
Flexible Teamwork in Behavior-Based Robots

Gal A. Kaminka∗ and Inna Frenkel
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

{galk,frenkei1}@cs.biu.ac.il

Abstract

A key challenge in deploying teams of robots in real-world
applications is to automate the control of teamwork, such that
the designer can focus on the taskwork. Existing teamwork
architectures seeking to address this challenge are monolithic,
in that they commit to interaction protocols at the architec-
tural level, and do not allow the designer to mix and match
protocols for a given task. We present BITE, a behavior-
based teamwork architecture that automates collaboration in
physical robots, in a distributed fashion. BITE separates task
behaviors that control a robot’s interaction with its task, from
interaction behaviors that control a robot’s interaction with
its teammates. This distinction provides for flexibility and
modularity in terms of the interactions used by teammates to
collaborate effectively. It also allows BITE to synthesize and
significantly extend existing teamwork architectures. BITE
also incorporates key lessons learned in applying multi-agent
teamwork architectures in physical robot teams. We present
empirical results from experiments with teams of Sony AIBO
robots executing BITE, and discuss the lessons learned.

Introduction
Teamwork in autonomous robots is fast gaining interest in
academic and industrial research groups, motivated by real-
world applications for multi-robot teams. To facilitate robust
and speedy deployment of such teams, teamwork architec-
tures are increasingly used to automate the interactions be-
tween team-members, such as synchronized task execution
(Pynadath & Tambe 2003), and task allocation (Parker 1998;
Dias & Stentz 2000; Gerkey & Matarić 2004; Vu et al.
2003). This allows the designer to focus on developing the
taskwork, rather than the teamwork.

However, existing architectures leave important chal-
lenges open when applied to multi-robot teams. First, exist-
ing robot teamwork architectures do not provide both syn-
chronized task execution and dynamic task allocation in the
same architecture. Thus the team’s developer must make a
choice as to whether synchronization or allocation is more
important. Second, existing architectures are monolithic, in
the sense that they commit to a single interaction protocol

∗Gal Kaminka is also affiliated with CMU. This research was
supported in part by BSF grant #2002401.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

for implementing each service, e.g., confirm-request for syn-
chronization (Pynadath & Tambe 2003). Yet, as we show in
our experiments below, the ability to flexibly mix and match
protocols can critically impact task performance.

This paper argues that flexible teamwork must rely on a
micro-kernel approach, in which different coordination pro-
tocols (such as synchronization and allocation) can be inter-
changed, even within the same task. For example, flexible
teamwork must allow for robots to sometimes allocate tasks
using market approaches (Dias & Stentz 2000), and some-
times based on robustness concerns (Parker 1998).

To make this argument concrete, this paper presents
BITE (Bar Ilan Teamwork Engine), a novel behavior-based
teamwork architecture targeting physical robot applications.
Similarly to previous architectures (Pynadath & Tambe
2003; Vu et al. 2003), BITE maintains an organization hi-
erarchy and a task/sub-task behavior graph to manage team-
work. However, in addition, BITE maintains a novel third
structure, a library of hierarchically linked social interac-
tion behaviors implementing interaction protocols for syn-
chronization and task allocation. These are (re)used inter-
changeably, to automatically coordinate team-members’ se-
lection of task behaviors.

We describe our experience in using BITE with teams of
Sony AIBO robots. BITE’s structure gives rise to novel sep-
aration of social interaction from task-oriented control, and
provides uniform access to interchangeable interaction pro-
tocols. We show in multiple experiments, that this separa-
tion and is a significant contribution, in the sense that it ac-
counts for non-trivial effects on team performance, and fa-
cilitates robustness.

Motivation and Background
Our primary motivation is to explore architectural mech-
anisms for flexible teamwork. Teamwork literature re-
veals common teamwork primitives: sub-task synchroniza-
tion (getting agents to temporally coordinate task execution),
and task allocation (getting agents to divide up the subtasks
between them). While previous work has addressed both of
these important aspects of teamwork, it mostly focuses on
one aspect at a time.

