
Department of Computer and Information Science 
University of Massachusetts 
Amherst, MA 01003 U.S.A. 

Abstract 

This paper identifies two fundamentally different 
kinds of training information for learning search 
control in terms of an evaluation function. Each 
kind of training information suggests its own set of 
methods for learning an evaluation function. The 
paper shows that one can integrate the methods 
and learn simultaneously from both kinds of in- 
formation. 

Introduction 

This paper focuses on the problem of learning search 
control knowledge in terms of an evaluation function. 
The conclusion is that one can and should seek to 
learn from all kinds of training information, rather 
than be concerned with which kind is better than an- 
other. Many kinds of information are often available, 
and there is no point in ignoring any of them. 

An evaluation function provides a simple mecha- 
nism for selecting a node for expansion during search. 
An evaluation function maps each state to a number, 
thereby defining a surface over the state space that 
can be used to guide search. If the number represents 
a reward, then one can search for a sequence of con- 
trol decisions that will lead to the highest foreseeable 
payoff. Similarly, if the number represents a cost or 
penalty, then one searches for a minimizing sequence. 

Sources of Training Informatio 

There are currently two known fundamental sources of 
training information for learning an evaluation func- 
tion. The first is the future payoff that would be 
achieved by executing a sequence of control decisions 
from a particular starting point (Samuel, 1963; Lee 
& Mahajan, 1988). Sutton (1988) has illustrated via 
his temporal difference (TD) methods that one can 
learn to predict the future value for a state by repeat- 
edly correcting an evaluation function to reduce the 
error between the local evaluation of a state and the 
backed-up value that is determined by forward search. 
This is similar to an idea of Samuel (1963), but Sutton 

596 LEARNING AND EVALUATION FUNCTIONS 

has broadened it considerably and related it to several 
other lines of thought. 

The second source of training information is identifi- 
cation of the control decision made by an expert, given 
a particular state. In the literature, such an instance 
of an expert choice is typically called a book move 
(Samuel, 1967), but it need not have been recorded 
in a book. Instead, one can simply watch an expert 
in action, or ask an expert what to do in a particular 
situation, and thereby obtain the control decision that 
the expert would make. Whenever an expert’s choice 
is available, one would like to be able to learn from it. 
Such a choice is the result of the expert’s prior learn- 
ing, and therefore should be quite informative. Indeed, 
learning to make the same choices as an expert is a sen- 
sible approach to building an expert system. 

OdS 

When making a control decision based on the value of 
each successor state, the exact value of a state is ir- 
relevant with respect to making the choice . Only the 
relationship of two values is needed for the purpose of 
identifying the one with the higher value. The objec- 
tive is to identify the most preferred state and then 
move to it. Given that a control decision does not 
depend on the particular values returned by an eval- 
uation function, one does not need to learn an exact 
value for each state. One needs only to learn a function 
in which the relative values for the states are correct. 

Whenever one infers, or is informed correctly, that 
state a is preferrable to-state b, one has obtained ‘infor- 
mation regarding the slope for part of a correct evalu- 
ation function. Any surface that has the correct sign 
for the slope between every pair of points is a perfect 
evaluation function. An infinite number of such eval- 
uation functions exist, under the ordinary assumption 
that state preference is transitive. One would expect 
the task of finding any one of these evaluation func- 
tions to be easier than- 
evaluation function. 

the task of finding a particular 

st 
Because one wants to learn to select a most preferred 

#ate from a set of possible successors, one should be 
able to learn from examples of such choices (Utgoff 

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved. 



A 

/I\ 
B c D 

Figure 1: One Ply of Search. 

& Saxena, 1987; Utgoff & Heitman, 1988). By stat- 
ing the problem of selecting a preferred state formally, 
and expanding the definitions, a procedure emerges for 
converting examples of state preference to constraints 
on an evaluation function. One can then search for 
an evaluation function that satisfies the constraints, 
using standard methods. We refer to a method that 
learns from such constraints as a state preference (SP) 
method. 

