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Abstract 

We have previously argued that the syntactic structure 
of natural language can be exploited to construct pow- 
erful polynomial time inference procedures. This paper 
supports the earlier arguments by demonstrating that 
a natural language based polynomial time procedure 
can solve Schubert’s steamroller in a single step. 

Introduction 
Schubert’s steamroller is a well known challenge prob- 
lem for automated reasoning systems [Cohn, 19891, 
[Cohn, 19841, [Stickel, 19851, [Bibel et al., 19871, 
[D avies, 19881, [Oppacher and Suen, 19861, and 
[Walther, 19841. All previous automated solutions of 
Schubert’s steamroller have been based on search pro 
cedures - procedures that search for proofs and which 
are not guaranteed to halt. In this paper we describe 
a different kind of solution to Schubert’s steamroller 
- a solution without search. Although there is no es- 
tablished technical meaning to the term “search”, it 
seems reasonable to assert that a procedure guaranteed 
to terminate in polynomial time does not search. We 
present a natural general purpose polynomial time in- 
ference procedure capable of solving Schubert’s steam- 
roller given only the axioms of the problem plus three 
user specified ‘focus terms”. 

The polynomial time inference procedure presented 
in this paper exploits, in an apparently essential way, 
aspects of natural language syntax. The inference pro- 
cedure is defined by a set of inference rules. If R is a set 
of inference rules then we let l-~ be the inference rela- 
tion generated by R, i.e., for any set of formulas C and 
formula <p we write E f-~ @ if there exists a derivsG 
tion of ip from the formulas in C using the inference 
rules in R. A rule set R will be called tractable if #-R 

*Supported by a Fannie and John Hertz Foundation 
graduate fellowship 

‘This research is supported by National Science Founds 
tion grant IRI-8819624 

is polynomial time decidable, i.e., there exists a proce- 
dure that is guaranteed to terminate in polynomial time 
in the written length of C and @ and that determines 
whether or not C b R a. There exist useful, though 
incomplete, tractable sets of inference rules for first or- 
der logic. However, much more powerful tractable rule 
sets can be given if first order formulas are written in 
a non-standard syntax. A “taxonomic syntax” for first 
order logic is presented in [McAllester et al., 19891. A 
more elaborate “Montagovian syntax” for first order 
logic, incorporating quantificational aspects of English 
noun phrases, is presented in [McAllester and Givan, 
19891. The polynomial time inference procedure used 
here to solve Schubert’s steamroller is defined by a set 
of inference rules stated in a Montagovian syntax. The 
inference relation defined by these inference rules ap- 
pears not to be definable in the classical syntax of first 
order logic. 

In this section we present a Montagovian syntax for 
first order logic similar to that described in [McAllester 
and Givan, 19891. The classical syntax for first order 
logic involves two grammatical categories - formulas 
and terms. The Montagovian syntax presented below 
also involves two syntactic categories - formulas and 
class expressions. Formulas denote truth values and 
class expressions denote sets. Constant symbols and 
variables are treated as class expressions that denote 
singleton sets. In the following, ih is a formula; C, Cl, 
Cs are class expressions; and R is a binary relation 
symbol. 
e A class eqwession is one of the following: 

- A class symbol (monadic predicate symbol). 
- A constant symbol or variable. 
- An intersection expression (intersection Cl Cz ). 
- A union expression (union Cl C,>. 
- A X-expression (X x Q(x)), where z is a variable. 
- An expression (R (some C)) or (R (every C)). 
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o A formula is one of the following: 

- A subset formula of the form (every Cl 62). 
- An intersection formula of the form (some Cl C2 1. 
- An existence formula of the form (there-exists-a 

0. 
- An at-most-one formula of the form (at-most-one C). 
- Any Boolean combination of the above formulas. 

Before giving a formal semantics, it is useful to con- 
sider some examples of formulas and their associated 
meanings. If P and Q are class symbols then (every 
P q) is a formula which is. true if the set denoted by 
P is a subset of the set denoted by Q. If man is a class 
symbol that denotes the set of all men, and runs is 
a class symbol that denotes the set of all things that 
run, then the formula (every man runs) is true if ev- 
ery man runs. The formula (some man runs) is true if 
some man runs. 

If John is a constant symbol (or variable) then the for- 
mulas (every John runs) and (some John runs) are 
semantically equivalent and we can use (John runs) as 
an abbreviation for either formula. Similarly, we write 
(likes John) as an abbreviation for either of the class 
expressions (likes (every John) ) or (likes (some 
John) ) . 

