
The Use of Intel1 

Andrew Gelsey” 
Computer Science Department 

Rutgers University 
New Brunswick, NJ 08903 

gelsey@cs.rutgers.edu 

Abstract 

I present algorithms for automated long-term be- 
havior prediction which can recognize when a sim- 
ulation has run long enough to produce a repre- 
sentative behavior sample, characterize the behav- 
ior, and determine whether this behavior will con- 
tinue forever, or eventually terminate or otherwise 
change its character. I have implemented these al- 
gorithms in a working program which does long- 
term behavior prediction for mechanical devices. 

Introduction 
Many physical systems are sufficiently complex that 
the process of analyzing their behavior must include 
either actual or simulated experiments [Forbus and 
Falkenhainer 1990, Abelson et al. 19891. Wowever, 
though these experiments may accurately show the be- 
havior of a physical system over any particular time 
period, significant human effort is generally needed to 
predict a system’s long-term behavior from experimen- 
tal data. Automating this process involves 

1. recognizing when an experiment has run long enough 
to produce a representative behavior sample 

2. characterizing the system’s behavior 
3. determining whether this behavior will continue for- 

ever, or eventually terminate or otherwise change its 
character 

These are the problems I address in this paper. I 
will focus on the use of simulated experiments, though 
many of my results should also apply to physical exper- 
iments. At present, this work is limited to mechanical 
devices, particularly clockwork mechanisms. 

In this paper I present algorithms to solve the prob- 
lems listed above. I have implemented these algorithms 
in a working program which acts as an intelligent con- 
troller for a numerical simulator. This program has 
three distinct modules: 

*This research was supported by National Science Foun- 
dation grant IRI-8812’790 and by the Defense Advanced Re- 
search Projects Agency and the National Aeronautics and 
Space Administration under NASA grant NAG2-645. 

1. 

2. 

3. 

the automated modeler, which transforms a descrip- 
tion of a machine’s raw physical structure into a 
behavioral model suitable for numerical simulation 
[Gelsey 19891 

the numerical simulator, which uses standard numer- 
ical simulation algorithms modified to handle the be- 
havioral model generated by the automated modeler 
[Gelsey 19901 

the intelligent controller, which is based on the al- 
gorithms I will describe in this paper 

An Example 
The escapement mechanism in Figure 1 keeps the aver- 
age speed of a clock or watch constant by allowing the 
escape wheel, which is pushed clockwise by a strong 
spring, to advance by only one tooth for each oscilla- 
tion of the balance. In Figure la the motion of the 
escape wheel is blocked by the lever, and the balance 
is motionless and about to be driven counterclockwise 
by its attached spring. In Figure lb the balance has hit 
the lever. The momentum of the balance pushes the 
lever far enough to free the escape wheel, which then 
pushes both lever and balance as in Figure lc. This 
pushing restores the energy the balance loses to fric- 
tion, so that it can act as a harmonic oscillator in spite 
of damping. Finally, in Figure Id, the escape wheel 
and lever are locked together again, and the balance 
has been brought temporarily to a halt by its spring. 

My program’s input is a CAD/CAM solid model1 
of the geometric structure of a machine, supplemented 
with information about masses, spring constants, and 
coefficients of friction. This input is first processed 
by the automated modeler module of the program, 
which generates a behavioral model of the machine. 
The automated modeler starts by identifying a set of 
state variables whose (numerical) values summarize 
the state of the machine at any particular time. A 
typical model for the escapement mechanism is a rigid 

‘1 use the PADL-2 solid modeling system developed by 
the Production Automation Project at the University of 
Rochester [Hartquist 19831. 

880 AGGREGATION AND GEOMETRIC REASONING 

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved. 



a) Initial state 

c) Escape wheel pushes lever and balance 

b) Balance collides with lever 

d) Halfway through a full cycle 

Figure 1: Clock or watch escapement mechanism 

body model with six state variables: the positions of 
the three moving parts, and their velocities. 

