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AbStXlWt 
Some simple assumptions about prior ignorance, and the 

idea that a sticiently arresting contrast in the likelihoods 
of evidence will elicit belief that one proposition is at least 
as belief-worthy as another, lead to a partial ordering of 
propositions without the use of any hind of prior 
probability. The partial ordering is mt a posterior 
probability distribution, but does share some intuitively 
pleasing properties of a probability, such as 
complementarity. Deciding the order (if any) between two 
disjunctions depends only on the highest likelihood disjunct 
in each, and so query handling in partitioned domains is 
efficient. In the event that an ordinary probability 
distribution is required for coherent decision making one 
can be quickly calculated from the partial order. 

Introduction 

Z&mmznce is the unwillingness to order any of two or more 
sentences according to their belief-worthiness, unless one 
sentence implies the other. The unwillingness may be a 
matter of choice, as when a scientist wishes to interpret 
evidence about rival hypotheses without taking into account 
any personal views about the prior likeliness of the various 
rivals (Berger and Berry 1988). Other times, the 
unwillingness may be involuntary, as when there is no 
simply no basis for holding any opinion about the relative 
likeliness of the sentences in question. 

However it arises, ignorance is not fkithfully represented 
by any single probability distribution over the sentences. 
Whatever probabilities are assigned to the sentences, those 
probabilities are ordered with respect to one another, even 
though the sentences themselves generally are not. (For 
discussion of similar problems when representing ignorance 
in other uncertainty calculi, see Shenoy 1993.) 

The approach developed in this paper avoids the 
assessment of a prior probability distribution under 
ignorance. Nevertheless, the emergence of ordered belief 
from prior ignorance retains a distinctly probabilistic flavor. 

Notation and Assumptions about orance 

The notation 

S >e> T 

will denote the condition that the believer asserts that 
sentence S is, with a warrant satisfact the believer, at 
least as belief-worthy as sentence Tin of evidence e. If 
evidence e does not lead the believer to assert such an 
ordering of sentences S and T, then we write 

S ?e? T 

Note that this is distinct from asserting the condrary of 
S >e T, which would be holding that S is less belief 
worthy than T. The condition of having no relevant 
evidence is indicated by the particle d, as in 

S ?I#? T 

which expression denotes that there is no ordering between 
some sentences S and Tin the absence of evidence. 

We assume that the sentences of interest belong to a 
partiti domain, which is defined as follows: 

Btbinition. A partitioned domain is a set comprising: 

(i) the always-true sentence, denoted true 

(ii) the always false sentence, denoted false 

(iii) two or more mutually exclusive sentences, called atoms 

(iv) well-formed expressions involving atoms, or, and 
parentheses, called simple tdbjtmctiom 

rmed expressions involving simple disjunctions, 
or, not, and parentheses 

We shall also assume throughout that the atoms in the 
domain are collectively exhaustive, that is, exactly one of 
the atoms is true. This additional assumption places little 
epistemological burden on the believer (at worst, it means 
that one of the atoms is “none of the other atoms are true”), 
and has the convenient effect that every sentence in the 
domain has an equivalent simple disjunction. 
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Cur first assumptions about ignorance, and the conquest 
of ignorance by evidence express the following ideas. If no 
evidence has yet been observed, and the question of relative 
belief-worthiness is not answerable on logical grounds, then 
there is no satisfactory warrant to order one sentence ahead 
of another. Even after evidence has been observed, the 
question may remain open. Once a commitment to an 
ordering is made, then other commitments may be inferred 
by conditional probability considerations, or by a 
fundamental belief-ordering consistency principle of the 
kind discussed by Sugeno (unpublished dissertation, cited in 
Prade 1985). The formal assumptions are: 

Al. (Lack of explicit non-trivial prior orderings) For any 
sentences S and T, 

S>nil>T impliesthatTimpliesS. 

A2. (Lack of implicit non-trivial prior orderings) Values for 
conditional probabilities and orderings among them are 
neither known nor assumed if those values or orderings 
imply non-trivial constraints on the prior probabilities. 

