From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Knowledge Formation and Dialogue Using the KRAKEN Toolset

Kathy Panton, Pierluigi Miraglia, Nancy Salay, Robert C. Kahlert, David Baxter, Roland Reagan
Cycorp, Inc.
3721 Executive Center Drive
Austin, Texas 78731
{panton, miraglia,nancy, rck,baxter, roland}@cyc .com

Abstract

The KRAKEN toolset is a comprehensive interface for
knowledge acquisition that operates in conjunction with
the Cyc knowledge base. The KRAKEN system is de-
signed to allow subject-matter experts to make mean-
ingful additions to an existing knowledge base, without
the benefit of training in the areas of artificial intelli-
gence, ontology development, or logical representation.
Users interact with KRAKEN via a natural-language in-
terface, which translates back and forth between En-
glish and the KB’s logical representation language. A
variety of specialized tools are available to guide users
through the process of creating new concepts, stating
facts about those concepts, and querying the knowledge
base. KRAKEN has undergone two independent perfor-
mance evaluations. In this paper we describe the gen-
eral structure and several of the features of KRAKEN,
focussing on key aspects of its functionality in light of
the specific knowledge-formation and acquisition chal-
lenges they are intended to address.

Introduction

The goal of the KRAKEN effort is to develop a set of
tools to support knowledge base expansion. In particular,
the KRAKEN system is designed to allow subject-matter
experts (SMEs) to make meaningful additions to the Cyc
knowledge base, without the benefit of training in the areas
of artificial intelligence, ontology development and analysis
(Gangemi et al. 2001), or logical representation languages.

To fulfill these requirements, KRAKEN relies principally
on natural language interactions with the user. The inter-
face’s metaphor is that of a conversation between a subject-
matter expert and a non-expert; both use ordinary English,
possibly containing specialized vocabulary. Consequently,
two major challenges faced the project designers at the out-
set:

e To make the user’s conversation with KRAKEN as
smooth as possible, which meant development and en-
hancement of every aspect of Cyc-based NL processing;

e To drive the knowledge formation process in such a way
that user-entered knowledge would be at a high level of
logical and representational quality.

Copyright (© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

900 IAAI-02

The second challenge is in effect a consequence of work-
ing in a large, comprehensive knowledge base, using a pow-
erful logical language such as CycL. The magnitude of the
KB raises non-trivial issues of navigation through the con-
cept space, traversal of the taxonomic hierarchies, and so on.

It is worth emphasizing that both challenges are indeed fa-
miliar to experienced ontologists and knowledge engineers.
We chose not to attempt to simplify the KE task by artifi-
cially restricting the knowledge base and expressive capa-
bilities of Cyc, but to take on the very challenging problem
of creating a powerful “assistant” that would allow the SME
to work with all the resources made available by Cyc (Cohen
et al. 1999).

This paper is organized as follows. First, we provide a
brief introduction to the Cyc Knowledge Base. Next, we in-
troduce the natural language processing components used in
KRAKEN. We then give an overview of the KRAKEN sys-
tem, along with an in-depth look at a few selected tools. An
example of a user dialogue with the system is presented. Fi-
nally, we discuss our results to date, and our plans for future
refinements of the system.

The Cyc Knowledge Base

The Cyc KB is currently the largest general knowledge base
in the world, housing roughly 1.4 million hand-entered rules
interrelating 100k+ concepts. Concepts are denoted in the
KB with Cyc constants; these may be individuals, intension-
ally defined collections, extensionally defined collections,
relations that obtain between terms, or functions which can
be used to refer to many more individuals without having to
reify a term for each (e.g. “gander” is represented in the KB
by the nonatomic term (MaleFn Goose)). Currently, the KB
has knowledge of a wide range of topics, from microbiology
to pop music, and has an extensive knowledge infrastruc-
ture, including multiple treatments of causality and temporal
and modal reasoning. Knowledge is clustered into context-
specific domains (or “microtheories”) with epistemic access
determined by specialised predicates. Consequently, the
system has an ability to differentiate between and accom-
modate logically conflicting bodies of knowledge, including
hypothetical and counterfactual contexts.