At any particular time, a machine’s behavior obeys a 
set of differential equations in the state variables, which 
may be numerically solved to predict its behavior.2 
However, the differential equations may dynamically 
change their form as parts of the machine come into 
contact and separate. Thus the behavioral model gen- 
erated by my program includes data which allows the 
numerical simulation module to generate the appro- 
priate differential equations for any particular state of 
the machine. After each numerical simulation step, 
the current set of equations is automatically checked 
for validity and reformulated if necessary [Gelsey 1989, 
Gelsey 19901. 

Figure 2 shows a plot of my program’s numerical 
simulation of the behavior of the escapement mecha 
nism. To the human eye, this plot clearly shows the 
regularity of the mechanism’s behavior, but this regu- 
larity is not explicit in the numerical simulation data. 
Furthermore, though the plot shows a sufficiently long 
behavior trace to make the behavioral regularity clear, 
the only reason the simulation ran for that length of 
time is because of explicit instructions. Also, though 
Figure 2 shows the regular behavior of the escapement, 

“The differential equations for the escapement mecha- 
nism are nonlinear, as are those for all but the simplest 
mechanisms. Thus they cannot be solved directly, and in- 
stead must be simulated numerically. My current simulator 
uses a variable-step Runga-Kutta method. 

even a human would need to do further analysis to de- 
cide how long this regular behavior would continue. In 
the next section I present an algorithm for continuously 
processing a stream of simulation data to determine 
when it has become long enough to show regularities 
and to characterize those regularities. Later in this 
paper I present algorithms for doing controlled simu- 
lated experiments to determine the limits of validity of 
a hypothesized behavioral regularity. 

Finding ehavioral egularities 
I define a machine’s behavior to be regular if the be- 
havior consists of continual repetitions of the same be- 
havior pattern. A strict definition of regularity would 
require that each instance of the behavior pattern be 
identical, but my definition allows successive instances 
to change in a well-defined way, while maintaining the 
same underlying form. In particular, I require that 
each instance of the behavior pattern should have the 
same number of states with minimal kinetic energy, 
and that the states of the system at corresponding 
kinetic energy minima in successive instances of the 
behavior pattern should be related in a specific well- 
defined way. 

My definition of regularity focuses on kinetic energy 
minima because these minima tend to lie between qual- 
itatively distinct regions of the behavior pattern, for 
example at a time when an oscillating part of a ma- 
chine switches from moving in one direction to moving 
in another, or when a part of a machine receives a push 

GELSEY 881 



0 

-20 

-40 

-60 

-80 

-100 

-120 

-140 

-160 

-180 

-200 
25 30 35 40 

__ 
0 5 10 15 20 25 30 35 40 0 5 10 15 20 

balance lever 

Figure 2: Motion of escapement mechanism (horizontal axes 

or other energy boost so that its velocity stops decreas- 
ing and starts increasing. Thus a change in the number 
of kinetic energy minima in a behavior pattern tends 
to indicate a significant qualitative change in behavior. 

My program guides its search for behavioral regular- 
ities by comparing states of the system having minimal 
kinetic energy. This strategy has two principal advan- 
tages: it is very efficient, giving a search time which is 
linear in the amount of input data, and it reduces the 
chance of incorrect matches by focusing the search on 
the most significant points in the system’s behavior. 
In order to avoid being misled by spurious local ki- 
netic energy minima, the program only considers min- 
ima that are approximately global minima. It tests for 
global minimality by maintaining range data which it 
gathers dynamically as the simulation proceeds. 

It should be emphasized that the program looks for 
regularities in the behavior of the state variables (like 
that shown in Figure 2), not in the behavior of the ki- 
netic energy. Kinetic energy is simply used as a guide 
to tell the program when to look at the state variables 
- it might be considered a measure of the “interest- 
ingness” of a particular state of the machine. It may 
seem that using kinetic energy as a guide could cause 
the program to miss some interesting behaviors, for 
example in a machine which maintained constant total 
kinetic energy while transferring kinetic energy back 
and forth internally. However, since kinetic energy is 
a sum of terms involving squares of velocities, it seems 
unlikely that such a machine could be built. In gen- 
eral, since the kinetic energy at any particular time is 
a function of the state of the system at that time, reg- 
ularities in the behaviors of the state variables should 
be reflected in the kinetic energy. 

