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Abstract 

In this paper we examine an important set of repre- 
sentation issues which have not been addressed by the 
model-based diagnosis community. In particular, we 
examine the problem of integrating a model-based di- 
agnosis system description, SD, with a theory of action 
to parsimoniously represent the effect of actions on a 
system and the effects of system state on performing 
actions in the world. We employ the situation calculus, 
a first-order language, as our representation language. 
In the context of the situation calculus, SD presents 
an, often complex, set of state constraints. These state 
constraints implicitly define indirect effects of actions 
as well as indirectly imposing further preconditions 
on the performance of actions. As a consequence, 
SD presents further complications to addressing the 
frame, ramification and qualification problems. For 
the purposes of this paper, we examine a syntactically 
restricted SD, which commonly occurs in the axiom- 
atization of model-based diagnosis domains. The con- 
tributions of this paper include: 1) a framework for 
integrating SD and a theory of action. 2) a proce- 
dure for compiling SD into a set of successor state 
axioms. These axioms capture the intended interpreta- 
tion of SD, while providing a closed-form solution to 
the frame and ramification problems. 

Introduction 
Of recent years, a number of researchers have argued that 
diagnostic problem solving (DPS) is purposive in nature, 
that in some instances, identifying candidate diagnoses is 
only relevant to the extent that it enables an agent to act 
- to execute a test, to repair a system, to control it, or 
perhaps to invoke a contingency plan. From this viewpoint, 
we claim that a comprehensive account of DPS must involve 
reasoning about action and change (McIlraith 1997). 

It is widely acknowledged that providing an accurate rep- 
resentation of the behaviour of an electro-mechanical device 
or physical system is one of the most challenging aspects 
of diagnostic problem solving (Hamscher, Console, & de 

*This work was carried out while the author was a doctoral 
student at the University of Toronto, Canada. 
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Kleer 1992). Indeed, any form of model-based reasoning 
is only as good as the model it employs. In this paper, we 
examine the problem of integrating a model-based diagno- 
sis system description, SD (de Kleer, Mackworth, & Reiter 
1992) with a theory of action, to parsimoniously represent 
the effect of actions on a system and the effects of a sys- 
tem on performing actions in the world. We employ the 
situation calculus (McCarthy 1968) as our representation 
language for action. In the context of the situation calcu- 
lus, SD presents an, often complex, set of state constraints. 
These state constraints implicitly define indirect effects of 
actions as well as indirectly imposing further preconditions 
on performing an action. Consequently, integrating SD and 
a theory of action requires us to address the frame problem 
- identifying and parsimoniously representing the situation 
invariants, the ramification problem - identifying the im- 
plicit effects of actions, and the qualification problem - 
identifying the conditions underwhich an action is possible. 

We begin our paper with an overview of the situation 
calculus. Next, we describe a method for representing a 
DPS domain in the situation calculus through a straightfor- 
ward transformation of SD, followed by the definition of 
action-related axioms. The axiomatization is illustrated via 
a power plant example. We adopt the view (e.g., (Reiter 
1991)) that successor state axioms and action precondition 
axioms provide an attractive solution to the frame and ram- 
ification problems, and the qualification problem, respec- 
tively, because they are parsimonious, axiomatic and mono- 
tonic. Nevertheless, we also show that previous solutions 
to the frame and ramification problems are not sufficiently 
discriminating to capture the intended interpretation of our 
domain axiomatization. The subsection entitled “A Closed- 
Form Solution”, describes our proposal for a closed-form 
solution to the frame and ramification problems for syntac- 
tically restricted state constraints, which occur commonly 
in DPS SD’s. The solution comprises a simple syntactic 
manipulation which compiles our DPS axiomatization into 
a set of successor state axioms, capturing the intended in- 
terpretation of our domain. We subsequently augment this 
compilation with an existing solution to the qualification 
problem. In the final sections we provide a brief discussion 
of our representation, outlining its use in achieving various 
DPS tasks, and contrasting it to related work. 
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Situation Calculus Overview 
The situation calculus language we employ to axiomatize 
our domains is a sorted first-order language with equality. 
The sorts are of type J! for primitive actions, S for situa- 
tions, and 2) for everything else, including domain objects 
(Lin & Reiter 1994). We represent each action as a (pos- 
sibly parameterized) first-class object within the language. 
Situations are simply sequences of actions. The evolution of 
the world can be viewed as a tree rooted at the distinguished 
initial situation So. The branches of the tree are determined 
by the possible future situations that could arise from the 
realization of particular sequences of actions As such, each 
situation along the tree is simply a history of the sequence 
of actions performed to reach it. The function symbol do 
maps an action term and a situation term into a new situation 
term. For example, do(tn-onpmp, SO) is the situation re- 
sulting from performing the action of turning on the pump in 
situation So. The distinguishedpredicate Poss(a, s) denotes 
that an action a is possible to perform in situation s (e.g., 
Poss(tn-onpmp, So)). Thus, Poss determines the subset of 
the situation tree consisting of situations that are possible in 
the world. Finally, those properties or relations whose truth 
value can change from situation to situation are referred to 
asfluents. For example, the property that the pump is on in 
situation s could be represented by the fluent on( Pmp, s). 