Over the last fifteen years, our representational language,
CycL, has evolved—as needed—into a highly expressive



one, comparable to higher-order logic. The hurdle of com-
binatorial explosion in inference is overcome in two ways:

1. By using its partitioning of knowledge into contexts so
that inferences occur within one small subset of the over-
all KB; and

2. By having a set of special-purpose inference modules that
recognize commonly-occurring special cases and handle
them efficiently.

The KRAKEN Natural Language Processing
System

A crucial design feature of the KRAKEN system is its nat-
ural language interface. Primarily, the NLI was intended to
allow users to interact with the system using simple English
statements and queries. It was required to parse sentences
and questions, and to generate English paraphrases for CycL
statements. Furthermore, the interface had to be capable
of immediately processing new lexical information corre-
sponding to knowledge being entered by a user. For exam-
ple, if a user introduced a new concept, such as Clostridium-
BotulinumToxin, into the knowledge base, the system should
prompt the user to supply natural language terms (such as
“botulinum toxin” or “botulism toxin”) that could refer to
the new concept.

These design considerations, along with the need for
quick parsing and generation, led us to create a system that
combines features of principled, theory-driven approaches
as well as more practical, less theoretical approaches. While
we have, for example, decided against using an HPSG parser
for this application, we still recognize the need for utiliz-
ing detailed lexical and syntactic knowledge. The KRAKEN
natural language processing system consists of several sub-
components, including the lexicon, generation system, pars-
ing system, and the iCycL (intermediate CycL) representa-
tion language, each of which is described briefly below.

The lexicon (Burns and Davis 1999) contains syntactic,
semantic, and pragmatic information for about 27,000 En-
glish root words. Inflectional morphology is handled by a
separate code component. Each root word is represented
as a term in the KB, with assertions providing information
about the word’s part of speech, subcategorization patterns,
and semantics. Semantic information in the lexicon provides
a mapping between word senses and corresponding KB con-
cepts or formulae.

The natural language generation system produces a
word-, phrase-, or sentence-level paraphrase of KB con-
cepts, rules, and queries. The NLG system relies on in-
formation contained in the lexicon, and is driven by gen-
eration templates stored in the KB. These templates are not
solely string-based; they contain linguistic data that allows,
for example, correct grammatical agreement to be generated.
The NLG system is capable of providing two levels of para-
phrase, depending on the demands of the application. One
type of generated text is terse but potentially ambiguous,
and the other is precise but potentially wordy and stilted.
Through the KRAKEN Dictionary Assistant Tool, users can
add parsing and generation templates for new terms as soon
as they are introduced into the knowledge base.

Depth of parsing from natural language to CycL can range
from very shallow (i.e. concept mapping) to deep (i.e. text
understanding). For KRAKEN, deep interpretation is a re-
quirement. However, earlier generations of parsing tools
developed by our team, including an HPSG-based parser,
proved much too slow to be used with KRAKEN. In or-
der to balance demands of speed vs. depth, a hybrid top-
down/bottom-up system was developed. This involves a
template-matching parser for sentence-level parses, along
with a chart parser and semantic templates for key sub-
constituents (noun phrases and verb phrases).

Our natural language understanding system parses input
strings into fully-formed semantic formulas. Design criteria
for the parsing system included that it (1) be fast; (2) pro-
duce parses of adequate semantic detail; (3) ask the user for
clarification only in cases where the system could not itself
resolve ambiguities; and (4) support parsing into underspec-
ified formulas, and then rely on some of the other KRAKEN
tools, such as the Reformulator, to determine the best se-
mantic translation.

The Text Processor controls the application of the var-
ious parsing subcomponents, using a heuristic best-first
search mechanism that has information about the individ-
ual parsers, including their applicability to coarse syntactic
categories and cost. This information is used to perform a
syntax-driven search over the parse space, applying relevant
parsers to the sub-constituents until all are resolved, or until
the parsing options have been exhausted. The parsers at the
disposal of the Text Processor are the Template parser, the
Noun Compound parser, and the Phrase Structure parser.