Figure 3 shows my program’s representation of a 
machine’s behavior pattern. Figure 4 shows the algo- 
rithm my program uses to try to construct a hypothesis 
about the machine’s behavior pattern which is consis- 
tent with the stream of behavior data coming from the 
numerical simulator. 

The program simulates the behavior of the machine 
until it finds several kinetic energy minima, which it 
requires to be in the bottom Pran@;edra,-tion of the range 

1. 

2. 
3. 

4. 

-6 

-8 

-121 ' * ' n m ' a J 
0 5 10 15 20 25 30 35 40 

escape wheel 

show time, vertical axes show positions in degrees) 

Number of kinetic energy minima in an instance of 
the behavior pattern (N) 
Duration of the behavior pattern (D) 
Net change in each state variable over each pattern 
instance (A) 
List of periodically superimposed processes (Fig- 
ure 6) 

Figure 3: The data describing a behavior pattern 

of kinetic energies encountered during the simulation. 
The first P1znore minima are ignored so that the pro- 
gram won’t be misled by transient startup phenom- 
ena. Then the program searches for a locally sat- 
isfactory behavioral hypothesis by successively form- 
ing each possible hypothesis which is consistent with 
the currently available data. After each hypothesis is 
formed it is tested against the results of further sim- 
ulation. Though the program requires that new data 
match the predictions of the hypothesis fairly closely, 
it does not require exact matches because they would 
never be found due to transients and other noise in 
the numerical data. The match parameters can be ad- 
justed to “tune” the behaviors the program will recog- 
nize. For example, identical patterns with very differ- 
ent time durations could be detected by giving Pfmatch 
a large value. 

This algorithm is based on the following simple but 
powerful ideas: 

1. Given a set of simulation data including exactly n 
kinetic energy minima, there will be exactly one be- 
havioral hypothesis (of the form specified in Fig- 
ure 3) which is both consistent with the data and 
which requires that the machine’s behavior pattern 
contain exactly n kinetic energy minima. 

2. Given a set of simulation data including more than 
n kinetic energy minima, either the single n-minima 
hypothesis which is consistent with the first n min- 
ima will also be consistent with the rest of the data, 

B or else no n-minima hypothesis can be consistent 
with all of the data, which implies that 

882 AGGREGATION AND GEOMETRIC REASONING 



[Default parameter values: 
P confirm = 2, Prangefraction = 1Qs5, pignore = 4] 

While no behavioral hypothesis has been formed 
OR (hypothesis belief level) < lV t Pconfirm 

Perform a simulation step 
Update range information 
If the previous state was a local kinetic energy 

minimum 
AND its energy level < pransedraction * (top of 
kinetic energy range) 
AND ‘&ore kinetic energy minima have been 
ignored 

Then 
If there is no hypothesis 
Then hypothesize a behavior pattern: 

N+l 
D t difference in time between the current 

kinetic energy minimum and the 
previous one 

A c differences in the values of the state 
variables between the current kinetic 
energy minimum and the previous one 

Else the current hypothesis remains valid if and 
only if: 

D matches the time elapsed since the Nth 
previous kinetic energy minimum to 
within ptmat& (default: 1%) 

AND A matches the changes in the values of 
the state variables since the Nth 
previous kinetic energy minimum to 
within /PsSVm&& (default: 2%) 

If the current hypothesis fails then form a 
new hypothesis: 

lv+--N+l 
D t difference in time between the 

current kinetic energy minimum and 
the Nth previous one 

A t differences in the values of the state 
variables between the current kinetic 
energy minimum and the Nth 
previous one 

Else increment (hypothesis belief level) 

Figure 4: Algorithm to find a locally satisfactory be- 
havioral hypothesis 

3. Once the program has found new data not consis- 
tent with a previously formed n-minima hypothesis 
(which was consistent with some particular sequence 
of n minima), it need never again consider any hy- 
pothesis with n kinetic energy minima. 