If owns is a relation symbol, and denotes the predi- 
cate which is true of two objects if the first owns the 
second, then the class expression (owns (some car) ) 
denotes the set of individuals that own some car. If 
policeman is a class symbol that denotes the set of all 
policemen, then the formula (every policeman (owns 
(some car) ) ) is true if every policeman owns a car. 

Our formal semantics for the Mont.agovian syntax is 
a (drastic) simplification of Monta 
tics for English [Montague, 19741. F 

ue’s original seman- 
Just as in classical 

syntax, a model of our Montagovian language is a first 
order model, i.e., a domain D together with an inter- 
pretation of constant, class, and relation symbols. Each 
first order model interprets each constant symbol as an 
element of its domain. A model also interprets each 
class symbol as a subset of its domain and each rela- 
tion symbol as a binary relation on its domain, i.e., a 
set of pairs of domain elements. 

If M is a first order model, and p is a variable in- 
terpretation over M, i.e., a mapping from variables to 
elements of the domain of M, then we write V(e, M, p) 
for the semantic value of the expression e in the model 
M under variable interpretation p. If C is a class ex- 
pression then Y(C, M, p) is a subset of the domain of 

‘Our class expressions play the role of both verb phrases, 
as in (owns (some car) ) , and of incomplete noun phrases, 
as in (brother-of (some policeman)). Montague, of 
course, treated these as separate syntactic categories. Mon- 
tague also treated complete noun phrases, such as (every 
policeman), as another syntactic category with its own de- 
notational semantics. The treatment of propositional atti- 
tudes makes Montague’s formal language yet more complex. 
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M. If @ is a formula, then V(@, M ,p) is a truth value, 
either T or F. 
a 
a 
a 
a 

a 

0 

0 

a 

0 

0 

a 

a 

a 

For class symbol P, V(P, M, p) is the set M(P). 
For constant c, V(c, M, p) is the singleton set (M(c)). 
For variable x, V(x, M, p) is the singleton set {p(x)}. 

Y (intersection CI CZ), M, p) is V(G, M, p) n 
I Y C2, M P). 

V( (union Cl C2), M, p) is the set V(C1, M, p) U 
V(C2, M, p). 
v (A x Q(x)), M, p) 

l 
is the set of all d such that 

V @(x), M P[X := d]) is T where p[x := d] is the same 
as p except that it interprets x as d. 
V( (R (every C) ), M, p) is the set of all cl such that for 
every d’ in V(C, M, p) the pair cd, d’> is an element of 
the relation denoted by R. (Consider the class expression 
(loves (every child) I.) 
V( (R (some C)), M, p) is the set of all d such that there 
exists an element d’ in V(C, M, p) such that that the pair 
<d, d’> is an element of the relation denoted by R. (Con- 
sider the class expression (loves (some child)).) 

V((ewery C W), M, p) is T if the set V(C, M, p) is a 
subset of V(W, M, p). 
V( (some C W, M, p) is ‘I! if the setV(C, M, p) n 
V(W, M, p) is non-empty. 

V( (there-exists-a C), M, p) is T if V(C, M p) is 
non-empty. 

V((at-most-one C), M, p) is T if V(C, M p) has at 
most one member. 
Boolean combinations of atomic formulas have their stan- 
dard meaning. 

Binary relation symbols, in the presence of equality, 
are in some sense sufficient to express arbitrary first or- 
der facts. We leave it to the reader to verify that, if 
we restrict our attention to languages with only con- 
stants and unary and binary relation symbols, then ev- 
ery classical first order formula can be translated to a 
logically equivalent formula of Mont agovian syntax and 
vice versa. Montagovian syntax is really just a syntactic 
variant of first order logic. 

Schubert’s Steamroller 
Schubert’s steamroller is a logical puzzle originally 
stated in English. Each sentence of the English state- 
ment of the problem is given below along with a trans- 
lation of that sentence into a set of formulas in our 
Montagovian syntax for first order logic. 

Wolves, foxes, birds, caterpillars, and snails 
mals, and there are some of each of them. 

are ani- 

(every wolf animal) (there-exists-a wolf) 
(every fox animal) (there-exists-a fox) 
. . . etc. 

There are some grains, and grains are plants. 

(there-exists-a grain) (every grain plant) 



Caterpillars and snails are much smaller than birds, 
which are much smaller than foxes, which are much 
smaller than wolves. 

(every caterpillar 
(is-smaller-than (every bird))) 

(every snail (is-smaller-than (every bird))) 
(every bird (is-smaller-than (every fox))) 
(every fox (is-smaller-than (every wolf))) 

Wolves do I not like to eat foxes or grains, 
lie to eat caterpillars but not snails. 

while birds 

i(aome wolf (eats (some fox))) 
l(aome wolf (eats (some grain))) 
(every bird (eats (every caterpillar))) 
-(aone bird (eats (some snail))) 

Caterpillars and snails like to eat some plants. 