The Template parser is essentially a string-matching
mechanism driven by a set of templates compiled into an
efficient internal format. These templates, like those used
for generation, employ a simple format so that users can add
templates as they are entering new knowledge into the sys-
tem. The template parser is relatively fast, but is of limited
flexibility. It tabulates semantic constraints during a parse,
but does not attempt to verify them; that task is passed along
to the next processing layer.

The Noun Compound parser uses a set of semantic tem-
plates combined with a generic chart-parsing approach to
construct representations for noun compounds such as “an-
thrax vaccine stockpile”. Unlike other parsing components,
it makes heavy use of the Cyc ontology, and can there-
fore resolve many ambiguities that are impossible to handle
on a purely syntactic level (e.g. “Mozart symphonies” vs.
“Mozart expert”).

The Phrase Structure parser takes a similar bottom-up ap-
proach to constructing parses. After completing a syntactic
parse, it uses semantic constraints gleaned from the KB to
perform pruning and to build the semantic representation.
Specialized sub-parsers are used to parse noun phrases and
verb phrases; resulting constituent parses are combined to
produce a complete semantic translation.

In order for parsing to be successful in the current appli-
cation, some decisions about semantic meaning needed to
be deferred. In particular, radically vague or underspecified
words such as “is” or “contains”, which can map onto many
distinct relations in the KB, introduce ambiguities which are

IAAI-02 901



not handled well by producing all possible interpretations
in parallel. To deal with such cases, strings are parsed into
an intermediate CycL (iCycL) layer that conflates relevant
ambiguities into a single parse, by using very general predi-
cates such as is-Underspecified. Another level of processing
reformulates iCycL representations into final, more specific
CycL representations, often with the user’s help.

In addition to handling underspecification, the iCycL
layer is also well-suited for other types of semantic process-
ing, such as interpretation of quantification and negation,
and type-shifting. The interpretation of quantifiers, for ex-
ample, consists in a transformation from iCycL expressions
into CycL logical forms performed by a dedicated “refor-
mulation” component. Although CycL representations are
modelled on first-order logic, the language itself allows the
definition of higher-order constants. We exploit this capabil-
ity to represent a wide range of NL quantifiers (most, many,
few, no, etc.) formally as generalized quantifiers, i.e., as
higher-order relations between collections.

Overview of KRAKEN

The KRAKEN system consists of an integrated set of tools
for adding to the Cyc KB, accessed via an HTML interface.
The tools already deployed include:

e Creators, selectors, and modifiers for all of the categories
distinguished by the Cyc system (concepts, statements
and rules, predicates) and the categories identified by
analysis of the KE process (scenarios and queries).

e Tools for determining the quality and consistency of the
statements made to the knowledge base, i.e. checkers for
contradiction and redundancy, precision manipulators for
improving generality or specificity, and tools for provid-
ing feedback on the quality of the KE done in terms of
rule and query critiquers.

e Tools that leverage existing knowledge to elicit new
knowledge, such as the Concept Differentiator, the Anal-
ogy Developer, and, for ensuring breadth, the Salient De-
scriptor.

e Lexifiers, such as the Dictionary Assistant, that allow
users to enter natural-language words and phrases for con-
cepts they are describing.

The UIA: the User Interface to KRAKEN

The User Interaction Agenda (UIA) interface is a message-
based HTML system that uses the HTML REFRESH ca-
pabilities of the browser to simulate real-time updating. It
consists of four areas on the user’s screen:

1. A menu of tools that is organized according to the recom-
mended steps of the KE process (i.e. browsing what is
there, creating what is missing, testing it via rules, final-
izing the information, and debugging).

2. A type-in box that sends the entered text or query to
KRAKEN’s NL processing system, to interpret the text
as either a command for an action, a question to be run as
a query, or a sentence to be parsed as a new statement of
fact.

902 IAAI-02

3. An interactive center pane that is used as the render space
for the currently active tool. Most of the user and system
interaction takes place here, from the selection of initial
topics, to clarification dialogues in which KRAKEN asks
the user to select among possible interpretations of an am-
biguous utterance.