Thus the program can iterate through the possible be- 
havioral hypotheses, testing each in turn. 

The behavior pattern of the escapement mechanism 
in Figure 1 has two kinetic energy minima, one at each 
extreme position of the balance. The initial hypothesis 
formed by my program is that each behavior pattern 

instance has only one kinetic energy minimum, and 
that all three moving parts have a net position change 
per pattern. When the program tests this behavioral 
hypothesis at the next minimum, it finds that the net 
displacements of the balance and lever are the nega- 
tives of the hypothesized changes. The initial behav- 
ioral hypothesis is then rejected, and a new hypothesis 
is formed in which the behavior pattern has two kinetic 
energy minima, and neither the balance nor the lever 
has a net position change per pattern. This hypoth- 
esis is then confirmed over the next Pconfirm pattern 
instances, and finally accepted as locally valid. 

ypothesis ilures 
After the program finds a locally satisfactory behav- 
ioral hypothesis, it performs a variety of tests to de- 
termine whether the hypothesis is also globally sat- 
isfactory and therefore useful for long-term behavior 
prediction. If the hypothesis fails a test it is modified 
if possible or otherwise rejected. I classify hypothesis 
failures into two categories: gradual effects of steadily 
changing state variables, and sudden transitions. 

uall Effects of Steadily Changing 
State Variables 

What I call a “gradual” effect of steadily changing state 
variables is an effect which is too small to be detected 
by the algorithm in Figure 4 because its magnitude 
over a small number of behavior cycles is compara- 
ble to that of the noise in the data. The escapement 
example includes several such effects. The initial lo- 
cally satisfactory hypothesis for the escapement exam- 
ple predicts that the balance and lever will return to 
the same position at the end of each pattern, but that 
the escape wheel will have a net position change, As 
the position of the escape wheel changes, the tension in 
its attached spring decreases, and it is clear that the 
clock must eventually stop running when the stored 
energy of the spring is no longer sufficient to compen- 
sate for the mechanism’s energy losses due to friction. 
The energy stored in the mainspring thus imposes an 
upper time limit on the validity of the behavioral hy- 
pothesis. It also turns out that the decreasing tension 
in the mainspring results in a very slow decrease in the 
amplitude of the oscillations of the balance. However, 
this decrease is much smaller than transient amplitude 
variations and therefore cannot be detected when the 
initial hypothesis is formed, so the decrease is not pre- 
dicted by the initial locally valid behavioral hypothesis. 

Though these gradual effects generally can’t be de- 
tected in a short simulation, they become quite ap- 
parent in a long one because their magnitudes grow 
steadily while data noise remains bounded. However, 
running a long simulation may be quite costly. Instead, 
my program uses a technique for “sampling” pieces of 
a long simulation without having to actually run the 
simulation. 

GELSEY 883 I 



n a3 Balance 

The program does this “sampling” by “jumping” the 
state of the system ahead in time and then performing 
simulated experiments to retest its behavioral hypoth- 
esis. The data my program associates with a hypoth- 
esized behavior pattern includes, not coincidentally, 
exactly the information needed to make the system 
“jump”. Jumping the system ahead by n behavior cy- 
cles is simply a matter of adjusting the time and state 
variables values by n times the values recorded for the 
behavioral hypothesis (Figure 3). This jumping strat- 
egy cannot erroneously disconfirm a correct hypothe- 
sis, though it can erroneously confirm an incorrect hy- 
pothesis, which however may subsequently be rejected 
by the additional tests I describe below. The capabil- 
ity to sample a system’s future without having to run a 
long simulation is one of the principal justifications for 
forming behavioral hypotheses as specified in Figure 3. 