Assume that a state z is described by a conjunction 
of d numerical features, represented as a d-dimensional 
vector 2). Also assume that the evaluatio 
H(x) i epresented as a linear combination 
where is a column vector of weights, and 
transpose of W. Then one would compare the value 
of a state C to a state B by evaluating the expression 
H(C) > H(B). I n g eneral, one can define a predicate 
P(x, y) that is true if and only if H(z) > H(y), similar 
to Huberman’s (1968) hand-crafted better and worse 
predicates. One can convert each instance of state 
preference to a constraint on the evaluation function 
by expanding its definitions. For example, as shown in 
Figure 1, if state 6: is identified as best, one would infer 
constraints P(C, B) and P(C, D). Expanding P(C, B), 
for example, leads to: 

P(C, B) 

H(C) > H(B) 
TF(C) > WTF(B) 

WT(F(C) - F(B)) > 0 
The difference between the two feature vectors is 
known, leaving W as the only unknown. 

By expanding all instances of state preference in 
the above manner, one obtains a system of linear in- 
equalities, which is a standard form of learning task 
for a variety of pattern recognition methods (Duda & 
Hart, 1973), including perceptron learning and other 
more recent connectionist learning methods. Note that 
these instances of state preference are expressed as d- 
dimensional vectors, meaning that learning from pairs 
of states is no more complex than learning from single 
states. This is in contrast to Tesauro (1989), where 
both states are given as input to a network learner. 

It is worth noting that Samuel’s (1963,1967) method 
for learning from book moves is an SP method. When 

learning from book moves, Samuel computed a correla- 
tion coefficient as a function of the number of times L 
(If) that the feature value in a nonpreferred move was 
lower (higher) than the feature value of the preferred 
move. The correlation coefficient for each feature was 
H, and was used directly as the weight in his eval- 
uation function. The divisor L + H is constant for all 
features, serving only as a normalizing scalar. Thus the 
total L - H is a crude measure of how important the 
feature is in identifying a state preferred by an expert. 

Illustration 

This section illustrates a TD method and an SP 
method, applied individually to the same problem. 
The purpose is to ground the discussion of the previ- 
ous sections, and to provide some indication of the rel- 
ative strength of the two kinds of training information. 
One already expects that state preference information 
is stronger than temporal difference information, so the 
point of interest is really how much stronger. The com- 
parison is not a contest because there is no need pick 
a winner. Each method learns from a different kind of 
training information, which raises the issue of how to 
learn from both sources. One can and should strive to 
learn from all the training information, regardless of 
its source. 

For the TD method and the SP method described 
below, it is important to note that we have instantiated 
TD and SP in a particular way, and have coupled each 
one with the best-first search algorithm. TD and SP 
methods are generic, and are independent of any par- 
ticular search algorithm that makes use of the learned 
evaluation function. To keep this distinction in mind, 
we refer to the two example progams below as Tl and 
Sl. 

The Task Domain 

Although we are experimenting with TD and SP meth- 
ods in larger domains, as mentioned in the final section, 
we have selected the smaller Towers-of-Hanoi domain 
for pedagogical purposes. The main reason for this 
choice is that the domain is characterized by a small 
state space, which can be controlled by varying the 
number of disks. The small domain makes it possible 
to implement a simple expert, which serves as a source 
of state preference information for the Sl program. 

The semantics of this problem makes it more nat- 
ural to think of the value of a state as a measure of 
remaining cost. Accordingly, the goal state has a cost 
of 0. The problem-solving program will be looking for 
a state with a low cost, and one state will be preferred 
to another if its cost is lower. Thus, for any two in- 
stances z and y, expanding P(x, y) f-) H(x) < H(y) 
leads to a constraint of the form 

WT(F(x) - F(y)) < 0. 

UTGOFF & CLOUSE 597 



Table 1: Tl as Best-First Search Table 3: Results for Tl and Sl 

.~ 
1. opent(start), closedtnil 

2, stcheapest(open) 

3. if solution(s), stop 

4. put s onto closed, ctsuccessors(s) 

5. if training, do TD adjustment 

6, opentappend(c - closed,open) 

7. re-evaluate all nodes on open 

8. goto 2 

Table 2: Sl as Best-First Search 

1. opent(start), closedtnil 

2. if training, [stexpertbest(open), do SP adjustments] 
else stcheapest(open) 

3. if solution(s), stop 

4. put s onto closed, ctsuccessors(s) 

5. opentappend(c - closed,open) 

6. re-evaluate all nodes on open 

7. got0 2 

A Temporal Difference Method 
The Tl program learns from temporal differences, as 
part of the best-first search algorithm shown in Table 
1. The value backed up from the children of the node 
just expanded is the value of the lowest cost child plus 
6, 6 = 1. This backed-up value is the desired value 
of the parent with respect to the children, and the 
learning mechanism adjusts the weights W so that the 
evaluation for the parent state is closer to this backed- 
up value. Because the value of the goal state is defined 
to be 0, the evaluation function is being trained to 
predict the distance remaining from a state to the goal. 