4. An agenda summary pane, where the essential steps to
completing an interaction are displayed. These steps are
color-coded to indicate whether the action in question is
currently possible, or is blocked.

Specialized KRAKEN Knowledge Entry Tools

The process of entering or modifying knowledge in Cyc typ-
ically consists of several steps:

1. Creating basic concepts: types (collections), individuals,
predicates, and so on.

2. Classifying concepts at the appropriate level of general-
ity, by placing them in proper taxonomic relationships to
existing concepts.

3. Identifying relations and slots applicable to the new con-
cepts.

4. Formulating rules establishing the proper use (and thus
expressing the meaning) of such concepts in reasoning.

Normally these tasks are performed by knowledge engi-
neers and ontologists. The intended user of KRAKEN, how-
ever, is untrained in these areas. For this reason, KRAKEN
includes a series of tools and assistants designed to ensure
the quality of the knowledge acquired. These tools oper-
ate essentially by eliciting new knowledge from the user,
or querying the user about optional additions (automatically
generated) to the KB.

Given space limitations, we can describe here only a few
among the tools that are currently implemented:

Precision Suggestor

Whenever a new concept is created, it must find its place in
the taxonomic structure of the existing KB. Considering the
size of the Cyc ontological hierarchy, this is of course much
more easily said than done.

The Precision Suggestor helps the user place new con-
cepts at the appropriate level of generality/specificity in the
ontology. After the user has entered a concept and formu-
lated a basic or “initial” fact about it (e.g., Rudy Giuliani is a
person or Botulin is a kind of toxin), the Suggestor identifies
a suitable number of possible generalizations and specializa-
tions that might be suggested for the concept entered. It then
queries the user whether any of the suggestions would lead
to a more accurate statement than the one originally entered.
These suggestions are heuristically determined from the cur-
rent state of the KB. The selection can be tuned by Cycorp
ontologists using specific “KE facilitation” flags in the KB.

Salient Descriptor

A more complex task is to ensure both breadth and depth
of knowledge representation. This requirement might be ex-
pressed by the question: once a concept is added, what is



the minimal set of features (properties, facts, rules, ...) that
should be specified about it?

Put in different terms, a robust (sufficiently broad and
deep) representation should include the salient features of
the concept. The problem of course is that salience is heavily
context-dependent. The Salient Descriptor is the KRAKEN
component that queries the user with suggestions about ad-
ditional knowledge; it identifies such knowledge as salient
on the basis of special “facilitation” rules in the KB. One
such rule, for instance, might be that if X is a type of bio-
logical organ, then it makes sense to specify the biological
function of X; or that if X is a particular eating event, it
makes sense to specify what food was consumed in it, or
who (what animal) took part in it, and so on.

On this basis, KRAKEN can query the user with addi-
tional clauses and facts that are prima facie salient with re-
spect to the concept(s) the user has entered. Note, further-
more, that rules such as the ones above are quite general, be-
cause they ultimately derive from conceptual analysis. One
side benefit of Cyc is that it contains the accumulated results
of years of ontological analysis of ordinary concepts. In ef-
fect, the Salient Descriptor leverages this accumulated patri-
mony in order to foster better knowledge formation practices
on the part of subject-matter experts.

Process Descriptor

The representation of processes as complexes of events with
multiple participants playing various roles receives special
focus in many domains of knowledge representation. It has
figured prominently in the microbiology and biochemistry
domains in which KRAKEN has been tested by SMEs. On
the other hand, the representation of processes as reified “ob-
jects” in an ontology is a complex task, generally presuppos-
ing a certain degree of logical sophistication on the part of
the knowledge enterer (consider, for instance, the problems
of constraining and preserving the identity of participants
throughout the unfolding of a complex event, well described
in (Aitken 2001a)).