To look for failures due to gradual effects of steadily 
changing state variables, my program jumps the state 
of the machine ahead in time so that about half of its 
total energy has been dissipated and then retests the 
local validity of the hypothesis in this new environ- 
ment. If the hypothesis is still locally valid, the pro- 
gram then tests whether the predicted changes in each 
state variable match the changes revealed by simula- 
tion. If the changes do not match, the program modi- 
fies the hypothesis if possible to be consistent with the 
new data as well as the original data. 

Figure 5: Chiming clock 

Sudden Transit ions 
Figure 5 shows a clock which chimes at regular in- 
tervals (e.g., every hour). A small gear on the escape 
wheel drives a large gear, which moves relatively slowly 
counterclockwise. The clapper is normally pressed 
against the chime by a spring, but the protrusion on 
the large gear periodically pushes it away from the 
chime and then releases it so that it makes a chiming 
sound when it hits the chime again. 

Since the clock will have been running for quite a 
while before it first chimes, the initial behavioral hy- 
pothesis will not take the chiming into account and will 
therefore be an incomplete behavior prediction. This 
sort of hypothesis failure is quite different from the fail- 
ures discussed in the previous section because random 
sampling of future behavior is unlikely to detect the 
sudden transition. 

In mechanical devices, sudden transitions are 
changes in the patterns of contact between parts in 
the mechanism, which are of two types: 
1. New contacts between parts not previously in con- 

tact, like the moving gear and the clapper in the 
chiming clock. (See the next section.) 

2. Changes in the pattern of contact between two parts 
which regularly make contact. For example, if the 
escape wheel in Figure 1 had a missing tooth, the 
pattern of contact between the escape wheel and the 
lever would be affected. My program computes the 
minimum time the simulation must run in order to 

884 AGGREGATION AND GEOMETRIC REASONING 



determine whether a locally valid behavioral hypoth- 
esis will be violated by such changes, and increases 
P confirm to postpone local confirmation of the hy- 
pothesis until the passing of at least that much time 
has been simulated. The program takes advantage of 
any symmetries in the shapes of the parts involved 
in order to reduce the required simulation time if 
possible. The algorithms for handling this case are 
given in my dissertation [Gelsey 19901, but are too 
lengthy to reproduce here. 

New Contacts Between 
Previously in Contact 
The problem of predicting collisions between two mov- 
ing parts is quite difficult. For example, with just the 
right timing a machine gun may be fired through the 
space where an airplane’s propeller is turning without 
hitting the propeller. With slightly different timing, 
the propeller will be shot off. Writing a general algo- 
rithm capable of distinguishing these two cases is not 
simple. My program is currently limited to the case of 
contact between a moving part and one which was not 
moving prior to the collision. 

When a new contact occurs, several things may hap- 
pen. If a moving part hits one which is not capable of 
moving, then the behavioral hypothesis will fail com- 
pletely at the time of contact. Simulation can then 
be used to determine the subsequent behavior of the 
mechanism; typically it will quickly come to a halt. On 
the other hand, if the part which was not moving prior 
to the contact is capable of motion, a new behavior 
pattern may emerge. 

Many mechanisms are multiply periodic; different 
sorts of regular behavior occur at very different time 
scales. For example, a chiming clock like that in Fig- 
ure 5 will have an escapement with a regular behavior 
pattern that might be repeated several times a second, 
and a chiming mechanism whose pattern might only 
be repeated once an hour. Perhaps the commonest 
case of multiple periodicity is what I call a periodically 
superimposed process: an additional behavior pattern 
which is regularly superimposed on the basic behavior 
pattern without disturbing it. 

Because a superimposed process does not disturb the 
basic behavior pattern, it can only change state vari- 
able which remain constant during the basic pattern. 
I call these state variables static. The static state vari- 
ables are identified during the simulation needed to 
generate the original locally valid behavioral hypothe- 
sis. Figure 6 shows my program’s representation of a 
periodically superimposed process. 

