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Abstract

When search techniques are used to solve a practical
problem, the solution produced is often brittle in the
sense that small execution difficulties can have an arbi-
trarily large effect on the viability of the solution. The
AI community has responded to this difficulty by inves-
tigating the development of “robust problem solvers”
that are intended to be proof against this difficulty.

We argue that robustness is best cast not as a prop-
erty of the problem solver, but as a property of the
solution. We introduce a new class of models for a
logical theory, called supermodels, that captures this
idea. Supermodels guarantee that the model in ques-
tion is robust, and allow us to quantify the degree to
which it is so.

We investigate the theoretical properties of supermod-
els, showing that finding supermodels is typically of
the same theoretical complexity as finding models. We
provide a general way to modify a logical theory so
that a model of the modified theory is a supermodel
of the original. Experimentally, we show that the su-
permodel problem exhibits phase transition behavior
similar to that found in other satisfiability work.

Introduction
In many combinatorial optimization or decision prob-
lems our initial concern is to find solutions of minimal
cost, for example, a schedule with a minimal overall
length. In practice, however, such optimal solutions
can be very brittle. If anything out of our control goes
wrong (call this a “breakage”), repairing the schedule
might lead to a great increase in its final cost. If break-
ages are sufficiently common, we might well do better
on average to use a suboptimal solution that is more
robust. The difficulty with trading optimality for ro-
bustness is that robustness is difficult to quantify, and
especially difficult to quantify in a practical fashion.

In building definitions that are useful for quantifying
robustness, we need to be aware of the requirements of
both the users and the producers of robust solutions.
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A user of robust solutions might be motivated by two
distinct demands on the possibilities for repair:

1. Fast repair: A small set of changes must be re-
pairable in polynomial time.

2. Small repair: The repaired solution should be close
to the original model. In other words, it must be
possible to repair a small set of changes with another
small set of changes.

The condition of fast repair arises, for example, when
something goes wrong in a production line and halting
the line to perform exponential search might be far too
costly. Demanding that small flaws can be addressed
with small repairs is also common. A production line
schedule might involve many people, each with a dif-
ferent list of tasks for the day. Constantly changing
everyone’s task list is likely to lead to far too much con-
fusion. The ability to repair flaws with a small number
of changes is a goal in itself, independent of the fact
that this means repair is also likely to be fast.

As a producer of robust solutions, it might well be
helpful if the measure of robustness were independent
of the repair algorithm. An algorithm-independent
characterization of robustness is useful not only be-
cause of its greater simplicity, but because it might sup-
port the use of intelligent search methods to find solu-
tions with guaranteed levels of robustness. In contrast,
algorithm-dependent notions of robustness imply that
the search for robust solutions is likely to reduce to gen-
erate and test. This is because partial solutions might
not carry enough information to determine whether the
repair algorithm will succeed. For example, if we were
to use local search for repair, it is already difficult to
characterize the repairability of full solutions. Deciding
whether a partial solution will extend to a repairable
full solution might well be completely impractical. We
are not implying that algorithm independence is essen-
tial, only that it might be very useful in practice.

This paper introduces the concept of supermodels as
models that measure inherent degrees of robustness. In
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essence, a supermodel provides a simple way to capture
the requirement that “for all small breakages there ex-
ists a small repair;” that repairs are also fast will be
seen to follow from this. The supermodel definition
also has the advantage that the robustness is inher-
ently a property of the supermodel, and does not rely
on assumptions about repair algorithms.

We will also see that despite the simplicity of the su-
permodel concept, there appears to be a surprisingly
rich associated theory. Most importantly, there are
many different interrelated classes of supermodel char-
acterized by the amounts of breakage and repair that
are allowed. This richness of structure with various de-
grees of robustness allows us to propose a framework
under which robustness can be quantified, thereby sup-
porting an informed tradeoff between optimality and
robustness.

The first sections in the paper define supermodels
and explore some theoretical consequences of the defi-
nition. For satisfiability, finding supermodels is in NP,
the same complexity class as that of finding models.
We give an encoding that allows us to find a particular
kind of supermodel for SAT using standard solvers for
SAT. Using this encoding, we explore the existence of
supermodels in Random 3SAT, finding evidence for the
existence of a phase transition, along with the standard
easy-hard-easy transition in search cost.

Overall, the supermodel concept makes the task of
finding robust solutions similar to that of finding solu-
tions, rather than necessarily requiring special-purpose
search technology of its own.