Cyc has a very rich vocabulary for describing processes
as complex events or “scripts.” A script is an event consti-
tuted by a temporally ordered sequence of subevents. Both
scripts and their individual subevents are related to things
and individuals playing some role in them (agent, patient,
etc.) by “actor slots.” Additional relations specify the tem-
poral ordering of subevents in a script. Furthermore, the
expressive power of CycL is used by casting much of the
relevant vocabulary at the type level. Thus, instead of as-
serting that an individual event of type Paying follows an
individual event of type OrderingFood in a typical instance
of the script GoingOutToEat (at least in the context of Unit-
edStatesSocialLifeMt) by a complex rule, we can state suc-
cinctly

(startsAfterEndOfInScript Paying OrderingFood).

The type-level description, however, requires that specific
constraints be added about the identity of the participants:
it’s easy to assert, in type-level vocabulary, that the agent
in the Paying subevent type, as well as the agent in Order-
ingFood is a person, but less obvious how to express that

the same agent is involved in both the paying and the order-
ing event (in this example, actually, the precise constraint is
even more complex than this: most times there are multiple
agents ordering food in a particular restaurant visit, but not
all of them need be the payers). In any case, it seems clear
that the KRAKEN user would need to be guided through the
proper steps.

This guidance is provided by a separate process descrip-
tion tool. It allows the user to construct the description of
a process, specifying the participants by roles (at the type
level, we indicate what is true of an entire class of com-
plex or simple events), constraining their identity through
the main process and its subevents, and articulating the tem-
poral structure of the process, namely its subevents (by type)
and their relative ordering within the main process.

Example of an Interaction with KRAKEN

The user begins an interaction with KRAKEN by providing
his name to the system, and selecting a topic to converse
about. Suppose that a user wants to teach the system about
a new disease. The user has multiple means for determin-
ing whether a concept is already known to Cyc. For one,
he can use the Concept Browser to navigate the ontology.
For another, he can type a question such as “What do you
know about Endemic Relapsing Fever?” into the interaction
box. Having determined that Cyc does not yet know any-
thing about this disease, he types into the interaction box:

Endemic Relapsing Fever is an infectious disease.

KRAKEN parses the input sentence, but does not recog-
nize the name of the new disease. Thus, only a partial CycL
representation can be created at this point. KRAKEN re-
sponds:

I do not know what Endemic Relapsing Fever means in
this context.

[Describe now] [Search KB] [Describe later] [Con-
tinue] [Forget it]

The user selects the [Describe now] button. KRAKEN
asks the user what “Endemic Relapsing Fever” is a more
specific kind of, and the user responds with “infection”.
KRAKEN also supplies a box in which the user can enter
a concept similar to Endemic Relapsing Fever, but which
is already known to Cyc. The user opts to do so, entering
“Rocky Mountain Spotted Fever” as a similar concept.

Since the Noun Phrase parser finds two potentially rele-
vant meanings for “infection”, KRAKEN asks for clarifica-
tion of its meaning: whether it refers to an ailment, or to the
process of contaminating something. The user selects the
first interpretation.

The Precision Suggestor tool is then automatically in-
voked, to ensure that the new knowledge is presented at the
appropriate level of specificity. KRAKEN asks:

In the sentence

Endemic Relapsing Fever is a kind of infection

could you replace the phrase infection with any of the
following?

bacterial infection

viral infection

IAAI-02 903



fever infection
fungal infection
parasitic infection
inhalational infection

[...]

The user, knowing that Endemic Relapsing Fever is a
febrile illness that is caused by a bacterium, selects “bac-
terial infection” and “fever infection”.

Having been supplied with a basic definition of “Endemic
Relapsing Fever”, KRAKEN can fully parse the user’s orig-
inal statement into a CycL formula. KRAKEN now invokes
the Analogy Developer tool. This tool selects relevant state-
ments about Rocky Mountain Spotted Fever, which the user
claimed was similar to Endemic Relapsing Fever, and allows
the user to modify those statements to fit the concept he is
describing. KRAKEN scans the KB for facts about Rocky
Mountain Spotted Fever. For each relevant CycL assertion,
an English paraphrase is generated. These sentences are then
presented to the user:

Which of the following things I know about the dis-
ease Rocky Mountain Spotted Fever are also true of
Endemic Relapsing Fever?