The situation calculus language we employ in this paper 
is restricted to primitive, determinate actions. Our language 
does not include a representation of time, concurrency, or 
complex actions, but we believe the results presented herein 
can be extended to more expressive languages. 

Axiomatizing a DPS Domain 
The axiomatization of a system comprises both domain- 
independent and domain-specific axioms. The domain- 
independent axioms are to be the foundational axioms of 
the discrete situation calculus, Cfozlnd (Lin & Reiter 1994). 
They define the branching structure of our situation tree. 
The domain-specific axioms, must specify both the be- 
haviour of the static system, and the actions that can affect 
the state of the system, as well as those actions required to 
achieve testing and repair. 

We take as our starting point the extensive research on 
model-based diagnosis (MBD) (Hamscher, Console, & de 
Kleer 1992) and assume a system description, SD. Our task 
is to provide an axiomatization that integrates this SD with a 
domain action theory. Our domain action theory is described 
in terms of situation calculus effect axioms, unique names 
axioms, and necessary conditions for actions (e.g., (Reiter 
1991)). In the rest of this section we describe a straightfor- 
ward four step procedure to axiomatize a DPS domain. In 
the section that follows, we provide a procedure for automat- 
ically transforming these axioms into a final axiomatization 
which addresses the frame, ramification and qualification 
problems. For the purposes of this paper, we restrict our 
attention to systems that are inherently static in nature but 
whose behaviour can change as the result of an action per- 
formed by an agent1 ~ 
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Illustrative Example 
The results in this paper are illustrated in terms of a simpli- 
fied power plant feedwater system drawn from (Kramer et 
al. 1996). The system consists of three potentially malfunc- 
tioning components: a power supply (Pwr); a pump (Pmp); 
and a boiler (Blr). The power supply provides power to 
both the pump and the boiler. The pump fills the header 
with water, (wat-enthdr), which in turn provides water to 
the boiler, producing steam. Alternately, the header can be 
filled manually ( mnl-fill). To make the example more in- 
teresting, we take liberty with the functioning of the actual 
system and assume that once water is entering the header. a 
siphon is created. Water will only stop entering the header 
when the siphon is stopped. The system also contains lights 
and an alarm. 
Example: We commence with a system description, SD: 

lAB(Pow) A lAB(Pum) A on(Pum) > wat-enthdr (1) 

mnl-f il l > wat-enthdl ca 

Axiom (1) states that if the power and pump are normal and 
if the pump is on, then water will be entering the header. 

Axiomatization Procedure 
Step 1. Transform SD into a set of situation calculus state 
constraints, TSC by indexing any predicate that can change 
as the result of an action with a situation term S. 

Example: Axiom (1) above becomes: 

lAB( Pwr, s) A -AB( Pmp, s) A on( Pmp, s) 

> wat-ent_hdr(s). 

Step 2. Distinguish the state constraints, TSC into: 
e T-am 7 the set of ramification constraints. 
e T&ml, the set of qualification constraints. 
8 Tdomain, those state constraints that are neither 

ramification nor qualification constraints. 
While we can provide no provably correct method for 

automatically differentiating the axioms of Tsc, experience 
has provided the following intuitions. 