(every 
(every 

caterpillar 
snail (eats 

(eats 
(some 

(some plant))) 
plant))) 

Every animal either likes to eat all plants or all animals 
much smaller than itself that like to eat some plants. 

(every animal 
(union 
(eats (every plant)) 
(A z (z (eats (every 

(intersection 
animal 
(is-smaller-than %))))I 

1)) 

Prove there 
animal. 

is an animal that likes to eat a grain-eating 

(some animal. 
(eats (some (intersection 

animal 
(eats (some grain)))))) 

A formula of Montagovian Syntax is called quantifier- 
fnee if it does not contain any X-expressions. The “quan- 
tifiers” some and every that appear in noun phrases 
are considered to be quantifier-free combinators. In 
[McAllester and Givan, 19891 we show that satisfiabil- 
ity is decidable (NP-complete) for the quantifier-free 
fragment of the Montagovian syntax presented in that 
paper. Although the Montagovian syntax presented 
here is somewhat more elaborate, we conjecture that 
the quantifier-free fragment remains decidable. When 
translated into our Montagovian syntax, all of the sen- 
tences of Schubert’s steamroller are quantifier-free ex- 
cept for the second to last sentence above, which in- 
volves a single &expression. 

Polynomial Time Inference 
Figure 1 gives a set of 33 inference rules stated in our 
Montagovian syntax. We are actually interested in the 

rules in figure 1 plus all contrapositives of those rules. 
Each inference rule is analogous to an implication of the 
form !&I A . . . Q, + @ where each Q\E~ is an antecedent 
and @ is the conclusion. A contrapositive of a rule Qi A 
. . . gsr, + QB is a rule of the form 

91 A*** A !I!;,1 A lQ[, A 9i+l A . a. A 9, -+ +&. 

In the contrapositive, the conclusion has been inter- 
changed with one of the antecedents and both of the 
interchanged formulas have been negated. If a given 
rule is semantically sound, then so is each of its con- 
trapositives. We conjecture that the rule set consisting 
of the rules in figure 1 plus all contrapositives of those 
rules is local (see below), and thus generates a polyno- 
mial time decidable inference relation. 

The inference rules in figure 1, together with their 
contrapositives, determine a sound inference relation 
for formulas expressed in our Montagovian syntax for 
first order logic. This (incomplete) first order infer- 
ence relation appears not have any definition in the 
classical syntax for first order logic. 2 We have con- 
structed a polynomial time inference procedure based 
on this set of inference rules. A general theoretical 
framework for constructin polynomial time inference 
procedures is presented in McAllester, 19901. Let R be B 
any set of inference rules. 
from [McAllester, 19901. 

The following definition is 

Definition: We write C l+~ @ if there exists a 
proof of Qp from the premise set C such that every 
proper subezpwssion of a formula used in the proof 
appears as a proper subexpression of iB, a proper 
subexpression of some formula in C, or as a closed 
(variable free) expression in the rule set R. 

The following lemma is proved in [McAllester, 19901 . 
Lemma: For any given rule set R, there exists a 
procedure for determining whether or not C l-~ R Q 
which runs in time polynomial in the written length 
of C and a. 
The inference relation I-1 R is a restricted version of 

l-~. For any rule set R, the relation l+ R is polynomial 
time decidable. If the relation I-R is intractable, as is the 
case for any sound and complete set of rules for first or- 
der logic, then the polynomial time relation I+ R will be 
weaker than the relation ER. Rowever, there is a large 
class of rule sets for which these two relations are the 
same. The following definition is also from [McAllester, 
19901 . 

Definition: A set R of inference rules is called 
local if the relation I+ R is the same as the relation 
J-R* 

2This is because the variables in the rules of figure 1 
range over class expressions, but there are no class expres- 
sions in classical syntax. Consider for example the classical 
equivalent of the Montagovian class expression (brother-of 
(every man)). 
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(7) (every C C) (8) (there-exists-a c) (9) (at-most-one c) 

(10) (there-exists-a C) 

(some C C) 

(13) (every C W) 
(every W 2) 
(every C 2) 

(16) (at-most-one W) 
(every C W) 
(at-most-one C) 

(11) (some C W) 

(there-exists-a C) 

(14) (some c W) 
(every C 2) 

(some 2 W) 

(17) -(at-most-one C) 

(there-exists-a C) 