Only R. ricketsii causes cases of Endemic Relapsing
Fever

People typically acquire Endemic Relapsing Fever
through biting by a tick

The risk of mortality for people afflicted with Endemic
Relapsing Fever is 0.2

The incubation period for Endemic Relapsing Fever in
people is usually between 3 and 14 days

There is no risk of Endemic Relapsing Fever spreading
directly from people to people

The user edits the first statement to refer to Borellia recur-
rentis, the bacterium that causes the fever. The second state-
ment is true as is; Endemic Relapsing Fever is indeed tick-
borne. The user does not know what the mortality rate and
incubation periods for this infection are, so he does not se-
lect the next two statements. Finally, the last statement is
correct as is. The user then submits this edited page of as-
sertions for processing. The Salient Descriptor tool is then
activated, prompting the user to give more facts about the
new disease. It states:

Yes/No Question
Is the following sentence true?
Endemic Relapsing Fever has distinct stages.

The user selects “Yes”, and the Salient Descriptor contin-
ues:

Here is one way in which you are encouraged to refine
Endemic Relapsing Fever :

Please enter something to fill in the blank(s) in the sen-
tence

Endemic Relapsing Fever primarily afflicts

with something that is a kind of organism part.

The user enters “nervous system”. Another question is
then posed by KRAKEN:

904 IAAI-02

Yes/No Question

Is the following sentence true?
The different stages of an instantiation of Endemic Re-
lapsing Fever do not involve different bacteria.

The user selects Yes, since only B. recurrentis is impli-
cated in this disease. The Salient Decriptor then prompts:

Please enter something to fill in the blank(s) in the sen-
tence

In Endemic Relapsing Fever, fever is likely to have a
onset rate.

with something that is a rate of change attribute.

Examples:
gradual
moderate
sudden

The user selects “sudden”. KRAKEN processes this
choice, and the initial teaching session regarding Endemic
Relapsing Fever comes to an end. At this point, the user can
ask KRAKEN to summarize what it has learned, by typing
“What do you know about Endemic Relapsing Fever?” into
the interaction box. KRAKEN collects its new knowledge
about the disease, and generates English paraphrases:

Here’s everything I've been told about Endemic
Relapsing Fever :

[+] Endemic Relapsing Fever is a type of infection.

[+] Endemic Relapsing Fever is an infectious disease.
[+] Endemic Relapsing Fever has distinct stages.

[+] A case of Endemic Relapsing Fever is a kind of
fever infection.

[+] A case of Endemic Relapsing Fever is a kind of
bacterial infection.

[+] Only B. recurrentis causes cases of Endemic
Relapsing Fever.

[+] Ticks are an infection vector of Endemic Relapsing
Fever.

[+] Endemic Relapsing Fever is similar to the disease
Rocky Mountain Spotted Fever.

[+] Endemic Relapsing Fever primarily afflicts nervous
systems.

[+] The different stages of an instantiation of Endemic
Relapsing Fever do not involve different bacteria.

[+] In Endemic Relapsing Fever, fever is likely to have
a sudden onset rate.

[+] People typically acquire Endemic Relapsing Fever
through biting by a tick.

[+] There is no risk of Endemic Relapsing Fever
spreading directly from people to people.

Results and Future Plans

KRAKEN’s performance was evaluated in the Summer of
2001 in an independent experiment (results for which will
be published elsewhere). A team of SMEs unfamiliar with
Cyc used the system to enter new knowledge in the domain



of cell biology. The system’s responses were rated on a 0-3
point scale in terms of correctness, quality of representation,
and quality of explanation. KRAKEN’s average score in the
cell biology domain was 1.91 (with scores as high as 2.54 on
some sections of the experiment). These results, especially
since they were produced with a very early version of the
system, are encouraging.

A further evaluation of KRAKEN in January, 2002
showed that knowledge entry rates of the SMEs had in-
creased significantly, compared to the evaluation six months
earlier. Improvements in tools at this stage allowed users to
more rapidly create knowledge, and led users through more
complex entry sequences. Most importantly, perhaps, the
SMEs had caught up to the logic experts in terms of quality
of representation.