Axioms that are causal or definitional in nature belong in 
T ram. In MBD terminology, these would include typical 
fault model axioms of SD as well as axioms of SD that 
describe the correct behaviour of a system (e.g., (de Kleer, 
Mackworth, & Reiter 1992)). Such axioms are often 
characterized syntactically by inclusion of an implication 
sign, e.g., 

A1A&A...AAk >A,, 

where each Ai is a literal with or without a situation term. 
The physical impossibility axioms of SD (Friedrich, Got- 
tlob, & Nejdl 1990), which describe physically impossi- 
ble states, should be included in Tqual. Physical impos- 
sibility axioms are often characterized syntactically as a 
negated conjunction of literals, e.g., 

-(AI A AZ A.. . A Ak). 

‘An agent can be another system, a robot, a human or nature. 



Example: The static behaviour of such a feedwater system 
can be represented by the following sets of axioms compos- 
ing TSC. T,,, is as follows: 

lAB( Pwr, s) A lAB( Pmp, s) A on(Pmp, s) 

> wat-ent-hdr(s) 

mnl-fiZZ( s) > wat-enthdr(s) 

AB( Pwr, s) > lights-out(s) 

lAB( Pwr, s) 1 llights-out(s) 

wat-ent-hdr(s) A lAB(Pwr, s) 

A -AB( BZr, s) A on(BZr, s) > steam(s) 

1 (wat-enthdr(s) A lAB(Pwr, s) 

A lAB(BZr, s) A on(BZr, s)) > lsteam(s) 

lwut-ent-hdr(s) A on(BZr, s) > alarm(s) 

AB(BZr, s) 1 alarm(s). 

T qual is as follows: 
l(on(Pmp, s) A mnZ_fizz(s)). 

Tdomain is as follows: 
Pow # Pum # Boi. 

(3) 
(4) 
(5) 
(6) 

(7) 

(8) 
(9) 

(10) 

(11) 

(12) 
Sltep 3. Identify the actions that can affect the system or that 
are required for testing, repairing, and reacting. Axiomatize 
them as effect axioms,;r,f ; necessary conditions for actions, 
T * and unique names for actions TUNA. nec7 
Step 3a. Tef , the set of positive and negative effect ax- 
ioms. These describe the changes in the truth values of 
fluents as a result of performing actions. For each fluent F, 

Poss(u, s) A y$(& a, s) > F(& do@, s)) (13) 
Poss(a, s) A ~;(z, a, s) > +(& do(u, s)) (14) 

where 7; (2, a, s) and ?F ( 2, a, s) are simple formulas2 
whose free variables are among 2, a, s. 
Example: The following axioms compose Tef. 

Poss(u,s) Au = tn-onpmp > on(Pmp,do(a,s)) (15) 

Poss(u, s) A a = tn-off-pmp > lon(Pmp,do(u, s)) (16) 

Poss(u, s) A a = tn-onblr > on(BZr, do(u, s)) (17) 

Poss(u, s) A a = tn-off-blr > lon(BZr,do(u, s)) (18) 

Poss(u, s) A a = pwr-fail > AB(Pwr,do(u, s)) (19) 
Poss(cz, s) A a = uux-pwr > lAB(Pwr, do(u, s)) (20) 

Poss(u, s) A a = pwr-f ix > lAB(Pwr, do(a, s)) (21) 

Poss(a, s) A a = pmp-burn-out > AB(Pmp, do(u, s)) (22) 

Poss(u, s) A a = pmp-f ix 1 lAB(Pmp, do(u, s)) (23) 

Poss(u, s) A a = bZr_blow > AB(BZr, do(u, s)) (24) 

Poss(u, s) A a = blr-f ix > lAB(BZr, do(u, s)) (25) 

Poss(u, s) A a = tn-on-mnZ_f iZZ > mnl-f iZZ(do(u, s)) (26) 

Poss(u,s) Au = tn-off-mnZ_fiZZ 

> TmnZ-f iZZ(do(u, s)) (27) 

Poss(u, s) A a = stp-siphon > lwut-ent-hdr(do(a, s)) (28) 

Poss(u, s) A a = tn-on-alarm 1 uZurm(do(u, s)) (29) 

Poss(u, s) A a = tn-of f_uZurm > luZurm(do(u, s)) (30) 

2A simple formula with respect to s is one in which only domain 
specific predicate symbols are mentioned (i.e., they do not mention 
Poss or <), in which fluents do not include the function symbol 
do, in which there is no quantification over sort situations, and 
in which there is at most one free situations variable. 