A3. (Consistency) For all evidence e, includiig nil, and any 
sentences S, S’, T and T’, 

if S’ implies S, then S >e> S’; 

ifS’impliesSandS’>e>T,thenS>e>T; 

if T’ implies T and S Be> T, then S >e> T’. 

A4. (Impartiality) If S >e> T, and S’ and T’ are sentences, 
and S is exclusive of T , then 

ifS*isexclusiveof Tandp(eI S’)>=p(ej S), 
then S’ >e> T, and 

ifSisexclusiveof T’andp(e(T)>=p(e(T’), 
then S Be> T’. 

A5. (Recovery from ignorance about atoms) For exclusive 
atoms s and t, and non-nil evidence e where p( e 1 s ) > 0, a 
necessary and sufficient condition for s >e> t is that 

ftv,W= 9 P=ll 
where q is a real number chosen by the believer, and f( , , ) 
is a real-valued function chosen by the believer which is 
increasinginp(e~s)anddecreasinginp(ejt),andsuch 
that a necessary condition for [As. l] to hold is that p( e I s ) 
isstrictlygreaterthanp(eIt),andsuchthatp(ejt)=Ois 
not a necessary condition for [A5.1] to hold. 

Ad. (Quasi-add&iv@) For any sentences S, T, and U where 
( S and U ) and ( T and U ) are both fkdse, and for all 
evidence e, including nil, 

SorU>e>TorU ifandonlyif S>e>T 

An Inference Rule for Overcoming Ignorance 
III Simple Disjunctions 

Assumptions A3 and A4 have a strong consequence when 
the propositions of interest belong to a partitioned domain. 
It is easy to show that ifD is a simple disjunction, then the 
conditional p( e I D ) is a convex combiition of the 
p( e 1 d )‘s, the conditionals for the evidence given each of 
the atoms within D. Thus, 

WlW =< qinmWd) Ill 

eorem 1. Let S and T be simple disjunctions which are 
mutually exclusive, and let s and t be atoms where p( e I s ) 
and p( e ] t ) are the greatest conditional probabilities for 
non-nil evidence e given atoms in S and T respectively. 

S a+ T ifand only if s >e> t. 

of. S >e> T implies s >e> T by A4 and [l], which 
implies s >e> t by A3. Conversely, s >e t implies s >e> T 
by A4 and [l], which implies S be> T by A3. N 

The theorem and assumption A5 lead to the following 
rule for deciding whether observed evidence e bearing on 
the states supports the assertion of S >e> T under certain 
circumstances: 

rence Rule. If S and T are simple disjunctions with no 
statesincommon,andifsandtaresuchthatp(ejs)and 
p( e I t ) are the greatest conditional probabilities for the 
evidence e given any atom in S and T respectively, then a 
sufficient condition for S >e> T is that f( e, s, t ) * q, 
where f( , , ) and q are as described in assumption A!% 

This inference rule is strong enough by itself to handle 
problems like statistical hypothesis testing, where typically, 
disjoint propositions are compared, and often only one pair 
of propositions in a domain is of interest at any one time. 
Some further development to be introduced later will use 
the rule in a decision procedure which is applicable to all 
non-trivial ordering questions in partitioned domains. 

efinition. A partial qu&ata~w probability is a p 
order of the sentences in a partitioned domain, such that, 
for all evidence e, including nil, and any sentences S, T, and 
u: 

(i) (boundedness) true >e> S and S >e> false 

~;$$titity) ( S >e> T ) d ( T >e> U ) implies that 

(ii) (quasi-additivity) if S and U and T d U are both 
false, then 
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(SorU)>e>(TorU)ifandonlyifS>e>T. 

This definition is designed to echo that of an ordinary 
qualitative probability (de Finetti, 1937), difkring only in 
beii a partial, rather than a complete, ordering. 

Within a partial qualitative probability, any ordering 
question involving simple disjunctions can be resolved by 
the theorem and the inference rule. To decide whether 
S>e>T: 

(1) Eliminate fiorn S and T all the atoms common to both, 
leaving S’ and T’. 