From a qualitative standpoint, the KB segments produced
by the SMEs using KRAKEN warranted positive marks in
many areas. In some respects, the KRAKEN products com-
pared favorably to standard practice by Cycorp knowledge
engineers. Assertions were mostly introduced at the proper
level of generality and specificity; logical and conceptual
soundness seemed generally respected. Overall, these seem
to have been the most successful aspects:

e Taxonomic relations: by and large, concepts are defined
at the right level of generality and the relations of gener-
alization and specialization between collections are well-
chosen and informative.

e Articulation of events and processes in subevents, and
specification of participants’ roles in same (users seemed
quite capable of navigating Cyc’s vast stock of role-
representing relations).

o Ability to insert “exception” statements (e.g.: not every
transcription has a nucleolytic proofreading as subevent),
by using “natural” assertions involving ordinary quantifi-
cation.

Aspects that seemed less successfully developed:

e Guiding the user through stating the temporal ordering of
subevents in complex events (i.e., “scripts”).

e Use of complex predicates, especially to describe similar-
ities and differences between concepts and entities; and
creation of new predicates.

We believe that developments both in KRAKEN design
and further engineering of the ontology should soon improve
performance in these problem areas.

In the coming months, along with improvements to tools
like the Process Descriptor and Analogy Developer, larger
and more ambitious versions of the User Modeller will be
designed. We would like to be able to use context to realize
when a term can be used profitably in conversation, to deter-
mine saliency of a term description given the context, and to
organize some of the answers returned by the system.

The bigger issues in the background remain challeng-
ing. In order to achieve optimal performance in User Mod-
elling, the KRAKEN system would have to introduce an ab-
straction layer between itself and the SME, just as a doctor
takes the layman’s description of an illness and translates it

opaquely into a scientific medical description without ever
confronting the patient with the medical terminology. Much
ontological engineering research and work will have to be
done to reach this long-term goal, but there are some gains
which can be made in the shorter term.

A number of refinements to the NL system are planned
for the coming months. For generation, the system will
move from a focus on generating isolated sentences and
questions to rendering multi-sentence-level text. We will
be incorporating indexicals, pronouns, and other intersen-
tential anaphors in order to create natural-sounding interac-
tions. Future work on the parsers will emphasize increasing
their speed, and on extending coverage to include more com-
plex structures, such as adjectival and adverbial phrases.

Acknowledgements

KRAKEN is being built as part of DARPA’s Rapid Knowl-
edge Formation (RKF) project (DARPA, 2000). The authors
are indebted to the work and contributions of the Knowl-
edge Formation and Dialogue group at Cycorp: Michael
Witbrock, Dave Schneider, Keith Goolsbey, Jon Curtis, John
Jantos, Matt Smith, Matthew Olken, Doug Foxvog, Fred
Hoyt, Jennifer Sullivan, Kim Loika, Bjgrn Aldag, Stefano
Bertolo, Peter Wagner, Ben Rode and Michael Wakoff.

References

Aitken, S. 2001. Participants, Conditions and Identity in
Scripts. Technical Report, Artificial Intelligence Applica-
tions Institute, University of Edinburgh.

Burns, K. J., and Davis, A. R. 1999. Building and maintain-
ing a semantically adequate lexicon using Cyc. In Viegas,
E. ed. Breadth and depth of semantic lexicons. Dordrecht:
Kluwer.

Cohen, P, Chaudri, V., Pease, A., and Schrag, R.
1999. Does prior knowledge facilitate the development of
knowledge-based systems? Proceedings of the AAAI-99,
pp- 221-226. Menlo Park, CA.

DARPA. The Rapid Knowledge Formation Project (main
website). http://reliant.teknowledge.com/RKF/, 2000.
Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A.
2001. Understanding top-level ontological distinctions. To
appear in Proceedings of IJCAI 2001 Workshop on Ontolo-
gies and Information Sharing.

IAAI-02 905