Step 3b. Tne,, the set of axioms representing the neces- 
sary conditions actions to be performed. For each action 
prototype, A, 

Poss(A@), s) > & (31) 

where ni is a simple formula with respect to s, whose free 
variables are among 2, s. 
Example: The following axioms compose some of T,,, . 

Poss( tn-on-pmp, s) (32) 
. . . 

Poss( tn-on-mnl-f ill, s) > luZarm( s) (33) 

Axiom (33) states that if it is possible to turn on the manual 
filling then the alarm must be off. 
Step 3~. TUNA, a set of unique names axioms for actions. 
They state that identical actions have identical arguments, 
and every action name refers to a distinct action. For each 
different action prototype A and A’, 

A(xl,... , xn) = $11,. . . , yn) 

>xl =yl A...Ax,=yn (34) 
I 

A(xI,... ,xn)#A (x1,...,xm) (35) 

Example: The following axioms compose some of TUNA. 

tn-on-pmp # tn-of f-pmp # . . . # tn-of f-alarm (36) 

Step 4. Provide what is known of the initial state, Ts,. 
Example: The following axioms might compose Ts,. 

lAB( Pwr, So) A TmnZ-f ill(&) A -AB( Pmp, So) (37) 

lwut_ent-hdr(&) A lon( BZr, SO) (38) 
lon( Pmp, 5’0) A lAB(BZr, So) (39) 

In the previous section, axiomatized a DPS domain. The 
resultant theory comprises the following sets of axioms: 

Tsc 'JTef UT,,, UTUNA UTs,. (40) 

The job of the axiomatizer is done, but unfortunately, these 
axioms do not provide a solution to the frame, ramification 
and qualification problems. In this section, we propose 
a solution to the frame and ramification problems for a 
typical class of DPS theories. The qualification problem is 
discussed in a subsequent section. 

(Lin & Reiter 1994) gave a semantic definition for a 
solution to the frame and ramification problems using cir- 
cumscription and minimal model semantics. This sol’ution 
has its limitations. Sometimes there is no minimal model. 
In other cases, there are multiple minimal models, some of 
which do not reflect the intended interpretation of the ram- 
ification and effect axioms. Most importantly, there is no 
guaranteed procedure to produce a closed-form solution. 

Our contribution is to provide an automatic procedure for 
generating a closed-form solution to the frame and ramifica- 
tion problems for a class of state constraints that is common 
to DPS domains. This solution is distinguished because it 
captures the intended interpretation of Tsc with respect to 
the theory of actions. 
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The Problem 
We illustrate our problem with a subset of the feedwater 
system example. Consider the ramification constraints, (3) 
and (4) above. The effect axioms, necessary conditions for 
actions and initial conditions are as defined in the previous 
section. Assume for the sake of simplicity that POSS(U, s), 

i.e., that all actions are possible in all situations. 
Assume the action tnaa-pmp is performed in SO, resulting 
in the situation S1 = do(tn_onpmp, SO) . From effect axiom 
(15), we infer that on(Pmp, S,). What do our ramification 
constraints tell us about the indirect effect of this action? 
IJnder Lin and Reiter’s minimization policy to maximize 
persistence, three minimal models3 are apparent. 

MI : {lAB(Pwr, SI), lAB(Pmp, SI), wat-enthdr(S~)} 

M:! : {AB(Pwr, S,), lAB(Pmp, S,), ~wa.t-enthdr(S~)} 

Mb : {~AB(Pwr, S,), AB(Pmp, S,), lwat-entJdr(S1)) 

Clearly, the intended model is Mr. Turning on the pump 
results in water entering the header. It does not result in 
an abnormal power supply, or an abnormal pump. We intu- 
itively know that this is the intended model, because we have 
a basic understanding of machinery. More importantly, the 
axiomatizer has communicated the intended interpretation 
through the syntactic form of the ramification constraints. 

In the context of reasoning about action and change, state 
constraints serve two purposes. On the one hand, they de- 
fine consistent states of our system, and the world. In this 
role, state constraints have traditionally been used to gen- 
erate model-based diagnoses. In the context of a theory 
of action and change, state constraints have an additional 
role. They also serve as ramification and qualification con- 
straints, indirectly constraining the effects of actions and 
further constraining the preconditions for actions. 