Supermodel Definitions

A first notion of solutions that are inherently robust to
small changes can be captured as follows:

Definition 1: An (a, b)-supermodel is a model
such that if we modify the values taken by the vari-
ables in a set of size at most a (breakage), another
model can be obtained by modifying the values
of the variables in a disjoint set of size at most b
(repair).

The case a = 0 means that we never have to
handle any breakages, and so all models are also
(0, b)-supermodels. A less trivial example is a (1, 1)-
supermodel: This is a model that guarantees that if
any single variable’s value is changed, then we can re-
cover a model by changing the value of at most one
other variable.

We will typically take a and b to be small, directly
quantifying the requirement for small repairs. Def-
inition 1 also has a variety of attractive properties.
Firstly, if finding models is in NP, and if a is taken

to be a constant (independent of the problem size n)
then finding (a, b)-supermodels is also in NP. This is be-
cause the number of possible breakages is polynomial
O(na). Secondly, if b is a constant, finding the repair is
possible in polynomial time, since there are only O(nb)
possible repairs. These observations are independent of
the method used to make the repairs, depending only
on the bounded size of the set of possible repairs.

We thus see that with a and b small constants, (a, b)-
supermodels quantify our conditions for robustness and
do so without worsening the complexity class of the
problem (assuming we start in NP or worse).

In practice, the definition needs to be modified be-
cause not all variables are on an equal footing. We
might not be able to account for some variables chang-
ing their value: some breakages might simply be ir-
reparable, while others might be either very unlikely or
impossible, and so not worth preparing for. To account
for this, we use a “breakage set” that is a subset of the
set of all variables, and will only attempt to guarantee
robustness against changes of these variables. Simi-
larly, repairs are likely to be constrained in the vari-
ables they can change; as an example, it is obviously
impossible to modify a variable that refers to an action
taken in the past. We therefore introduce a similar
“repair set” of variables. We extend Definition 1 to

Definition 2: An (Sa1 , S
b
2)-supermodel is a model

such that if we modify the values taken by the vari-
ables in a subset of S1 of size at most a (breakage),
another model can be obtained by modifying the
values of the variables in a disjoint subset of S2 of
size at most b (repair).

It is clear that an (a, b)-supermodel is simply a (Sa1 , S
b
2)-

supermodel in which the breakage and repair sets are
unrestricted. We will use the term “supermodel” as a
generic term for any (Sa1 , S

b
2)- or (a, b)-supermodel.

Different degrees of robustness correspond to varia-
tion in the parameters S1, S2, a and b. As we increase
the size of the breakage set S1 or the number of breaks
a, the supermodels become increasingly robust. Ro-
bustness also increases if we decrease the size of the
repair set S2 or number of repairs b. Supermodels give
us a flexible method of returning solutions with cer-
tificates of differing but guaranteed robustness. As an
example,1 consider the simple theory p ∨ q. Any of
the three models (p, q), (¬p, q) and (p,¬q) is a (1, 1)-
supermodel. Only the first model, however, is a (1, 0)-
supermodel. The supermodel ideas correctly identify
(p, q) as the most robust model of p ∨ q.

1for which we would like to thank Tania Bedrax-Weiss.



Theory
Let us now restrict our discussion to the case of propo-
sitional theories, so that breakage and repair will cor-
respond to flipping the values of variables in the model
from true to false or vice versa. We also focus on (a, b)-
supermodels as opposed to the more general (Sa1 , S

b
2)-

supermodels, and so breakage or repair might involve
any variable of the theory.

We shall say that a theory Γ belongs to the class of
theories SUPSAT(a, b) if and only if Γ has an (a, b)-
supermodel. We will also use SUPSAT(a, b) to refer to
the associated decision problem:

SUPSAT(a, b)

Instance: A clausal theory Γ
Question: Is Γ ∈ SUPSAT(a, b) ?

We first prove that SUPSAT(a, b) is in NP for any
constants a, b. Given an instance of a theory Γ with n
variables, a nondeterministic Turing machine guesses
a model and a table of which variables to repair for
each set of variables flipped. The table has at most
na entries, one for each possible possible breakage, and
each entry is a list of at most b variables specifying the
repair. It is obviously possible to check in polynomial
time whether the assignment is a model and that all
the repairs do indeed work.

In principle, a supermodel-finding algorithm could
produce such a table as output, storing in advance
all possible repair tuples. This would take polynomial
space O(nab) and reduce the time needed to find the
repair to be a constant, O(a). In practice, however,
usage of O(nab) memory is likely to be prohibitive.

We also have:

Theorem: SUPSAT(1, 1) is NP-hard.