Figure 7 summarizes the algorithm my program uses 
to identify periodically superimposed processes. The 
motion envelope of a part is the volume it sweeps out 
as it moves. If two parts have intersecting motion en- 
velopes but have never been in contact, their first point 
of contact is computed directly from the geometry of 
the mechanism using algorithms given in my disserta- 

1. Period (time between starts of successive instances 
of the superimposed process) 

2. Duration of each instance of the process 
3. Time at which the first instance of the process starts 
4. List of static state variables involved in this period- 

ically superimposed process 
5. Net change in each involved state variable over each 

process instance 

Figure 6: Periodically superimposed process 

1. Use geometric computations to determine when the 
first contact will occur between two parts that have 
never been in contact but which have intersecting 
motion envelopes 

2. Jump system state halfway to new contact to check 
for gradual effects of steadily changing state vari- 
ables, and modify behavioral hypothesis if necessary 

3. If neither part is fixed, jump to time of first new con- 
tact and start the behavior simulator. While simu- 
lating, 

(a) Monitor behavior of nonstatic state variables to 
make sure none of them violate the original be- 
havioral hypothesis 

(b) Monitor behavior of static state variables to 
gather data describing a periodically superim- 
posed process (Figure 6) 

4. If the superimposed process does not violate the 
original hypothesis, jump until only half of total en- 
ergy is left to check for gradual effects of steadily 
changing state variables, and modify hypothesis if 
necessary 

Figure 7: Analyzing behavior resulting from a new 
contact 

tion [Gelsey 19901 which are too lengthy to present in 
this paper. If one of the parts is fixed (part of the 
frame) then my program determines that the valid re- 
gion for the original behavioral hypothesis ends at the 
new contact; otherwise, the program attempts to iden- 
tify a new periodic process that will be superimposed 
on the originally hypothesized behavior pattern. 

Implementation 

I have implemented all of the algorithms presented 
in this paper and tested them on a number of exam- 
ples, which are described in detail with test results in 
[Gelsey 19901. Th ese examples include the mechanisms 
in Figure 1 and Figure 5. In both cases the program 
finds a behavioral hypothesis with two kinetic energy 
minima corresponding to the two extreme positions of 
the balance. For the chiming clock, the program also 
finds a periodically superimposed process representing 
the chiming. 

GELSEY 885 



Related Work etitions. His work does not address the question of 

Yip[1989] wrote a program which can automatically 
plan, execute, and interpret numerical experiments 
concerning Hamiltonian systems with two degrees of 
freedom. His program, like mine, intelligently con- 
trols numerical simulations, but the research problems 
addressed by the two programs are quite different. 
His program is more powerful than mine in the sense 
that it can usefully analyze physical systems, includ- 
ing chaotic systems, which do not meet the definition 
of regularity I give in this paper. On the other hand, 
his program is not capable of dynamically changing the 
set of differential equations it is working on, while my 
program, using a behavioral model which is closer to 
a system’s underlying physical structure, can dynami- 
cally reformulate its differential equations to gracefully 
handle “surprises” like those found in the chiming clock 
in Figure 5. 

detecting repetition in a behavior sample. 
The output of a simulator is time series data and 

thus may be analyzed by well known statistical tech- 
niques including Fourier analysis [Bloomfield 19761. 
However, these techniques are mainly useful when the 
data to be analyzed contains a large number of rep- 
etitions of a behavior pattern, unlike my algorithms 
which can identify regular behavior after just a few 
repetitions of the behavior pattern. Furthermore, these 
statistical techniques lack the capability my algorithms 
have to determine when a data sample is long enough 
to be representative. This lack is especially inconve- 
nient because these statistical techniques do not work 
in an incremental way: they must have the entire data 
sample available to begin processing, unlike my algo- 
rithms which operate on a stream of simulation data, 
processing each piece as it becomes available. 

Forbus and Falkenhainer[l990] describe an intel- 
ligent controller for numerical simulations based on 
Qualitative Process Theory [Forbus 19841. Their work 
emphasizes automatically generating a system’s equa 
tions, which may change over time, from a physical 
model. Their input model is, however, at a consider- 
ably higher level than the model of raw physical struc- 
ture my program uses as input, which would prevent 
their program from being able to generate a numeri- 
cal simulation of a device like a clock in which con- 
tacts between parts appear and disappear dynamically. 
They do not presently address the problem of identi- 
fying repetitive behavior from a numerical simulation. 