When employing the ramification constraints to infer the 
indirect effects of actions, the implication connective is in- 
terpreted as causal or dejinitional, in the logic programming 
sense. Following (Levi 1994), we say that a fluent is &firmed 
in an axiom or set of axioms if it appears on the right-hand 
side of an implication connective in that axiom or set of 
axioms. Thus, it follows that an effect axiom for fluent F 
also serves to define fluent F. 

If we assume that a fluent only changes value according 
to the effect axioms and the ramification constraints that 
define it, then the ramification constraints above only pro- 
vide information about changes in the truth value of fluent 
wut-enthh-( s). With this assumption, we can conclude that 
the consequence of performing tn_on-pmp in So is captured 
by model Ml. 

In the section to follow, we use the intuition above to gen- 
erate successor state axioms that reflect the intended inter- 
pretation of the ramification constraints and effect axioms, 
for a syntactically restricted class of theories. 

A Closed-Form Solution 
In this section we provide a closed-form solution to the 
frame and rami fication problems for axiomatizations whose 

3 We only list the relevant portion of the models here. 

syntactic representation of ramification constraints and ef- 
fect axioms, collectively form a solitary stratified theory. 

We combine the notion of solitary theory (Lifschitz 1985) 
and stratified logic program (e.g., (Levi 1994)) to define 
the notion of a solitary stratified theory. Note that unlike 
stratified logic programs, we use a strictly < relation to 
distinguish the strata of our theories. Intuitively, a soli- 
tary stratified theory is a stratified logic program that allows 
negation in the consequent. If such a theory were repre- 
sented as a dependency graph, the graph would have no 
cycles. The stratification of a solitary stratified theory need 
not be unique and we could write a procedure to determine 
a stratification automatically. 

Definition 1 (Solitary Stratified Theory) 
Suppose T is a theory in the language of the situation 

calculus with domainfluents, L. Then T is a solitary strati- 
fied theory with stratification (Tl , T2, . . . , T,), andpartition 
(G,&,...,L2) iJ; 
ofori = 1,. . ., n, .C, is the set effluents F, that are 

defined in stratum T,, and Cl u Cz u . . . u L, = .L, and 
QJ T is the union TI u TZ u . . . T, of sets of axioms T, where 

for each stratum, T, is solitary with respect to L,; i.e., 
each T, can be writtenas the union (IDA < -Lz)u(& 5 C,), 

1. L, is the set offuents, F, such that [-]Fz is dejined 
in T,; 

2. lJz 2 -C,, isasetofformulaeoftheform (Dz 1 -F,), 
- at most one for each fluent F, E C,. Each D, is 
a formula containing noJEuents drawn from C, u . . . 

u .c,. 

3. C, 5 L,, is a set offormulae of the form (E, > F, ), 
- at most one for each fluent F, E .Cc,. Each E, is a 
formula containingnofluentsdrawnfrom C,U.. .uC,. 

Example: In our feedwater example, T = T,,, u TCf is a 
solitary stratified theory with stratification (Tl, Tz, T3). 
e Tl comprises Effect Axioms (15) - (27), 
e TZ comprises Ramification Constraints (3) - (8), 

and Effect Axiom (28). 
o T3 comprises Ramification Constraints (9) - (lo), 

and Effect Axioms (29) and (30). 
In what follows, we define a seven step syntactic manip- 

ulation procedure which results in a closed-form solution to 
the frame and ramification problems for solitary stratified 
theory T = T,f U TTam. The solution is predicated on an 
appeal to a completeness assumption which enables us to 
generate explanation closure axioms. 

Transformation Procedure 
Let T = Tram U Tef be a solitary stratified theory, with 
stratification (Tl , T2, . . . , T, ) . 

Step 1. For every fluent Fi defined in an effect axioms of 
Ti, generate general positive and negative effect axioms, in 
the form of axioms (13) and (14) above. 

Step 2. For every fluent Fi defined in a ramification con- 
straint of Ti, generate general positive and negative ram- 
ification axioms, relativized to situation (do( a, s)). 
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v~z(do(a, s)) 3 Fi(dO(% s))4 (41) 

v;* (do(u, s)) 3 +i(q~, s)) (42) 

v; (qa, 4) and WF (do(a, s)) are formulae whose free 
variibles are among a, ‘s, and any state or action arguments. 