(2) If S* and T* are both empty, then S>e T; if S* is 
empty and T* is not, then not ( S >e> T ); if T* is empty 
and S* is not, then S >e> T. Otherwise, apply the Inference 
Rule derived from Theorem 1 to S* and T*; S >e> Tjust in 
case S* >e T*. 

Partial qualitative probabilities also share an intuitively 
appealmg property with ordinary probability distributions: 

2. (Complementarity) If S and T are simple 
disjunctions, and “>e” is a partial qualitative probability, 
then 

S >e> T implies uot(T)>e>not(S) 

Proof. Let C be the disjunction of atoms common to S and 
T, S’ be the atoms in S and not in T, and T’ be the atoms in 
T and not in S. Then by quasi-additivity, S’ >e> T’. Let Q 
be the disjunction of atoms not in S and not in T. soot ( S ) 
is T’ or Q, and not ( T ) is S’ or Q. Since S’ >e> T’, then by 
quasi-additivity, ( S’ or Q ) >e> ( T’ or Q ), or not ( T ) 
%P not ( S ). // 

rdering Satis@ Al-A6 is 
ualitative Probability 

Lemma. If A, B, C, and D are simple or empty (containing 
no atoms except those that are false given the evidence) 
disjunctions, and there is no atom in common between A 
and B, nor any atom in common between C and D, then 

AhPBandC>e>D implies (AorC)>e>(BorD) 

Proof. If ( B or D ) implies ( A or C ), then the required 
ordering holds. Suppose that is not the case. If B is empty 
or D is empty, then the lemma is trivial. If A is empty, then 
B is empty, and if C is empty, then D is empty [A3]. 
Suppose none of them are empty. For orderings to be 
asserted, evidence must be non-nil. Let a, b, c, and d be the 
atoms such that p( e I atom ) is greatest among atoms in A, 
B, C, and D respectively. 

WOLG, suppose that p( e I a ) >= p( e I c ). Let AC and 
BD disjoin the atoms that are peculhu to (A or 6) and 

(B or D) respectively. By AS and theorem 3, f ( e, c, d ) >= 
q, and since the diction is increasing in p( e I second 
argument),f(e,a,d)>=q.Sincef(e,a,b)>=qaswell, 
then a X+ [the atom in 8~ D) with the greatest 
p( e I atom )]. By AS, s a and d have different 
p( e I atom )(s, and so they must be distinct, and a must be 
distinct from all other atoms in D for the same reason; a is 
distinct fkom all atoms in B by hypothesis. So, a is in AC. 
BD is not empty, because we suppose no implication, so 
theorem 3 applies. The required ordering follows fkom A6. 
N 

that the property proven in the lemma is generally 
in conventional probabilistic reasoning systems. 

holds for systems satis&@ Al-A6 is closely related 
to theorem 3 and the inference rule. In the absence of prior 
information or logical grounds to resolve the question, what 
matters in the comparison of sentences is the best- 
supported atom peculiar to each sentence. Thus, even 

A QP C may have atoms in common with B .~r D, 
this does not disrupt the ranking of their best-supported 
atoms (unless there are no atoms peculiar to each sentence, 
in which case, the order is logically determined). 

exwem 6. Any ordering satis@ing 
a partial qualitative probability. 

assumptions Al-A6 is 

oundedness: Since false implies S, so S Be> 
by A.3, and since S implies e%+SbyA3. 

Qu~~additivi~: Assumption A6. 

~ra~si~i~: Let A be the disjunction of the atoms 
common to each of S, T, and U, B the atoms common to S 
and T alone, C those common to S and U alone, D those 
for T and U alone, and S*, T*, and U* those atoms unique 
to S, T, and U respectively. If e is nil, then T implies S and 
U implies T, so U implies S, and transitivity holds. 
Suppose, then, that e is not nil. Let a be the maximum 
conditional probability for e among the atoms of A, and b, 
c, d, s, t, and u be the corresponding quantities for B, C, D, 
S*, T*, and U*, respectively. 