Limitations and Future Work 
One obvious limitation of the work described in this 
paper is that the algorithms I present have only been 
tested on clockwork mechanisms. This limitation is a 
result of limitations in my current automated behavior 
modeling algorithms [Gelsey 1989, Gelsey 19901. As 
those modeling algorithms improve they will allow the 
algorithms presented in this paper to be tested in a 
wider context. 

Joskowicz[1988] and Faltings[l987] partition a mech- 
anism’s configuration space into qualitatively distinct 
regions. Joskowicz[l989] presents operators to simplify 
and abstract such qualitative descriptions. These oper- 
ators are not powerful enough, however, to predict reg- 
ular behaviors for mechanisms like the examples I have 
given in this thing. Nielsen[1988] builds on Faltings’ 
work to construct a qualitative simulator for devices 
like mechanical clocks. His simulation suffers from a 
qualitative model’s inherent liability to make ambigu- 
ous behavior predictions, and thus predicts that the 
clock may run, but not whether it will run and if so, 
for how long. Furthermore the simulation, being quali- 
tative, cannot predict what the period of the clock will 
be or whether it will be constant, which would seem to 
be the most essential characteristic of a clock. 

A more important limitation of this work is that the 
set of behavioral hypotheses my program can construct 
consists only of those expressible in the rather simple 
“language” given in Figure 3. The simplicity of this 
language is the source of much of the power of my cur- 
rent algorithms, but it remains to be seen how well this 
limited language can describe the wide variety of phys- 
ical systems that we consider to have regular behavior. 

Weld[1986] d escribes a program for the detection 
and compact representation of repetitive behavior in 
qualitative simulations. His algorithms are designed 
for systems having a small finite set of possible states, 
and do not appear to be easily applicable to systems 
whose state variables have values which may be any 
real number, and whose repetitive behavior is noisy 
and thus never precisely repeats a state. 

My algorithm for finding a locally satisfactory be- 
havioral hypothesis (Figure 4) appears to be fairly gen- 
eral and not at all limited to mechanical devices. How- 
ever, it is quite dependent on the simplicity of the hy- 
pothesis language and on my definition of regular be- 
havior. Similarly, “jumping” the state of a system for- 
ward in time to test the global validity of a locally sat- 
isfactory hypothesis is a general technique that could 
be applied to any physical system whose regular be- 
havior could be described by my hypothesis language. 
Of course, if the hypothesis language had to be ex- 
tended to handle a wider variety of physical systems, 
it is quite possible that these algorithms could also be 
extended to handle the more general situation. 

In contrast, my algorithms for detecting sudden 
transitions are quite specific to the mechanical device 
domain. An important area of future research will be 
the development of a more general theory of sudden 
transitions in physical systems. 

Yeh[1990] wrote a program which transforms a de- Another area of future work is to make the al- 
scription of one iteration of a repetitive behavior into 
a summary description of the behavior of many rep- 

gorithms I have presented more capable of dealing 
with noisy data. A central idea behind my algorithm 

886 AGGREGATION AND GEOMETRIC REASONING 



for finding a locally satisfactory behavioral hypothesis 
(Figure 4) is that the program may correctly reject a 
behavioral hypothesis as soon as it contradicts avail- 
able data, but it seems quite possible that a fundamen- 
tally valid hypothesis might be spuriously ruled out by 
noise in some portion of the data. A reasonable ap- 
proach to this problem might be an improved measure 
of how strongly the data violates the hypothesis. 

Various other extensions to my program might be 
desirable. For example, the single level of period- 
ically superimposed processes I describe in this pa- 
per may be insufficient to describe very complicated 
mechanisms - multiple levels might be necessary. 
Also, the program might produce confusing output 
when applied to a mechanism having several com- 
pletely independent submechanisms. The kinematic 
analysis I use to form behavioral models [Gelsey 1987, 
Gelsey 19901 could easily identify the independent sub- 
mechanisms and present them separately to the pro- 
gram I describe in this paper. 