The TEAMCORE architecture (Pynadath & Tambe 2003)
uses decision-theoretic communications in synchronizing
the selection and termination of hierarchical behaviors, and
uses task re-allocation behaviors that could be triggered

AAAI-05 / 108



based on catastrophic failures. The ALLIANCE behavior-
based architecture (Parker 1998) focused on robustness, by
allowing robots to dynamically re-allocate themselves to
tasks, based on failures in themselves in their teammates.
Both of these architectures have been demonstrated to work
in multiple domains. TEAMCORE provides synchroniza-
tion and some allocation services. ALLIANCE is offers dy-
namic task allocation, but does not explicitly synchronize
robots as they jointly take on tasks. Both rely on fixed in-
teraction protocols, and in that they are monolithic: They
do not allow flexibility in choosing the interaction protocols
underlying synchronization and allocation.

Within robotics work, a number of monolithic market-
based approaches have been proposed for task allocation.
Dias and Stentz (2000) discuss the use of markets to allow
robots to bid for tasks in spatial sensing domain. Gerkey and
Matarić (2004) explored multi-robot task allocation.

We believe that a teamwork architecture (1) should pro-
vide integrated synchronization and allocation; and (2)
should be non-monolithic, in that different synchronization
and allocation protocols could be mixed and matched, even
within the same task. SCORE (Vu et al. 2003) demonstrated
the usefulness of using multiple protocols depending on ex-
ecution context. However, SCORE only allowed flexible al-
location; its synchronization mechanism is communication-
intensive and prone to failures.

BITE seeks to fulfill this vision of flexible teamwork in
robot teams. It can provide many, though not all, of the ca-
pabilities of previous investigations, but teases apart coor-
dination, control, and communications. None of the previ-
ous investigations allows such separation, which we achieve
through the maintenance of separate social interaction be-
haviors. Thus for instance, it is possible in BITE to switch
between multiple synchronization methods, to dynamically
re-allocate robots to tasks in more than one way, and to man-
age proactive communications. However, BITE still lacks
STEAM and ALLIANCE’s failure-recovery facilities.

BITE: Structures and Control
BITE uses hierarchical behaviors as the basis for its control.
To these, it adds two additional structures: A set of social
interaction behaviors, and an associated team-hierarchy. A
single control algorithm uses these structures to automate
control and communications of a team of robots

Control Structures
The first of the three structures specifies the sequential and
hierarchical relationships between task-oriented behaviors.
The task behavior graph is an augmented connected graph
tuple 〈B,S, V, b0〉, where B is a set of task-achieving be-
haviors (as vertices), S, V sets of directed edges between
behaviors (S ∩ V = ∅), and b0 ∈ B a behavior in which ex-
ecution begins. Each behavior in B may have preconditions
which enable its selection (the robot can select between en-
abled behaviors), and termination conditions that determine
when its execution must be stopped. S is a set of sequen-
tial edges, which specify temporal order of execution of be-
haviors. A sequential edge from b1 to b2 specifies that b1
must be executed before executing b2. A path along sequen-
tial edges, i.e., a valid sequence of behaviors, is called an

execution chain. V is a set of vertical task-decomposition
edges, which allow a single higher-level behavior to be bro-
ken down into execution chains containing multiple lower-
level behaviors. At any given moment, the robot executes
a complete path—root-to-leaf—through the behavior graph.
Sequential edges may form circles, but vertical edges can-
not. Thus behaviors can be repeated by choice, but cannot
be their own ancestors.

Previous teamwork architectures rely on similar behavior
graphs (with some variations) to represent and manage task
control knowledge (Parker 1998; Pynadath & Tambe 2003).
A common theme is for each robot to have its own copy
of the behavior graph. Behaviors whose execution is to be
coordinated in some fashion (henceforth, team behaviors)
are tagged in advance by the designer. The teamwork archi-
tecture in question automatically take actions to select and
de-select these in different robots, when appropriate.