Proof: We reduce SAT to SUPSAT(1, 1).
Let the clausal theory Γ = C1 ∧ C2 . . . ∧ Cm

over n variables V = {x1 . . . xn} be an instance of
SAT. We construct an instance of SUPSAT(1, 1) as
follows: construct the theory Γ′ over n + 1 variables
V ′ = {x1, x2 . . . xn, α} where

Γ′ = (C1 ∨ α) ∧ (C2 ∨ α) . . . (Cm ∨ α)

and α is a new variable not appearing in Γ. We prove
that Γ has a model iff Γ′ has a (1, 1)-supermodel.

Suppose Γ had a model m. We construct a model
for Γ′ which will be a (1, 1)-supermodel. Extend the
assignment m to an assignment of Γ′ by setting α to
false. Clearly this assignment satisfies all clauses of Γ′.
Suppose now we flip the value of a variable in V ′. If
we flip the value of some variable in {x1 . . . xn}, we
can repair it by setting α = true. If instead we flip

the value of α from false to true, no repair is needed.
Hence this assignment is indeed a model of Γ′ such that
on flipping the value of 1 variable, at most 1 repair is
needed. Hence Γ′ ∈ SUPSAT(1, 1).

Next, suppose Γ′ ∈ SUPSAT(1, 1). By definition, it
has a model m. If α is false in m observe that the re-
striction of m to V = {x1, x2 . . . xn} is a model of Γ.
If α is true, flip it to false. Since Γ′ ∈ SUPSAT(1, 1)
we can repair it by flipping some other variable to get
a model where α remains false. Restricting the re-
paired model to V = {x1, x2 . . . xn} once again gives
us a model for Γ. Thus Γ is satisfiable. QED.

It follows immediately from the definition that

SUPSAT(a, b) ⊆ SUPSAT(a, b+ 1) (1)

and
SUPSAT(a+ 1, b) ⊆ SUPSAT(a, b) (2)

since b repairs suffice for up to a + 1 breaks, b repairs
suffice for up to a breaks. In many cases we can prove
that the inclusions in the above supermodel hierarchy
are strict.

It is easy to show that the inclusion (1) is strict.
i.e. SUPSAT(a, b) 6= SUPSAT(a, b + 1). For example
the following theory which consists of a chain of b+ 2
variables,

(x1 → x2)∧ (x2 → x3) . . . (xb+1 → xb+2)∧ (xb+2 → x1)

belongs to SUPSAT(a, b+1)−SUPSAT(a, b). The only
models of this theory are those with all b+ 2 variables
set to true or with all of them set to false. For any
set of a flips, we need at most b+ 1 repairs, hence this
theory is in SUPSAT(a, b+ 1). If one variable value is
flipped, we need exactly b + 1 repairs. Since b repairs
do not suffice, this theory is not in SUPSAT(a, b).

Using multiple chains and similar arguments, one can
prove that the inclusion in (2) is strict whenever a ≤ b.
In general, however, the question of whether or not (2)
is strict for all a, b is open.

Equations (1) and (2) induce a hierarchical structure
on the set of all satisfiable theories. This gives a rich
set of relative “strengths” of robustness with a fairly
strong partial order among them.

Finding (1,1)-supermodels
We have shown the task of finding (a,b)-supermodels
of a SAT problem to be in NP. It should therefore be
possible to encode the supermodel requirements on a
theory Γ as a new SAT CNF instance ΓSM that is at
most polynomially larger than Γ. In this section, we
do this explicitly for (1,1)-supermodels in SAT, so that
a model for ΓSM has the property that if we are forced
to flip any variable i there is another variable j that



we can flip in order to recover a model of Γ. In other
words, we will show how to construct ΓSM such that Γ
has a (1,1)-supermodel if and only if ΓSM has a model.
A model of ΓSM will be a supermodel of Γ.

We are working with CNF so Γ = ∧ aCa is a con-
junction of clauses Ca. The basic idea underlying the
encoding is to allow the assignment to remain fixed,
instead flipping the variables as they appear in the the-
ory.

Thus let Γi denote Γ in which all occurrences of
variable i have been flipped, and let Γij denote Γ in
which all occurrences of the variables i and j have been
flipped. Denoting the clauses with flipped variables
similarly, Γi = ∧ aCai and Γij = ∧ aCaij .

