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Alignment of multiple DNA or protein sequences is a cen-
tral problem in computational biology. To create an align-
ment, gaps are inserted into sequences to shift characters to
matching positions and a scoring function is used to rank
the biological plausibility of alignments. Multiple sequence
alignments are used to identify homologies among differ-
ent species that reveal evolutionary history from a common
ancestor. They are also used to discover genetic causes of
certain diseases and to predict protein structure, which has
significant importance in the design of drugs.

The multiple sequence alignment problem can be formal-
ized as a shortest-path problem through a d-dimensional lat-
tice, where d is the number of sequences to be aligned (Gus-
field 1997). Dynamic programming is the traditional ap-
proach to constructing optimal alignments. Improved per-
formance has recently been achieved using A*. However,
the multiple alignment problem presents a difficulty for the
classic A* algorithm. Its branching factor of 2¢ — 1 is so
large that the size of the open list dramatically exceeds the
number of nodes A* must expand to find an optimal solu-
tion.

Two solutions to this problem have been proposed in the
literature. Yoshizumi et al. (2000) describe an extension
of A*, called A* with Partial Expansion (PEA*). Instead
of generating all successors of a node when it is expanded,
PEA* inserts only the most promising successors into the
open list. The “partially expanded” node is re-inserted into
the open list with a revised f-cost equal to the least f-cost
of its unexpanded successors, so that it can be re-expanded
later. Use of this technique dramatically reduces the size of
the open list, and PEA* can solve larger multiple sequence
alignment problems than A*. Unfortunately, the reduced
space complexity of PEA* is achieved at the cost of node
re-expansion overhead. The tradeoff between space and time
complexity is adjusted by setting a “cutoff value” C, which
determines which successor nodes to add to the open list.

Another way to reduce the size of the open list is to prune
nodes from the open list if their f-cost is equal to or greater
than a previously established upper bound, since such nodes
will never be expanded by A*. This approach was first pro-
posed by Ikeda and Imai (1999), who called it enhanced A*
(EA*). One way to obtain an upper bound is to use the solu-
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tion found by weighted A* search using a weight w > 1
in the node evaluation function f(n) = g(n) + wh(n).
Ikeda and Imai suggested this method of obtaining an up-
per bound, but did not report experimental results for it.

In this abstract, we describe a third approach to reduc-
ing the size of the open list. In this approach, we also use
weighted A* search to quickly find a solution that provides
an upper bound that can be used to prune the open list. But
because the first solution found may not be optimal, we con-
tinue the weighted search in order to find a sequence of im-
proved solutions that eventually converges to an optimal so-
Iution. This also provides a sequence of improved upper
bounds that can further prune the open list. We call this strat-
egy Anytime A* (Hansen & Zilberstein 1996). Anytime A*
refines both an upper bound, corresponding to the cost of the
best solution found so far, and a lower bound, given by the
unexpanded node with the least unweighted f-cost. Both
bounds approach each other until convergence to a prov-
ably optimal solution. Before convergence, the difference
between the two bounds gives an error bound on the quality
of the currently available solution. Pseudocode for the algo-
rithm is given at the end of the paper. The open list is pruned
in lines 10 through 12.

Figures 1 and 2 compare the performance of Anytime
A* (ATA*) to A* with Partial Expansion and Enhanced
A* (where Enhanced A* uses the first solution found by
weighted A* as an upper bound to prune the open list). The
PAM?250 cost matrix is used with a gap cost of 8. All three
algorithms require dramatically less memory than conven-
tional A* in solving the multiple sequence alignment prob-
lem, allowing a larger number of sequences to be aligned.

Figure 1 compares their performance in aligning eight se-
quences from a highly similar set of sequences used in ear-
lier experiments (Ikeda & Imai 1999; Yoshizumi, Miura, &
Ishida 2000). On average, Anytime A* runs more than 7
times faster and stores only 26% more nodes than PEA* us-
ing a cutoff of C' = 0. When PEA* uses a cutoff of C' = 50,
it stores 40% more nodes than Anytime A* and still runs
18% slower on average. Enhanced A* performs best on this
test set. It runs 20% faster than Anytime A* and stores 4%
fewer nodes.

Figure 3 compares the performance of the algorithms in
aligning five sequences from a set of dissimilar sequences
used in earlier experiments (Kobayashi & Imai 1998). For
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Figure 1: Average performance in aligning 8 similar se-
quences from (Yoshizumi, Miura, & Ishida 2000).

this test set, Anytime A* is only 2.4% slower than enhanced
A* and stores 40% fewer nodes. Its better performance on
the second test set is explained as follows. Because the se-
quences in the first test set are very similar and the heuristic
is extremely accurate, the first solution found by weighted
A* is optimal or close to it — a best-case scenario for En-
hanced A*. Because the sequences in the second set are
dissimilar and the heuristic is less accurate, the first solu-
tion found by weighted A* is usually not optimal. Anytime
A* continues to find better solutions that improve the upper
bound, which in turn improves memory-efficiency. Figure 2
illustrates its anytime behavior by showing how the upper
and lower bounds gradually converge.

Our experimental results show that the sequence of im-
proved solutions found by Anytime A* provide a dynamic
upper bound that keeps its memory requirements close to
the minimum number of nodes that must be expanded to find
an optimal solution. Anytime A* is more memory-efficient
than PEA* unless the latter uses the most aggressive cutoff
of C' = 0, in which case the node re-expansion overhead
of PEA* slows it considerably. Anytime A* is also more
memory-efficient than Enhanced A* when aligning dissimi-
lar sequences. Anytime A* has an additional advantage over
both algorithms. Because it finds a sub-optimal alignment
quickly and continues to improve the alignment with addi-
tional computation time, it offers a tradeoff between solution
quality and computation time that can prove useful when
finding an optimal alignment is infeasible.
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Figure 2: Convergence of bounds for Anytime A*.
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Figure 3: Average performance in aligning 5 dissimilar se-
quences from (Kobayashi & Imai 1998).

Pseudocode of Anytime A*

1 g(s) <0, f(s) < g(s) +w x h(s)

2 OPEN « {s}, CLOSED « (), bound « oo
3 while OPEN # () do

4 n «— argming{f(z) | x € OPEN}
5  OPEN — OPEN \ {n}
6  CLOSED — CLOSEDU {n}
7 if n is a goal node then
8 bound — g(n) + h(n)
9 Output solution and bound
10 for each z € OPEN and
g(x) + h(z) > bound do
1 OPEN < OPEN\ {z}
12 for each n; € {x | © € Successors(n),
g(n) + c(n, x) + h(z) < bound} do

13 ifn, ¢ OPEN UCLOSED or

g(ni) > g(n) + c¢(n,n;) then
14 9(ni) — g(n) + c(n, ns)
15 fni) — g(n:) +w x hin;)
16 OPEN — OPEN U {n;}
17 if n; € CLOSED then
18 CLOSED « CLOSED \ {n;}
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