Step 3. Combine the above sets of axioms, to define ex- 
tended positive and negative effect axioms, at most one 

Gz - r$ (a, s> v us, (d4-T 4) 

v (F(s) A -(rF* (a7 s> v VF, (do(a, 4))) 

The set of intermediate successor state axioms, TISS = 
Ukl . ...72 =m 7 where T’ss, is the set of axioms for every 
fluen; I$ E Li. 
Example: Intermediate successor state axioms for fluents 
~n(Pmp,do(~,s)) and wut-ent-hdr(do(u, s)) fOllOW. 

for every fluent Fi. 

Poss(a, s> A (Y& (a, 4 v v& @(a, s))) 3 E(do(a, 4) (43) 

Poss(u,s) > [on(Pmp,do(u,s)) G a = tn-on-pmp 

V (on(Pmp, s) A a # tn-offpmp)] 

Poss(a, s> A (Y&4 4 v vi* (do(a, s))) 3 +i(do(a, s)) (44) 

Example: Extended positive and negative effect axioms for 
the fluent (on(Pmp, do(u, s)), defined in Tl. 

Poss(u, s) A a = tn-onpmp > on(Pmp, do(u, s)) (45) 

Poss(u, s) A a = tn-of f-pmp > lon(Pmp, do(u, s)) (46) 

For the fluent wut-enthdr(do(u, s)), defined in T2. 

(lAB(Pwr, do(u, s)) A lAB(Pmp, do(u, s)) 

A on(Pmp, do(u, s))) V mnl-fiZZ(do(u, s)) 

> wut-ent-hdr(do(u, s)) (47) 

Poss(u, s) 3 [ wut-ent-hdr(do(u, s)) F 

mnl-fiZZ(do(u, s)) 

V (lAB(Pwr, do(u, s)) A lAB(Pmp, do(u, s)) 

A on(Pw, do(a, 4)) 
V wut-enthdr(s) A a # stp-siphon] (51) 

Step 7. By regressing5 the intermediate successor state 
axioms, generate (final) successor state axioms. These ax- 
ioms are simple formulae containing no reference to fluents 
indexed by the situation do(a, s). For every fluent F;, 

Poss(a, s) > [Ft(do(a, s)) - QF,] (52) 
Poss(u, s) A a = stp-siphon 

> lwut-ent-hdr(do(u, s)) (48) 

Step 4. Make the following completeness assumption re- 
garding the effects and the ramifications. 
All the conditions underwhich an action a can lead, directly 
or indirectly, tojuent F becoming true or false in the suc- 
cessor state are characterized in the extended positive and 
negative efect axioms forfluent F. 

Step 5. From the completeness assumption, generate ex- 

where a~, is the following simple formula. 

@F* - r;, (a, s> v R&l iv’, tdoh s>)l 
V (F(s) A +rF, (a, s> V %ii1~2’F, (dota, s))])) 

where R”,-,’ [4] is the regression of formula 4 under succes- 
sor state axioms TSS, , . . . , Tss,-, . 

The set of successor state axioms, TSS = Uizl 
where TSS, is the set of axioms for every fluent bi 

Tss, 3 
‘g Li. 

Example: Transformation of intermediate successor state 
axiom (51) into its corresponding successor state axiom. 

planation closure axioms. 
We argue that if action a is possihle in s and if the truth 

value of fluent Fi changes from true to false upon do- 
ing action a in situation s, then either yi, (a, s) is true or 

Poss(a,s) 3 [ wut-ent-hdr(do(u, s)) E 

a = tn-on-mnl-fill 

V (mnZ-fiZZ(s) A a # tn-off-mnZ-fiZZ) 

G. (%a, 4) - t 
k6en the truth value of fluent F changes from false to 
true upon doing action a in situation s. This assumption is 

1s rue. An analogous argument can be made 

captured in the following positive and negative explanation 
closure axioms. For every fluent Fi, 

V [(a # pwr-fail 

A (lAB(Pwr, s) V a = uux-pwr 

V a = pwr-fix)) 

A (u # pmp-burn-out 

Poss(u,s) A E(s) A +@+,s)) 3 Y&J,~) “VF,@‘(d) 

Poss(u, s) A +,(s) A E(d+, s)) 3 -~$~(a, s) V v&&‘h S>) 

Step 4. From the extended positive and negative effect 
axioms and the explanation closure axioms, define inter- 
mediate successor-state axioms for each fluent Fi . 