Now for a model to be a (1,1)-supermodel, if we flip
a variable i, one of two conditions must hold. Either
the model must be a model of the flipped theory, or
there must be some different variable j for which the
current model is a model of the doubly flipped theory.
Hence, we must enforce

∀ i. Γi ∨ ( ∃ j. j 6= i ∧ Γij) (3)

Converting this to CNF by direct expansion would
result in an exponential increase in size, and we there-
fore introduce new variables c and y that reify the
flipped clauses and theories:

cai ←→ Cai

caij ←→ Caij

yi ←→ Γi

yij ←→ Γij

These definitions are easily converted to a CNF for-
mula Γdefs via

¬yi = ∨ a ¬ cai

¬yij = ∨ a ¬ caij

The supermodel constraint (3) is now

∧ i (¬ yi ∨ ∨ j 6=i ¬ yij)

which is correctly in CNF. The complete encoding is

ΓSM = ∧ i (¬ yi ∨ ∨ j 6=i ¬ yij) ∧ Γ ∧ Γdefs (4)

If the original Γ had n variables and m clauses of
length at most k then ΓSM has O(mn2) variables, and
O(mn2k) clauses of length at most O(n).

As an example, consider once again the trivial theory
p ∨ q. The only clause is C0 = p ∨ q.

Flipping p, we get C0p = ¬p∨ q. Flipping both gives
C0pq = ¬p ∨ ¬q. For the defined variables, we have

c0p ↔ (¬p ∨ q)
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Figure 1: Probability of a Random 3SAT instance hav-
ing a (1,1)-supermodel.
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Figure 2: Easy-hard-easy transition at n=50. Time is
for relsat(4) (Bayardo & Schrag 1997). For compar-
ison we give the probability of finding a supermodel.

and similarly, together with ¬yp = ¬c0p and similarly.
The complete theory ΓSM can now be constructed us-
ing (4). Note also that the general construction can
easily be extended to (S1

1 , S
1
2)-supermodels simply by

restricting the allowed subscripts in the cai and yi.
Restricting a model of ΓSM to the original variables

will produce a (1,1)-supermodel of Γ. Since ΓSM is
just another SAT-CNF problem, we can solve it us-
ing a standard SAT solver. This solver itself need not
know anything about supermodels, and can apply in-
telligent search techniques that are likely to be signif-
icantly more efficient than would be the case if were
were to test for robustness in retrospect.

Phase Transitions

Phase transition, or “threshold”, phenomena are be-
lieved to be important to the practical matter of find-
ing solutions (Huberman & Hogg 1987, and others).
This is in part because of the similarities to optimiza-
tion: As we change the system, we change from many
to relatively few to no solutions, and the cost of finding
solutions simultaneously changes from easy to hard to
easy again. The average difficulty peaks in the phase
transition region, matching the intuition about finding
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are from the phase transition for satisfiability at n=50.

optimal solutions.
In this section, we briefly study the issue of super-

models and phase transitions for the case of Random
3SAT (Mitchell, Selman, & Levesque 1992). Instances
are characterized by n variables, m clauses, and a
clause/variable ratio α = m/n. There is strong ev-
idence that for large n, this system exhibits a phase
transition at α ≈ 4.2 (Crawford & Auton 1996). Below
this value, theories are almost always satisfiable; above
it, they are almost always unsatisfiable.

We first consider whether or not SUPSAT(a, b) has
similar phase transitions. Using the encoding of the
previous section, we studied the empirical probability
of Random 3SAT instances having a (1,1)-supermodel.
Figure 1 gives the results, leading us to expect a phase
transition at α ≈ 1.5. The apparent SUPSAT(1, 1)
transition thus occurs for theories that are very under-
constrained. As seen in Figure 2, the time needed to
solve the instances undergoes the usual easy-hard-easy
transition.

Consider next the possible existence of supermodels
at the satisfiability phase transition itself, α ≈ 4.2. We
have just seen that there will almost certainly be no
(1, 1)-supermodels at this phase transition. We also
know that as we approach the transition, the number
of prime implicates of the associated theory increases
(Schrag & Crawford 1996), until at the transition it-
self, we have many instances with large numbers of
unary prime implicates (UPIs) (Parkes 1997). Any
model must respect these UPIs: if a variable in a UPI
is changed then no repair is possible. Hence, any vari-
ables in UPIs must be excluded from the breakage set.
Since flipping the value of a UPI can never be involved
in a repair, these variables can also be excluded from
the repair set. The simplest choice is thus to look for
(Sa1 , S

b
2)-supermodels with

S1 = S2 = R = (V − {v|v or ¬v is a UPI})

Parkes called this set R the residual variables of the
instance. Looking for an (Ra, Rb)-supermodel is equiv-
alent to looking for an (a,b)-supermodel of the resid-
ual theory, which consists of the constraints remain-

ing on the residual variables after accounting for the
UPIs. Figure 3 shows that the residual theories tend
to have (1,1)-supermodels in the so-called single clus-
ter instances, instances with at least 80% UPIs. For
n = 50, 80% or more of the variables appear in UPIs
some 37% of the time.