(12) (some C W) 

(some W Cl 
(15) (some C W) 

(at-most-one C) 

(every C WI 

08) -(every C W) 
(there-exists-a C) 

(19) (every C (union C W)) 

(21) (every (intersection C W) Cl 

(23) (every C Z), (every W 2) 
(every (union C W) 2) 

(25) (some C W) 
(there-exists-a (intersection C W)) 

(27) (every C (union W 2)) 
-(some C W) 
(every C Z) 

(29) (every C W) 
(every (R (some C)) (R (some W) )) 

(20) (every W (union C W) ) 

(22) (every (intersection C W) W) 

(24) (every 2 C), (every 2 W) 
(every 2 (intersection C W)) 

(26) -(there-exists-a C) 

(every W (R (every C)) 1 
(28) (every C (union W 2)) 

-r(some C 2) 
(every C W) 

(30) (every C W) 

(every CR (every W)) (R (every C) )) 
(31) (some C W) 

(every (R (every C) ) (R (some W) ) ) 
(32) (there-exists-a (R (some C) )) 

(there-exists-a C) 

Figure 1: Some inference rules for Montagovian Syntax. The letters 6, IV, and 2, range over class expressions, c 
ranges over constants and variables, Q and \E range over formulas, and R ranges over relation symbols. 

An immediate consequence of the above definitions 
and lemma is that local rule sets are tractable, i.e., they 
generate polynomial time decidable inference relations. 
A variety of nontrivial local rule sets is presented in 
[McAllester, 19901. Let M be the set of inference rules 
in figure 1 together with the contrapositives of those 
rules. We conjecture, although we have not yet proved, 
that M is local. Even if M is not local, b M is still 
polynomial time decidable, and it appears to be a very 
powerful inference relation. 

ence rules given in the previous section are not complete 
for our Montagovian syntax for first order logic. Wow- 
ever, it is possible to exploit fast and powerful inference 
procedures based on Montagovian syntax in construct- 
ing semi-automated verification systems. In this section 
we describe a particular kind of semi-automated veri- 
fication system called a Socratic Sequent system.3 A 
proof in a Socratic sequent system is a series of lines 
where each line is a sequent of the form C I- Qp where 
C is a set of formulas and Q is a formula. 

Socratic Proof Systems 
Local rule sets define polynomial time inference proce- 
dures. Of course, no polynomial time inference proce- 
dure can be complete for first order logic - the 32 infer- 

3The term “Socr atic proof” was introduced in [Crawford 
and Kuipers, 19891 to describe any system in which steps of 
a proof are verified using an automated reasoning procedure. 
Our notion of a Socratic sequent system is a special case of 
this general concept. 
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Definition: A Socratic sequent system is a pair 
<R, S> where R is a set of inference rules (de- 
riving formulas from formulas) and S is a set of 
sequent rules (deriving sequents from sequents). 
Definition: An acceptable derivation in a So- 
cratic sequent system <R, S> is a series of sequents 
where, for each sequent C I- a, either C I- R ip 
(in which case the sequent is called obvious), or the 
sequent follows from earlier sequents using a rule 
in S. 
If the rule set R that defines the obvious sequent8 is 

local, then the inference relation t-R is polynomial time 
decidable, and one can therefore determine, in polyno- 
mial time, whether a series of sequents is an acceptable 
derivation in the sequent system <R, S>. (Note that 
finding an acceptable derivation of @ from C is still an 
undecidable operation-the critical point is that once 
we have such a derivation, we can ver;fu that it is ac- 
ceptable in polynomial time). 

In this section we give a Socratic sequent system that 
is complete for our Montagovian syntax for first order 
logic and show how this Socratic system yields a one- 
step solution to Schubert’s steamroller. The sequent 
rules for our proof system are given in figure 2. The 
rules of obviousness of our Socratic system include all 
of the inference rules in figure 1 plus the following two 
rules concerning &expressions: 

(33) a(y), (focus-on 81) 

(every g (Xx@(x))) 

(34) (every 0 (Xx a(z))>, (focus-on g) 