We distinguish them as intermediate because, in the next 
step, we simplify them through a further syntactic transfor- 
mation. For every fluent Fi, 

A 

V (wut-ent-hdr(s) A a # stp-siphon)] 

Our successor state axioms provide a closed-form solu- 
tion to the frame and ramification problems. Since we have 

5Regression (e.g., (Waldinger 1977)) is a recursive rewrit- 

A (lAB( Pmp, s) V a = pmp-f ix)) 

(a = tn-on-pmp 

V (on( Pv, s) A a # tn-of f -pmp))] 

(53) 

Poss(u,s) > [F,(do(u, s)) G @;,I (49) 

4 Henceforth, action and state arguments,Zwill not be explicitly 
represented in canonical formulae. 

ing procedure used here to reduce the nesting of the do func- 
tion in situation terms. If F is a fluent with successor state 
;ion;F~oss(u,s) > F(C?, do(u, s)j, E (PF in TSS then 

ss I,..., trod+, o))] = @F I,,,:-..,:nn,;$ 
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compiled Tef and T,,, into T’,s, we can replace T,f and 
T ram by TSS and Tfzrn in (40). Tzrn is the set of ramifica- 
tion constraints, relativized to So. Note that our closed-form 
solution to the frame and ramification problem loosely ap- 
peals to a completeness assumption in order to generate 
explanation closure axioms. In (McIlraith 1997), we pro- 
vide an independent semantic justification via prioritized 
circumscription. From those results we show that our so- 
lution is predicated on the following consistency condition. 
In particular, that 

TUNA U T,,, I= (vu, s).Poss(u, s) > 

‘[(Y$, (a, 4 ” RssbS* w4~~ s)>l> 
A (YF, (u, 4 ” %Tb;* (do(a, s)>l>l. (54) 

This condition ensures that either an action is impossible, or 
if it is possible, that it is never the case that the direct effects 
or ramifications of an action(y’s and v’s, respectively) can 
make a fluent both false and true in the same situation. 

Qualification Prob 
Our theory now provides a solution to the frame and ram- 
ification problems. It remains to address the qualification 
problem. As previously observed the qualification con- 
straints in Tqual can further restrict those situations s in 
which an action a is Pass-ible. We propose to use the 
solution proposed by (Lin & Reiter 1994). It transforms 
the necessary conditions for actions, T,,, and the qualifi- 
cation constraints, Tqual into a set of action precondition 
axioms TAP, one for each action prototype A of the do- 
main. Following their results, we add one more step to our 
transformation procedure. 

Step 8. Define one action precondition 
action prototype A as follows. 

axiom for each 

Poss(A@), s) G nA A A & (55) 
CET,U,l 

II, = Rs+s[C(do(A(~), s))] (56) 

aA r?&“... v nz for each 7r> of (31) in Tnec. Rss is the 
regression operator under the successor state axioms, Tss . 

Example: Consider (11) of T&Z, and (33) and (32) of 
T n.ec I the action precondition axioms for tn-on-m&-f ill and 
tn-onpmp are: 

Poss( tnon-mnl-fill, s) E xxZurm( s) A lon( Pmp, s) (57) 

Poss(tn-onpmp, s) E TmnZ-fill(s) (58) 

The action precondition axioms provide a closed-form 
solution to the qualification problem. Since we have com- 
piled T,,, and Tqual into TAP, we can replace Tnec and 
T qua1 by TAP and T4”2eal in our theory. Lin and Reiter’s 
solution also requires a domain closure axiom for actions, 
TDCA. 

Discussion 
The results of the previous sections yield the following the- 
ory which integrates SD and a theory of action, 

TUNA U TDCA UTssU TAPUTS~ UT:; uTdomatn. 

This representation can be viewed as an executable spec- 
ification because it is easily realized in Prolog by exploit- 
ing Prolog’s completion semantics and simply replacing the 
equivalence signs by implication connectives. The Lloyd- 
Topor transformation (Lloyd 1987) must then be applied to 
convert this theory into Prolog clausal form. 