By quasi-additivity, we have S >e T implies C or S* >e> 
D or T*. Similarly, T >e> U implies B or T* >e> C or U*. 
We wish to show that B or S* >e> D or U*. Since C or S* 
and D or T* have no atom in common, and nor do B or T* 
and C or U*, we apply the lemma to get 

CorS*orBorT* >e>DorT*orCorU* 

which by quasi-additivity simplifies to 

BorS*>e>DorU* 

as required. II 
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A Note o 

In the assumption, we required that p( e I s ) be strictly 
greater than p( e 1 t ) in order for s >@ t to hold when 
p( e I s ) is positive. We now present an example where if 
AS called for a weak inequality, then the resulting ordering 
would fail to be a partial qualitative probability. 

All letters are as in the transitivity portion of the proof of 
the theorem of the last section, and once again, we have 
S >e T and T Be> U. An assignment of values for the 
atomic conditional probabilities consistent with this, and the 
modification of AS to allow ordering assertions on weak 
inequalities, is: 

d = S, s = .4, u = .S, b = .4, t = .6, and c = .6 

It is easy to confirm that under a weak inequality rule, 
C or S* >e> D or T*, the quasi-additive condition for 
S %P T, and B or T* Be> C or U*, the condition for 
T >e> U. If the ordering is transitive, then S >e> U, and if 
it is quasi-additive, then B or S* >e> D or U*, so by 
theorem 3, it must be that either b or s is no smaller than 
both d and u. Neither is the case, since b is less than d or u, 
and so is s. 

ion of Priors eliefs 

A partial qualitative probability ordering possesses many 
of the intuitively appealing properties of a probability 
distribution. Nevertheless, it lacks the coherence of beliefs 
thought to be demanded in practical decision making 
problems, and provided by probability distributions (Lindley 
1982), or in weaker form by set estimates (Kyburg and 
Pittarelli 1992). 

Faced a similar conflict between the demands of modeling 
beliefs with Dempster-Shafer-style belief functions and the 
demands of coherence in action under risk, Smets (et al. 
1991; Dubois et al. 1993) has proposed a two-tier system 
of belief representation, his “Transferable Belief Model”. 
Up until action is required, beliefs are represented by the 
less-than-fully coherent D-S formalism (Smets’ “credal” 
phase). Once action is called for, the original formalism is 
mapped onto a probability distribution, and that probabiity 
is used for decision making (Smets’ “pignistic” phase). Once 
called into action, the probability distribution is also subject 
to revision in the face of further evidence using Bayesian 
methods. 

At some point, therefore, the user of the ignorance 
representation may find it expedient to convert the 
orderings revealed by the evidence into an ordinary 
probabiity estimate, to use that estimate for decision 
making, and to apply further evidence to it using Bayes’ 
theorem in the usual way. 

Because of the restricted form of possible orderings 

consistent with theorem 1 and partial qualitative probabiity, 
it is quite tractable to use the asserted orderings to derive a 
usefbl “surrogate” probability distribution when the number 
of atoms in the domain is finite. It is generally impossible to 
have a truly agreeing single probability distribution, i.e., 
some distribution in which p( S I e ) >= p( T I e ) if and 
only if S >e> T. That’s because any probability distribution 
is a complete ordering’ rather than the partial ordering that 
arises from the assumptions. But it is easy to compute a 
probability distribution where for every S >e+ T, the 
probabilities are ordered p( S I e ) >= p( T I e ). 

The permissible orderings entail a single system of 
simultaneous linear constraints, each (apart from the total 
probability constraint) either of the form 

p(s)>=c 

(for atoms s where there is no distinct atom t such that 
s >0 t) where c is a non-negative constant which doesn’t 
depend on the atom s, or else of the form 

(for atoms s where there is one or more t such that s >e> t) 
where the summation is over all atoms s’ such that s >@ s’. 
Since any atom s is ordered ahead of the disjunction of all 
the atoms s’ such that s >e> s’, the system has exactly one 
more non-redundant constraint than the number of atoms in 
the domain (the single total probability constraint is the 
extra constraint). 

In order for the system to be consistent, that is, to have 
any solution, the constant c is bounded above by some 
positive quantity. It is easy to show that if c is chosen to 
equal that upper bound, then the system has a unique 
solution. The following algorithm computes the permissible 
upper bound on c and the associated unique solution to the 
system with effort that is linear in the number of atoms 
under discussion. 