An interesting but difficult problem would be to use 
the algorithms I have presented to find a machine’s 
behavior pattern, and then to apply that knowledge in 
trying to extract additional information from the ma- 
chine’s original behavioral model, for example to pro- 
vide additional evidence for a hypothesis or to modify 
or disconfirm it. 

Conclusion 
One of the most basic capabilities we should expect in 
a program that reasons about physical systems is the 
ability to predict the system’s long-term behavior. For 
all but the simplest systems, global analysis techniques 
are not adequate for the task of behavior prediction un- 
less supplemented by numerical simulation controlled 
intelligently by either a human or a program. In this 
thing I have presented algorithms to control a numer- 
ical simulator and 

1. recognize when an experiment has run long enough 
to produce a representative behavior sample 

2. characterize the representative behavior 

3. determine whether the representative behavior will 
continue forever, or eventually terminate or other- 
wise change its character 

for a certain class of machines, and have described a 
working program that can do long-term behavior pre- 
diction for these machines. 

References 
Abelson, H.; Eisenberg, M.; Halfant, M.; Katzenel- 
son, J.; Sacks, E.; Sussman, G.J.; Wisdom, J.; and 
Yip, K. 1989. Intelligence in scientific computing. 
Comm. ACM 32(5):546-562. 

Bloomfield, Peter 1976. Fourier Analysis of Time Se- 
ries: An Introduction. John Wiley & Sons, New York. 

Faltings, Boi 1987. Qualitative Place Vocabularies For 
Mechanisms in Configuration Space. Ph.D. Disserta- 
tion, Dept. of Computer Science, University of Illinois 
at Urbana-Champaign. 
Forbus, Kenneth D. and Falkenhainer, Brian 1990. 
Self-explanatory simulations: An integration of qual- 
itative and quantitative knowledge. In Proceedings, 
Eighth National Conference on Artificial Intelligence, 
Boston, MA. AAAI-90. 
Forbus, Kenneth 1984. Qualitative process theory. 
Artificial Intelligence 24~85-168. 
Gelsey, Andrew 1987. Automated reasoning about 
machine geometry and kinematics. In Proceedings of 
the Third IEEE Conference on Artificial Intelligence 
Applications, Orlando, Florida. 
Gelsey, Andrew 1989. Automated physical modeling. 
In Proceedings of the 1 lth International Joint Con- 
ference on Artificial Intelligence, Detroit, Michigan 
USA. 
Gelsey, Andrew 1990. Automated Reasoning about 
Machines. Ph.D. Dissertation, Yale University. 
YALEU/CSD/RR#785. 
Hartquist, Gene 1983. Public PADL-2. IEEE Com- 
puter Graphics and Applications 30-31. 
Joskowicz, Leo 1988. Reasoning about Shape and 
Kinematic Function in Mechanical Devices. Ph.D. 
Dissertation, New York University Dept. of Computer 
Science. 
Joskowicz, Leo 1989. Simplification and abstraction 
of kinematic behaviors. In Proceedings of the 11 th 
International Joint Conference on Artificial Intelli- 
gence, Detroit, Michigan USA. 
Nielsen, Paul E. 1988. A Qualitative Approach to 
Rigid Body Mechanics. Ph.D. Dissertation, Dept. of 
Computer Science, University of Illinois at Urbana- 
Champaign. 
Weld, Daniel S. 1986. The use of aggregation in causal 
simulation. Artificial Intelligence 30: l-34. 
Yeh, Alexander 1990. Finding the average rates 
of change in repetitive behavior. In Proceedings, 
Eighth National Conference on Artificial Intelligence, 
Boston, MA. AAAI-90. 
Yip, Kenneth 1989. KAM: Automatic Planning and 
Interpretation of Numerical Experiments Using Geo- 
metrical Methods. Ph.D. Dissertation, Dept. of EE 
and CS, M.I.T. 

GELSEY 887 I 