The state constraints that play the role of ramification 
constraints with respect to our theory of actions are com- 
piled into successor state axioms, one for every fluent in our 
theory. When state constraints are absent, as in the case of 
Reiter’s solution to the frame problem (Reiter 1991), suc- 
cessor state axioms provide a parsimonious representation 
for frame and effect axioms. In the presence of ramifi- 
cation constraints, the successor state axioms can, under 
certain conditions, grow exceedingly long. This presents 
the problem of trying to find the best trade-off between pre- 
compilation and runtime computation; a problem that many 
AI researchers face, and one that is often best addressed 
with respect to the specific domain. Fortunately, in our case 
we have an ideal compromise in those cases where T’s 
proves to be unwieldy, that is to employ the intermediate 
successor state axioms as our representation. The axioms in 
TESS capture the intended interpretation of our domain but 
are only partially compiled, and thus don’t risk the length 
concerns associated with the axioms in TSS. Further, TISS 
preserves the compositionality of our representation, which 
is a hallmark of model-based representations. 

The purpose of this paper was to address the knowledge 
representation issues associated with integrating a DPS sys- 
tem description and a theory of action. In (McIlraith 1997) 
we used this representation to characterize the tasks of diag- 
nosis, testing, and repair. Integrating a theory of action with 
SD provides for a broad definition of diagnosis. The tradi- 
tional notions of consistency-based and abductive diagnosis 
map seemlessly into our representation framework, with 
the distinction that diagnoses are now relativized to a situa- 
tion. Further we can employ actions both as observations to 
project what will be wrong with a system, and as diagnoses 
to explain what has happened to result in some observed 
behaviour. Computationally, many aspects of diagnosis, 
achieving tests, and achieving repairs are simply instances 
of the planning problem, and can be achieved through some 
combination of logical consequence finding, database pro- 
gression, regression, theorem proving, and abductive plan- 
ning techniques. That said, computing diagnoses without a 
representation of action is already computationally taxing. 
The real challenge is to exploit the benefit of our rich declar- 
ative representation and to approach DPS differently. We 
believe that part of the answer to this challenge lies in the 
purposive nature of DPS, and in exploiting our representa- 
tion to generate and/or verify high-level control procedures 
that can in turn provide timely runtime response to our DPS 
problems. 
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Contributions and Related Work 
This paper provides research contributions in two rather 
distinct areas: model-based diagnosis/qualitative reason- 
ing, and knowledge representation/nonmonotonic reason- 
ing. For the MBD community, this paper addresses an im- 
portant representation issue, namely how to integrate SD 
with a theory of action. For the knowledge representation 
community, this paper contributes a semantically justified, 
closed-form solution to the frame, ramification and qualifi- 
cation problems, for a commonly occurring class of theories. 

The author knows of no work in the diagnosis commu- 
nity that addresses the problem of integrating SD and a 
theory of action, save some preliminary work in (Forbus 
1989), examining the problem of integrating actions and 
qualitative process theory. Forbus’ action-augmented envi- 
sionment, (AZ) captures computationally some aspects of 
the intuition found in this paper, while neglecting to address 
a number of fundamental knowledge representation issues. 
It is interesting to note that the ATMS, the computational 
machinery that underlies the qualitative process engine, can 
provide a runtime mechanism for compiling and caching a 
relevant subset of the closed-form representation proposed 
here. While we do not discuss continuous systems in this pa- 
per, the work presented here provides a formal foundation 
for integrating continuous systems with discrete systems 
whose specification includes state constraints. 

Within the knowledge representation community, related 
work is more abundant. The intuition behind our solu- 
tion to the frame and ramification problems - the notion 
of interpreting our ramification constraints as definitional 
in nature, was influenced by research on the semantics of 
normal logic programs and deductive databases (e.g., (Przy- 
musinski 1989)), and is related to preliminary work on this 
problem by Pinto (Pinto 1994). Indeed the spirit of this 
solution - the notion of imposing a directional interpreta- 
tion on our implication connective in our ramification con- 
straints, is akin to the intuition behind proposed solutions 
to the ramification problem that advocate minimizing an 
explicitly represented notion of causality (e.g., (Lin 1995) 
(McCain & Turner 1995), (Thielscher 1995), (Giunchiglia 
1996)). Indeed the author suspects that for the syntacti- 
cally restricted case studied here, all our different proposed 
solutions may produce the same results, just as many of 
the independent solutions to the frame problem prove to be 
identical under certain conditions. What distinguishes this 
work in particular is that it provides an axiomatic closed- 
form solution; it retains the dual role played by our state 
constraints; and finally it provides a solution (sometimes) 
to the general problem of integrating a theory of action with 
an existing set of state constraints. 
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