Algorithm for Computing Maximal c and 
Corresponding Solution 

For N atoms, establish arrays: 

Weight [ 1 ..N ] For each atom’ the multiple of c that 
satisfies the order constraints 

Runsum [ l..N ] For atom indexed I, the sum of Weight 
[ l]throughWeight[I] 

Prob [ l..N ] The conditional probabilities for the 
evidence given each atom 

and scalar quantities: 

Index As the name implies, an Index 
Cutoff An index’ the least value where f ( P [ Index 1, 

P[Cutoff])<q 

Last The value of Runsum [ Cutoff - 1 1, or 1 if 
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cutoff = 1 

BEGIN 

1. Sort Prob [ ] in ascending order. 
2. Initialize Cutoff = Last = Weight [ 1 ] = Runsum [ 1 ] 

1. 
3.fbIndex=2..N 

while f ( Prob [ Index 1, Prob [ Cutoff ] ) >= q 
Last := Runsum [ Cutoff ] 
cutoff := cutoff + 1 

end while 
Weight [ Index ] := Last 
Runsum [ Index ] := Weight [ Index ] 

+ Runsum [ Index -11 
end for 

4. The maximum possible value of c is 1 / Runsum [ N 1; if 
c is set to this maximum’ then the unique solution of the 
linear system is 

p( Index ) = Weight [ Index ] / Runsum [ N ]. 

END 

Since Cuto#always increases in value, and never exceeds 
Index, it is easy to confirm that the effort required by the 
above algorithm is linear in the number of atoms. 

Choosing Other Values for c 

The single solution’ maximum c approach is 
computationally simple, and places the least possible burden 
on subsequent evidence to overcome the low probability 
value assigned to the least favored atoms should one of 
them turn out to be true. On the other hand, smaller values 
of c may be preferred. In that case, the constraints describe 
a convex set of probability distributions, a set which 
contains all probabiity distributions which display all of the 
orderings asserted by the partial qualitative probability. 

One reason for preferring a lower value of the constant c 
might be that the user prefers to use some particular other 
single probability distribution’ for example, the maximum 
entropy distribution over all distributions consistent with 
the asserted ordering constraints. Such a distribution can be 
found using numerical or analytical optimization methods 
over the system with c = 0. Again, the simple form of the 
solution set, whether described in vertex or constraint form, 
should be an asset in searching for a congenial probability 
distribution. (There are exactly as many vertices as there 
are atoms, and the vertices are simple to enumerate using 
the information about Weight [] and Runsum [] produced 
by the algorithm of the last section.) 

Another occasion for choosing a smaller c is when the 
user is content to represent beliefs for decision and action in 
convex set form. Although the convex set formalism lacks 
the full coherence of a singleton distribution, there is a 
considerable and growing literature which suggests 

methods for using convex sets in decision (see, for example, 
Sterling and Morrell 1991 for a review). Because of the 
small number of vertices, revision of the convex set in the 
light of fbrther evidence is tract le (Levi MO), and as 
with any convex set, revision can also be performed by a 
transformation of the system’s coeflicients (Snow 199 1). 

It can be shown that there are positive values of c such 
that the convex set represents only the orderings asserted 
by the partial qualitative probability. Among these, the 
largest such value will ordinarily be preferred since that 
choice places the least burden on subsequent evidence to 
reveal the truth of the least fivored atoms should that 
happen to be necessary. Finding the largest such c requires 
about the same effort as enumerating the vertices with a 
known c, that is, order N2. A full 
however, is beyond the scope of 

Conchsions 

Assumptions Al-A6 describe an intuitively appealing way 
that evidence can overcome initial ignorance. Although the 
mechanism is Bayesian, in that conditional probabilities are 
compared, there are no prior probabilities. Nevertheless, the 
inferences that arise from the assumptions retain some of 
the characteristics of probability distributions, including 
complementarity, and if normatively coherent behavior in 
gambling is required, then probabilities can be computed on 
demand. Query handling and the calculation of coherent 
probabilities are both computationally inexpensive. 
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