Figure 1-b shows an example of a simple behavior graph,
constructed for multi-robot formation maintenance tasks.
Here, there are two formation behaviors—triangle forma-
tion and line formation. Execution begins with triangle for-
mation, and can (under specific conditions) switch to the
line formation. Both formations use one behavior–search–
in which robots visually search for their peers and their
own relative locations. Then, the robots choose between
the walk behavior (which implements walking in triangle)
or the linewalk behavior in which robots follow each other
in a line. The above behaviors are tagged as team behaviors,
and require two important teamwork capabilities: synchro-
nization (to make sure all robots select the same behavior,
and start/end walk or linewalk together), and allocation (to
make sure only a single leader for the formation is chosen,
the followers are assigned different relative positions, etc.).

To allow BITE to automate synchronization, we impose
a constraint on the semantics of multiple outgoing edges.
Two outgoing sequential edges 〈a, b〉, 〈a, c〉 signify a choice
point between alternative execution chains: either b or c
must be selected by the robot once its execution of a is
finished. When these execution chains are composed of
team behaviors, the selection between alternatives must be
coordinated—all (relevant) robots must select the same exe-
cution chain (we discuss below complex cases in which only
certain subteam members must coordinate). Thus BITE’s
synchronization (see below) is triggered when multiple ex-
ecution chains are enabled, and the robots must coordinate
their joint selection.

To automate allocation, we impose a related semantic
constraint on decomposition edges. Two outgoing decompo-
sition edges 〈a, b〉, 〈a, c〉 signify complementary execution
chains: Both the execution chain beginning with b and the
execution chain beginning with c must terminate for a to
be considered complete (by convention, vertical edges point
only to the first behaviors of execution chains). Thus such
multiple outgoing edges indicate that the children (subtasks)
can be allocated to different subteams. Therefore, similarly
to the synchronization points, BITE’s allocation services are
triggered when multiple decomposition edges are enabled.

There is one final point in which synchronization is
needed. Teamwork theory states that when an agent pri-

AAAI-05 / 109



{a,b,c}

Follow Right Follow Left Lead Follow

S2

S3
S1 Announce Voting Vote Tally Voting

Call Bidders Bidding Announce

Wait

S1

S2

S3
{b}{a}{c}

{a,c}

Triangle
Formation Formation

Line

LineWalkSearch Walk

S2

S1

S2

S1S1

S2 S2

S1
S3S1

S3

S2

S3

S1

(a) (b) (c)

Figure 1: BITE structures and links in a small example application
vately believes that a joint goal has been achieved, or should
be abandoned, the agent must make this belief mutual with
its teammates. In practice, this corresponds to the robots ter-
minating their execution of team behaviors in a coordinated
fashion. Thus when a team behavior’s termination condi-
tions are satisfied for a robot, BITE is triggered to coordinate
the termination of this behavior with the other robots.

To summarize, BITE can easily determine synchroniza-
tion and allocation points given the constraints above. A
split in sequence edges leading to team behaviors signifies
a synchronization point. A split in decomposition edges
leads to allocation. And synchronized termination is trig-
gered when a team behavior is de-selected. In all of these,
BITE must coordinate with the other robots (through their
own BITE processes).

To carry out such coordination, BITE first needs to main-
tain knowledge about the robots that are responsible for co-
ordinated execution of team behaviors. To do this, BITE
maintains a second structure, the organization hierarchy
(called the team hierarchy in (Pynadath & Tambe 2003;
Vu et al. 2003)). This is a DAG (Directed Acyclic Graph)
whose vertices are associated with sub-teams of agents,
and whose edges signify sub-team-membership relation-
ships. Several vertices appear in any organization hierar-
chy: Given the complete set of robot team-members R, a
vertex corresponding to R (and representing the entire orga-
nization) is a part of the hierarchy, as are all the singleton
sets {ri}, where ri ∈ R. Other vertices correspond to multi-
robot sub-teams of robots in R and are connected such that
if there exists an edge 〈R1, R2〉, then R2 ⊂ R1.

