. The first ap-
proximation is based on a variational transformation of the
sigmoid function F (x) in Hi = (2i− 3)wT Φi ∀ i ∈ {1, 2}
(Jaakkola and Jordan 2000). So the likelihood function can
be approximated as follows:

∑
Φ1∈F1,Φ2∈F2

[ 2∏
i=1

P (ti = i− 1|Φi,w)gi(Φi)

]

≥
∑

Φ1∈F1,Φ2∈F2

[ 2∏
i=1

P (ti = i− 1|Φi,w, εi)gi(Φi)

]
, (4)

where P (ti = i−1|Φi,w) = F (εi)e
(Hi−εi)

2 −ϕ(εi)
(
H2

i−ε2i

)
,

εi > 0 is the variational parameter and ϕ(εi) = tanh(
εi
2 )

4εi
.

The second approximation is based on Jensen’s’ inequality,
which uses the convexity of the function ex. Using Jensen’s’
inequality, we obtain

∑
Φ1∈F1,Φ2∈F2

[ 2∏
i=1

P (ti = i− 1|Φi,w, εi)gi(Φi)

]
(5)

≥
[ 2∏

i=1

F (εi)

]
e

[
∑2

i=1

[
Egi

[Hi]−εi
2

]
−∑2

i=1

[
ϕ(εi)

(
Egi

[H2
i ]−ε2i

)]]

,

= P
(
t1 = 0, t2 = 1|w,

{
εi

}2

i=1

)
,

where Eg1 and Eg2 are the expectations with respect to g1

and g2, respectively. Finally, given that π(w|β) is a Gaus-
sian which is a conjugate of the exponential variational form
P
(
t1 = 0, t2 = 1|w,

{
εi

}2

i=1

)
, the variational posterior ap-

proximation denoted by P
(
w|t1 = 0, t2 = 1,

{
εi

}2

i=1
,β

)
is a Gaussian with mean µpost and covariance matrix Σpost.
Thus, omitting the algebra, Σpost and µpost are given by the
following Bayesian update equations:

(Σpost)
−1 = A−1 + 2

2∑
i=1

[
ϕ(εi)Egi [ΦiΦ

T
i ]

]
, (6)

µpost = Σpost

[ 2∑
i=1

[
(i− 3

2
)Egi [Φi]

]]
, (7)

with A = diag(β−1
0 , β−1

1 , ..., β−1
N ). We have to find the val-

ues of
{
εi

}2

i=1
and

{
βi

}N

i=0
that yield a tight lower bound in

(5). In the EM formalism, this can be achieved by iteratively
maximizing the following expectation∫

log

(
P
(
t1 = 0, t2 = 1|w,

{
εi

}2

i=1

)
π(w|β)

)

P
(
w|t1 = 0, t2 = 1,

({
εi

}2

i=1

)old
, βold)

dw.

Taking the partial derivatives of the above expectation with
respect to

{
εi

}1

i=0
and

{
βi

}N

i=0
and equalizing to zero leads

to

ε2i = Egi [Φ
T
i ΣpostΦi] + µT

post

[
Egi [ΦiΦ

T
i ]

]
µpost, (8)

βj =
1

Σpost,jj + µ2
post,j

, (9)

∀ i ∈ {1, 2} and j ∈ {0, 1, ..., N}. The weight computation
algorithm has two phases. The first phase is the initializa-
tion; the second is iterative and allows the computation of
Σpost and µpost through the Bayesian update equations (6)
and (7), respectively, while using equations (8) and (9) to
find the variational parameters and prior parameters at each
iteration.

Experimental Results
We compared the BKLD to the KFD, the single RBF clas-
sifier, the regularized AdaBoost (ABR) and the SVM (with
Gaussian RBF kernel K(X, Xi) = e−||X−Xi||2/σ), where
σ is the positive ’width’ parameter. For the BKLD we used
Gaussian RBF too. We used 8 artificial and real word data
sets.1 On each of these data sets we trained and tested all
classifiers. The optimization of the necessary parameters for
each classifier were performed using a 5-fold cross valida-
tion procedure (see (Ratsch, Onoda, and Muller 2000) for
details). The results in table 1 show the test classification
errors. The experiments show that the BKLD is superior to

RBF ABR SVM KFD BKLD
B. Cancer 27.6 26.5 26.0 25.8 25.1
Diabetes 24.3 23.8 23.5 23.2 22.7
Heart 17.6 16.5 16.0 16.1 15.7
Ringnorm 1.7 1.6 1.7 1.5 0.8
F. Solar 34.4 34.2 32.4 33.2 30.9
Thyroid 4.5 4.6 4.8 4.2 4.0
Twonorm 2.9 2.7 3.0 2.6 1.8
Waveform 10.7 9.8 9.9 9.9 8.7

Table 1: Comparison among the five classifiers: Estimation
of the test classification errors in % on 8 data sets (best
method in bold face, second best emphasized).

the KFD and other classifiers on all data sets.

Conclusion
We have proposed a novel BKLD model which is capable
of dealing with heteroscedastic data. However, it assumes
that the classes are normally distributed. Therefore, future
work will be dedicated to make the BKLD adaptive to multi-
model data.
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1The data sets can be obtained via http://www.first.gmd.de/˜
raetsch/
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