The above experiments reflect two extremes. De-
manding full (1,1)-supermodels forced us into a very
underconstrained region. Conversely, instances from
the critically constrained region having many UPIs can
still have (Sa1 , S

b
2)-supermodels. In practice, it seems

likely that realistic problems will require solutions with
intermediate levels of robustness: not so robust as to be
able to cater to any possible difficulty, but sufficiently
robust as to require some sacrifice in optimality. The
framework we have described allows to quantify the
tradeoff between robustness and solution cost precisely.

Related Work

Since robustness has generally been viewed as a prop-
erty of the solution engine as opposed to a property of
the solutions, there has been little work on the develop-
ment of robust solutions to AI problems. Perhaps the
most relevant approach has been the attempt to use
optimal Markov Decision Processes (MDPs) to find so-
lutions that can recover from likely execution difficul-
ties.

Unfortunately, it appears2 that the cost of using
MDPs to achieve robustness is extreme, in the sense
that it is impractical with current technology to solve
problems of interesting size. This is to be contrasted to
our approach, where the apparent existence of a phase
transition suggests that it will be practical to find near-
optimal supermodels for problems of practical interest.

Of course, the supermodel approach is solving a sub-
stantially easier problem than is the MDP community.
We do not (and at this point cannot) consider the dif-
fering likelihoods of various failures; a possible break-
age is either in the set S1 or it isn’t. We also have no
general framework for measuring the probabilistic cost
of a solution; we simply require a certain degree of ro-
bustness and can then produce solutions that are opti-
mal or nearly so given that requirement. On the other
hand, our technology is capable of solving far larger
problems and can be applied in any area where satis-
fiability techniques are applicable, as opposed to the
currently restricted domains of applicability of MDPs
(planning and scheduling problems, essentially).

A changing environment might also be modeled as
a Dynamic Constraint Satisfaction Problem (DCSP)
(Dechter & Dechter 1988); what we have called a
“break” could instead be viewed as the dynamic addi-

2Steve Hanks, personal communication



tion of a unary constraint to the existing theory. The
work in DCSPs aiming to prevent the solutions chang-
ing wildly from one CSP to the next (e. g. (Verfaillie
& Schiex 1994, and others)) has similar motivations
to our requirement for “small repairs”, but DCSPs do
not supply a way to select solutions to the existing
constraints. Supermodels allow us to select the solu-
tions themselves so as to partially guard against future
changes of constraints requiring large changes to the
solution. Conversely, DCSPs can handle changes that
are more general than just one set of unary constraints,
although we expect that the supermodel idea can be
generalized in this direction.

MIXED-CSPs (Fargier, Lang, & Schiex 1996) allow
variables to be controllable (e. g. our flight departure
time) or uncontrollable (e. g. the weather). A system is
consistent iff any allowed set of values for the uncontrol-
lable variables can be extended to a solution by valuing
the controllable variables appropriately. While this has
some flavor of preserving the existence of models in the
presence of other changes, MIXED-CSPs do not require
that the model change be small: No attempt is made
to select a model so that nearby worlds have nearby
models. On a technical level, this is reflected in the
MIXED-CSP consistency check being ΠP2 -complete as
opposed to NP-complete for supermodels. Our obser-
vations about the phase transitions and reductions to
SAT also give us significant practical advantages that
are not shared by the MIXED-CSP approach.

Conclusions
This paper relies on two fundamental and linked ob-
servations. First, robustness should be a property not
of the techniques used to solve a problem, but of the
solutions those techniques produce. Second, the opera-
tional need for solutions that can be modified slightly to
recover from small changes in the external environment
subsumes the need for solutions for which the repairs
can be found quickly. Supermodels are a generalization
of the existing notion of a model of a logical theory
that capture this idea of robustness and that allow us
to quantify it precisely.

While the definition of a supermodel is simple, the
associated mathematical structure appears to be fairly
rich. There is a hierarchy of supermodels corresponding
to varying degrees of robustness. Searching for a super-
model is of the same theoretical complexity as solving
the original problem, and the experiments on finding
supermodels bear this out, revealing a phase transition
in the existence of supermodels that is associated with
the usual easy-hard-easy transition in terms of compu-
tational expense.

Experimental results suggest that finding fully ro-
bust supermodels will in general involve substantial

cost in terms of the quality of the overall solution. This
can be dealt with by considering supermodels that are
robust against a limited set of external changes, and we
can quantify the expected cost of finding such super-
models as a function of the set of contingencies against
which one must guard.
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