To allow behaviors to reason about the organizational unit
responsible for their execution (and vice-versa), we create
bi-directional links between the behavior graph and the team
hierarchy, such that there is a link from a behavior Bj to a
sub-team Ri (and back) if Bj is to be jointly executed by Ri.
Using these links between the behavior graph and the team
hierarchy, a robot executing a behavior may easily find out
whom it should contact in order to coordinate execution of
this behavior. However, its actions to achieve this coordina-
tion remain unspecified.

For instance, suppose three robots are executing the for-
mation task triangle formation (Figure 1-b) have together
finished execution of the behavior search, and have started
on walk. The robots must jointly decide how to allocate the
different roles of the formation. One must lead the triangle
(the lead behavior), while the others follow—from the left
(follow left) and right (follow right). To negotiate this alloca-
tion, the robots may communicate, for instance by executing

a bidding protocol where different robots bid on the behav-
iors they wish to execute. Once this decision is made, links
are created from each behavior to the appropriate vertices in
the team-hierarchy, to denote who is executing what.

Previous architectures have made hard commitments to
the protocols used for coordination. For instance, architec-
tures that supported allocation utilized a market-based ap-
proach (Dias & Stentz 2000), or an agenda-based mecha-
nism (Parker 1998).

A key novelty in BITE is that it allows the use of differ-
ent interaction protocols at different times, depending on the
team behaviors in question (and other context information).
To achieve this, BITE maintains a third structure, holding a
set of social interaction behaviors which control inter-agent
interactions. Interaction behaviors typically control commu-
nications and execute protocols (e.g., voting) that govern
coordinated activity. Each interaction behavior is encoded
in a separate behavior graph. For instance, a simple syn-
chronization behavior (by voting) may be decomposed into
three atomic interaction behaviors, executed in sequence:
Announce vote, tally votes, and announce winning selection.

In order to facilitate the execution of interaction behav-
iors, we link the task behaviors to interaction behaviors in
three separate ways: (a) synchronized selection of behaviors
prior to their execution; (b) team-wide allocation of robots
and sub-teams to behaviors; and (c) synchronized termina-
tion of behavior execution.

Synchronized selection is triggered when new team be-
haviors are selected for execution, in particular when a de-
cision is to be made between several sequential transitions.
For instance, in Figure 1-b, two sequential transitions leave
the behavior Search—one going into the behavior Walk, and
one going into the behavior LineWalk. A synchronized deci-
sion is to be made between these (such that all robots select
the same behavior), and execution must begin simultane-
ously. An appropriate social behavior is used to coordinate
this synchronized selection. For instance, Figure 1-c shows
a simple voting behavior (marked S1).

Allocation of sub-teams to behaviors is triggered when
a behavior is to be decomposed into children behaviors.
If only one decomposition transition exists, then the entire
team selects it. Otherwise, if multiple decomposition transi-
tions exist, then the team is to be split into sub-teams. The
appropriate social behavior is called to carry out this alloca-
tion, for instance by using a market-based approach (Dias &
Stentz 2000), or an agenda-based mechanism (Parker 1998).
In Figure 1-c, behavior S2 marks the sequential phases of
a market-based protocol for use in allocating the children

AAAI-05 / 110



behaviors to different sub-teams.
Finally, synchronized termination of behavior execu-

tion determines the social behavior of robots as they reach
the end of an execution chain. Normally, upon such termina-
tion, control is passed back to the parent behavior, which is
then also terminated. However, if a parent behavior is asso-
ciated with a sub-team composed of several members, then
termination of the execution chain must be coordinated, so
that teammates know that it is done with its allocated execu-
tion chain. For instance, if the parent behavior has several
robots doing a distributed search for a target, then the first
robot to find the target will necessarily want to terminate
the search and inform its teammates. To control this social
behavior, a synchronized termination behavior is called. In
Figure 1-c, behavior S3 marks a very simple synchronized
termination behavior which is appropriate for the formation
task. In the behavior Wait, a robot that has terminated execu-
tion of a joint behavior waits for all other robots to reach the
end of their execution chains as well, before they all begin
their joint execution of a new behavior.