WY) 
Each of these rules has an antecedent of the form 
(focus-any), where g must be variable. Formulas of 
this form are used to control the inference process and 
have no semantic content. The f ecus-on antecedents 
of the above rules restrict the application of these rules 
to “focus variables”, i.e., variables v such that the for- 
mula (focus-any) is given as a premise (there are 
no inference rules for deriving formulas of the form 
(focus-any)). Note that the sequent rule S3 in fig- 
ure 2 can be used to eliminate focus-on premises from 
sequents. If the A-expression rules were not restricted 
with focus-on antecedents, then the inference relation 
defined by those rules, together with the rules of fig- 
ure 1, would be undecidable. Let M’ be the set of 
inference rules including all rules in figure 1 and their 
contrapositives, plus the above two rules for quantifiers. 
We have a polynomial time implementation of the in- 
ference relation H MI, provided there is a bounded level 
of A-nesting. This im 
the lines described in McAllester, 19891. We conjecture P 

lementation is constructed along 

that M’ is local, and thus that I-( M/ is the same as i-M,. 
Now let C be the set of formulas of Montagovian syn- 

tax used to represent the premises of Schubert’s steam- 
roller as given in section and let @ be the formula to be 

proven. Our implementation of an inference procedure 
for the rule set M’ has been used to verify that: 

(xw wolf) 9 (f ecus-on x,) , 
CU (xf fox), (focus-on zf), t-M’ Q[, 

(za bird) , (focus-on zb) 

This sequent expresses the English statement “to see 
that Qh follows from C, consider a wolf Q, , a fox zp , 
and a bird zb - the result is then obvious”. Repeated 
use of the Socratic inference rules S3 and S5 can be 
used to eliminate all premises other than C, and hence 
derive the sequent C l- a. A simple user interface to 
the Socratic proof system can be used to automatically 
apply sequent rules, such as S3 and S5, that remove ex- 
traneous premises. Given this user interface, the above 
sequent is a one line solution to Schubert’s steamroller. 

iscussion 
We have constructed a complete proof system for a non- 
standard syntax for first order logic. This proof system 
has the simultaneous features that proofs are short and 
yet, if our conjectures are correct, the acceptability of a 
proof is quickly verifiable. The proofs in our system are 
so short that Schubert’s steamroller can be proved in a 
single line, by far the shortest known proof in a proof 
system with polynomial time checkable proofs. 

The conciseness of the proofs in our proof system 
appears to be due to the power (and conjectured lo- 
cality) of the inference rules given in figure 1. This 
power appears to depend fundamentally on the use of 
a non-standard syntax to express the inference rules- 
just what aspect of the new syntax makes this added 
expression possible is unclear, but one relevant obser- 
vation is that the quantifier free fragment of the new 
syntax can express many facts which require quanti- 
fiers in classical syntax (e.g. (every man mammal)). 
Our experience indicates that the decision procedure 
for the inference relation b M immediately solves the 
vast majority of inference problems that can be stated 
in the fragment of Montagovian syntax that does not 
contain X-quantifiers.4 The statement of Schubert’s 
steamroller in Montagovian syntax contains only a sin- 
gle X-quantifier - a quantifier needed to represent 
the English anaphora “itself’. Three instantiations of 
this quantifier are needed in the solution of Schubert’s 
steamroller. Our one-line solution specifies the objects 
on which the quantifier is to be instantiated - the 
focus-on premises in the one-line solution control the 
use of the instantiation rules 34 and 35. 

The inference relation defined by the inference rules 
in figure 1 appears not to have any definition in the 
classical syntax of first order logic. Thus, Montago- 
vian syntax appears to play an essential role in the 

‘We conjecture that validity in the X-free fragment of our 
Montagovian syntax is decidable, although it is known that 
the inference rules in figure 1 are not complete for A-free 
Montagovian formulas. 
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w 

w 

(S5) 

cw 

w 

C U (f ecus-on 2) f- @ w 
cl-0 

C I- (there-exists-a 6) 
CU ((every x Cl} I- Q 

(S6) 

Cu(*}k4! 

C I- home C W) 
C U i (every 2 Cl, (every x W)} t- Q 

C U ((every 2 C>} t- (every W (R x) ) w 

cl-a 

C U ((every 2 C>} t- (every x W) 

C I- (every W (R (every 0)) C t- (every- C W) 

C I- (at-most-one 2) 
C I- (every Z (R (some C) 1) 

(SlO) C U {(every 21 Cl, (every 22 C>} I- (every x1 x2) 

C U {(every 2 C), (every Z (R x:)1} I- @ C t- ((at-most-one 0) 

Figure 2: The Socratic Proof Rules. In these rules 6, W, and Z, are class expressions, @ is a formula, and x, xl and 
22 are variables that do not appear free in I=, Qp, C, 2, or W. 

specification of the inference relation and therefore in 
the construction of the a Socratic sequent system with 
extremely concise proofs. Although this suggests that 
natural language syntax plays an important role in hu- 
man reasoning, it seems sufficient to merely claim that 
aspects of natural language syntax can be used to build 
powerful inference algorithms . 
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