Social interaction behaviors may themselves require syn-
chronization, and allocation. As interaction behaviors are
represented using behavior graphs (as the task-oriented be-
haviors), they can themselves link synchronization, alloca-
tion, and termination points in their behavior graphs to other
interaction behaviors, thus creating hierarchical social inter-
actions. For instance, we have described a simple voting
interaction behavior. To execute these, BITE may need to
allocate the task of announcing the vote to one robot, have
all robots synchronize the beginning and end of sending their
votes, allocate someone to tally the votes, etc. Thus robots
may end up using another synchronization behavior (e.g.,
one where the choices are pre-set by the designer), in or-
der to execute another. However, as behavior graphs do not
allow cyclic decomposition (and interaction behaviors use
behavior graphs), an infinite cycle where robots vote as to
how to vote, etc. is not possible in principle.

Principal Control Algorithm
Each of the robots executes Algorithm 1, using its own copy
of the three structures. The control loop executes a behav-
ior stack—root behavior to leaf—where top behaviors on
the stack are executed simultaneously with their currently
selected children.

Execution begins by pushing the initial behavior of the
graph on the execution stack (lines 1–2). Then the algorithm
loops over four phases in order. (i) It recursively expands
the children of the behavior, allocating them to sub-teams
if necessary (lines 3a–3c). (ii) It then executes the behavior
stack in parallel, waiting for the first behavior to announce
termination (lines 4a–4c). All descendants of a terminating
behavior are popped off the stack (i.e., their execution is also
terminated—line 4b), and then (iii) a synchronized termina-
tion takes place (line 6). This can result in a newly-allocated
behavior within the current parent context, in which case, it
will be put on the stack for expansion (line 7). Otherwise,
(iv) this indicates that the robot should select between any
enabled sequential transitions from the terminated behavior
(lines 8a–8e). This process normally results in new behav-
iors put on the stack. Thus a final goto (line 9) back to line

Algorithm 1 CONTROL

Input: behavior graph 〈B, S, V, b0〉, team hierarchy T , interaction
behaviors set O

1. s0 ← b0 // initial behavior for execution

2. push s0 onto a new behavior stack G.

3. while s0 is non-atomic // has children
(a) A← {bi}, s.t., 〈s0, bi〉 is a decomposition edge
(b) if A has only one behavior b, push(G, b).

(c) else b←Allocate(G, s0, A, T, O), push(G, b).
(d) s0 ← b.

4. execute in parallel for all behaviors bi on G: // Execution
(a) execute bi until it terminates
(b) while bi 6= top(G), pop(G)

(c) break parallel execution, goto 5.
5. b← pop(G) // Terminate joint execution

6. c←Terminate(G, b, T, O)

7. if c 6= NIL, push(G, c)

8. else: // Select next behavior in execution chain
(a) Let Q← {si}, s.t. 〈b0, si〉 is a sequential edge
(b) if Q is empty, goto 5 // terminate parent
(c) if Q has one element s, push(G, s)

(d) else s←Decide(G, b0, Q, T, O)
(e) s0 ← s

9. If G not empty, goto 3.

3 begins again with their recursive expansion and allocation
to sub-teams.

The recursive allocation of children behaviors to sub-
teams in lines 3a–3c relies on the call to the Allocate() pro-
cedure. It takes the current execution context (i.e., current
stack, available children), and then calls the appropriate so-
cial interaction behavior in O (linked from the current par-
ent) to make the allocation decision. The current execution
stack is used to help guide allocations—for instance by con-
veying information about where in the behavior graph the
allocation is taking place. In addition, the interaction behav-
ior is given access to any links from the parent behavior to
the team hierarchy, e.g., to determine whether any children
task-behaviors are already pre-allocated. Once a final allo-
cation is determined, Allocate() is responsible for updating
the links from the behavior graph to the team hierarchy (and
vice versa) to reflect the allocation. It then returns, for each
robot, the child behavior for which it is responsible as part
of the split sub-team (or individually, if the sub-team is com-
posed only of the individual robot).

Synchronized termination (line 5–7) and selection
(lines 8a–8e) similarly rely on calls to the procedures
Terminate() and Decide(), respectively. Terminate()
is responsible for evoking the execution termination inter-
action behavior, which can return a new child behavior for
execution under the current parent. If it doesn’t, then the
next behavior in the execution chain must be selected by
Decide(), which calls a synchronization interaction behav-
ior. Since synchronized selection involves all members of
the current sub-teams selecting together, this behavior would

AAAI-05 / 111



normally communicate with the members of the sub-team
assigned to the terminated behavior. Note that in step 8b we
also handle the case where no more behaviors are available
in the execution chain. This case signals a termination of
an execution chain, which in turn signals termination of the
parent, thus the branching back to line 5.

Additional algorithms can be derived based on analysis of
the three structures and their interacting links. For instance,
straightforward analysis of the behavior graph can yield an-
ticipatory information about which behaviors are expected
to be selected, thus allowing robots to anticipate the needs of
their teammates (Veloso, Stone, & Bowling 1999). Indeed,
we have found it useful to run a proactive communications
algorithm that informs teammates of sensed knowledge that
may be relevant to them (Algorithm 2—described in the next
section). The team hierarchy and behavior graph provide the
information as to whom should be informed of what.

BITE: Evaluation and Lessons Learned
The previous section has presented the key novel aspect
in BITE—its introduction of social interactions as first-
class objects, implemented as behaviors which are managed
through the same mechanisms used to manage task-oriented
behaviors. This feature of BITE allows for a significant de-
gree of flexibility in teamwork over existing architectures.
For instance, it allows creation of systems that marry the ca-
pabilities of different architectures. It also allows different
interactions to be used depending on context.

This section reports on the lessons learned from fully im-
plementing BITE and running it in a variety of tasks, on
Sony AIBO robots. We first report on the benefits of BITE’s
flexibility—the key motivation for its development. We then
report on additional features which were introduced into
BITE as a response to the application of multi-agent systems
technology in physical robots. While we are not the first to
make the transition (see, for instance, (Dias & Stentz 2000)
as examples of market-based allocation in robotics), we be-
lieve that the lessons learned from this application have not
been previously reported.
Lesson: Flexibility Makes a Difference. The robots, run-
ning BITE, have been in used in several tasks. One specific
task had the robots go from an initial position where they
are all lined side by side to a goal location 6 meters away.
The robots were to maintain a triangle or line formation (as
described above—see also Figure 2). If moving in a triangle
formation, the robots could choose to change to line based
on some conditions. The behavior graph for this task is com-
posed of a dozen task behaviors, and eight interaction behav-
iors. The task behavior graph has two allocation points and
three synchronization points. While relatively simple, this
behavior graph is sufficient to show that the ability to use
a variety of interaction behaviors makes a significant differ-
ence in task performance.

In an initial simple experiment, we ran three separate ver-
sions of the tasks, where the same behavior graph (with both
triangle and line formations) was used with different combi-
nations of interaction behaviors. Each variant was run four
times. We measured synchronization and allocation times,
as well as overall task time. Table 1 shows the average
results. The table summarizes the time spent in each type

(a) Success (b) Failure

Figure 2: Robots executing BITE.
Policy Sync Time Alloc Time Interaction Time Task Time

SYNC. 2883.00 424.50 3307.50 56590.5

NO SYNC. 0 548.75 548.75 54683.0

SYNC/ALLOC. 2572.75 949.00 3521.75 45887.0

Table 1: Interaction and task times (ms).

of interaction, as well as the total interaction behavior time
and the task completion time. In the first variant (SYNC),
communication-intense interactions were selected for syn-
chronization, but communication-poor interactions were se-
lected for allocation. In the second (NO SYNC), both syn-
chronization and allocation used as little communication as
possible. In the third, both synchronization and allocation
used communication-rich interactions.

Table 1 shows that flexibility matters—in non-trivial
ways. Comparing the SYNC and NO SYNC variants, we see
that a reduction in communications (by approximately 2 sec-
onds) entailed a corresponding 2-second reduction in task
time. This was to be trivially expected under the assumption
that savings in interaction time translate into reduced task
completion time. However, the third variant provides a sur-
prise. Despite spending more time in interaction, it manages
to reduce task completion time significantly (by about 19%).
Note that total interaction time is almost the same as in the
first variant—but now a much larger portion of it is spent
in allocation interactions. This shows that the ability to mix
and match interaction behaviors can be a significant factor
in task performance, lending support to this novel feature
being an important contribution.
Lesson: Automated Teamwork Saves. The formation be-
haviors operate by forcing robots to maintain relative angles
and positions to a lead robot. Color segmentation is used
to identify the angle to the lead robot, while each AIBO’s
sole distance sensor (infra-red) is used to maintain distance
within some constraints. This algorithm is inherently sus-
ceptible to sensing failures (see also another lesson below),
as these cause the failing robot to lose its place in the for-
mation (e.g., Figure 2-b). This can be fixed in principle by
having the designer of the behaviors also cover this special
case in the behavior itself. This, of course, requires the de-
signer to anticipate this possible problem.

However, by implementing the behaviors in BITE, the
burden of worrying about coordination is put on the robots.
When one loses track of the lead robot, the appropriate ter-
mination condition is satisfied, and the behavior terminates.
This in turn triggers the appropriate social interaction behav-
ior in BITE, which causes the other robots to also stop ex-
ecuting their movement behavior, and jointly switch to the

AAAI-05 / 112



Graph # Trials Failures Interaction Time Task Time

1. 7 0 1831 52730

2. 5 1 1709 122801

3. 5 1 1284 54005

4. 5 0 2257 179464

5. 5 1 688 174563

6. 6 1 0 70251

7. 7 0 836 109240

8. 5 1 2900 120392

9. 7 1 572 105516

Table 2: Results from 9 Behavior Graphs
.Search behavior. Thus the formation is maintained.

To show the savings generated by BITE, we created 9
different behavior graphs, by mixing a dozen individual
and team formation-maintenance behaviors, and connecting
them in various sequential orders, with and without optional
cycles, etc. We assigned each of the 9 behavior graphs a set
of social behaviors. Table 2 shows the results. The second
column shows the number of successful trials; the next col-
umn shows the number of failed trials; the next two columns
measure the average interaction and task completion times.

Failures consisted of the robots getting confused about
their roles, e.g., because they found themselves on the same
or wrong side of the leader in a triangle formation. It
turns out that all failures could be traced to a specific non-
communicating allocation behavior, which was faster (no
waiting for messages), but less robust. Wherever a commu-
nicating allocation behavior was used, all such failures were
prevented.

Other than these failures—which ultimately are due to a
bad choice by the designer—BITE handled all nine behav-
ior graphs with equal ease. There was no need to re-write
communication rules, or to worry about how certain behav-
iors interact with each other. All transitions between coordi-
nated modes took place automatically, as did all allocations,
including all dynamic allocations of formation roles, based
on positions of the robots after they have already executed
some other formations.
Lesson: Fuse Sensor Information. Two mechanisms are
used in BITE for sensor fusion. First, as common in robotics
work, sensor data is pre-processed before being used. BITE
also uses multi-robot sensor fusion, e.g. (Stroupe, Martin, &
Balch 2001). However, it treats such procedures as interac-
tion behaviors, which can be mixed and matched depending
on the execution context.

Algorithm 2 shows a simple example fusion behavior.
In the first phase of the algorithm, each robot determines
whether new information affects its behavior stack (e.g.,
newly-satisfied conditions). These potentially affect the
robot’s teammates, and must therefore be communicated to
them by finding out which sub-team is responsible for each
behavior on the stack (done through the Inform() procedure,
which refers to an appropriate social interaction behavior).
The second phase (lines 2a–2b) allows the robot to deter-
mine whether newly sensed information may be relevant to
sub-teams that it is not a member of, proactively providing
them with information even though it is not strictly its own
responsibility to do so.

Algorithm 2 FUSEINFORMATION

Input: behavior graph 〈B,S, V, b0〉, team hierarchy T , inter-
action behaviors set O

1. for all behaviors b on behavior stack G:
(a) t← subteam(b) // sub-team responsible for b
(b) if a termination condition of b is satisfied,

Inform(b, t, O)
(c) if a precondition of a behavior f (〈b, f〉 a sequence edge) is

satisfied, Inform(b, t, O)
2. for all teams t in the team hierarchy:

(a) C ← {b|b ∈ B, t currently linking to b}
(b) for all b ∈ C and not on the behavior stack:

i. if a termination condition of b is satisfied, Inform(b, t, O)
ii. if a precondition of a behavior f (〈b, f〉 a sequence edge) is

satisfied, Inform(b, t, O)

Summary and Future Work
A key challenge in building robot teams is to automate
teamwork, such that the designer can focus on the robots’
taskwork. Existing teamwork architectures automate key as-
pects of teamwork, but do not allow flexibility in how this
automation is achieved, in terms of the interaction protocols
used. Nor do existing architectures allow for mixing differ-
ent protocols within the same overall robot team mission.

We argue that teamwork should adapt a mini-kernel ap-
proach, allowing teamwork services to be interchanged and
mixed as needed. Concretely, we presented BITE, a dis-
tributed behavior-based teamwork architecture that enables
such flexibility by separating behaviors that control social
interactions from those that manage subtasks, and further
distinguishing knowledge of the organizational structure.
We present algorithms for controlling social interactions and
communications within this architecture, and the lessons
generated in applying it in Sony AIBO robots. Empirical
results from multiple experiments show that flexibility is
indeed important, and can significantly affect task achieve-
ment. Our future efforts focus on human-team interactions,
and on extending BITE’s capabilities.

References
Dias, M. B., and Stentz, A. T. 2000. A free market architecture
for distributed control of a multirobot system. In 6th International
Conference on Intelligent Autonomous Systems (IAS-6), 115–122.
Gerkey, B. P., and Matarić, M. 2004. A formal analysis and
taxonomy of task allocation in multi-robot systems. International
Journal of Robotics Research 23(9):939–954.
Parker, L. E. 1998. ALLIANCE: An architecture for fault toler-
ant multirobot cooperation. IEEE Transactions on Robotics and
Automation 14(2):220–240.
Pynadath, D. V., and Tambe, M. 2003. Automated teamwork
among heterogeneous software agents and humans. JAAMAS
7:71–100.

Stroupe, A. W.; Martin, M. C.; and Balch, T. R. 2001. Distributed
sensor fusion for object position estimate by multi-robot systems.
In ICRA-01, 1092–1098. IEEE Press.
Veloso, M.; Stone, P.; and Bowling, M. 1999. Anticipation: A
key for collaboration in a team of agents. In SPIE Sensor Fusion
and Decentralized Control in Robotic Systems II (SPIE-99).
Vu, T. D.; Go, J.; Kaminka, G. A.; Veloso, M. M.; and Brown-
ing, B. 2003. MONAD: A flexible architecture for multi-agent
control. In AAMAS-03.

AAAI-05 / 113