The error correction rule is a form of the well-known 
absolute error correction rule (Nilsson, 1965; Duda & 
Hart, 1973), which calculates the amount of correction 
needed to remove the error. One solves 

(W + cF(x))~F(x) = backed-up value 

for c and then adjusts W by 

W +-- W + vcF(x) 

so that WTF(x) is closer to the intended value. The 
learning rate 7 is 0.1. Over time, a series of such cor- 
rections to W should result in an evaluation function 
that is predictive of minimum cost to the goal state, 
assuming such a fit can be approximated well in the 
given feature space. 

A State Preference Method 
The Sl program learns from state preferences, as part 
of the best-first search algorithm shown in Table 2. 

expansions 8 16 56 
Sl adjustments 5 9 11 

trials 1 
queries 7 

halt opt 
expansions 8 

2 1 
30 31 

opt opt 
16 32 

For training, the expert’s choice is simulated by brute 
force search for the optimal move. From the expert’s 
choice, the algorithm infers that the selected state is 
to be preferred to each of the nonselected states. From 
each such pair of states, Sl infers a constraint on the 
weight vector W expressed as a linear inequality. If 
the constraint is not satisfied, then the weight vector 
W is adjusted. 

As with Tl, the correction rule is a form of the ab- 
solute error correction rule. One solves 

for c and then adjusts W by 

‘w + W + c@(x) - F(y)). 

Adjusting the weights so that the weighted difference 
is -1 corresponds to wanting the selected state to eval- 
uate to at least one less than a nonselected state, but 
any negative value will suffice in order to become cor- 
rect for the inequality. 

Discussion 
Each program was trained repeatedly until either it 
was able to solve the Towers of Hanoi problem op- 
timally or it had a sequence of weight vectors that 
was cycling. For each program, the cost of training 
was measured three ways: by the total number of ad- 
justments to the weight vector W, by the number of 
times the program was trained on the problem (a trial), 
and by the number of times the expert was queried for 
its control decision. Table 3 shows Sl requires fewer 
weight adjustments and fewer trials than Tl, but at the 
expense of querying the expert. For the !&disk prob- 
lem, Sl learned to solve the problem optimally, but 
Tl was unable to do so. “Expansions” is the number 
of node expansions that occurred when the program 
solved the problem after it had completed its training. 

The problem faced by Tl is to learn an exact value 
for each state, which is an impossible task in this 
case because the desired values are not co-planar in 
the given feature space. It is for this reason that one 
needs best-first search instead of simple hill-climbing. 
Sl needs only to learn a value for each state that causes 

598 LEARNING AND EVALUATION FUNCTIONS 



Table 4: Features for the 3-Disk Problem. 
Feature 
Is Disk 3 on Peg 3? 
Is Disk 2 at its desired location? 
Is Disk 1 at its desired location? 
Is Disk 2 on Disk 3? 
Is Disk 1 on Disk 3? 
Is Disk 1 on Disk 2? 
Is Disk 2 on Peg 3? 
Is Disk 1 on Peg 3? 
Is Disk 3 clear? 
Is Peg 3 empty? 
Threshold Constant 1 

the relationships of the values of the states to be cor- 
rect. This too is an impossible task in the given feature 
space, but it appears easier for a learning algorithm to 
try to satisfy the less demanding constraints of relative 
values than exact values. 

The features for describing a state are a function of 
the number of disks. For example, Table 4 shows the 
ten Boolean features for the 3-disk problem. Disk 3 is 
the largest, and Peg 3 is the goal peg. In general, for 
the n-disk problem, there are 0(3n) states and, in the 
representation for Tl and Sl, O(n2) features. 

Integrating TD and SP Methods 
This section discusses the relationship between TD and 
SP methods, and shows that both kinds of methods can 
work together in learning one evaluation function. 

Relationship of TD and SP Methods 
TD methods learn to predict future values, whereas 
SP methods learn to identify preferred states. For TD 
methods, training information is propagating vertically 
up the search tree. For SP methods, the training in- 
formation is propagating horizontally among siblings. 

Semantically, the two kinds of methods are compati- 
ble because the evaluation function is of the same form, 
and serves the same purpose of allowing identification 
of a best state. One can adjust the weights W so 
that the value of a state is predictive of its eventual 
payoff, and one can also adjust W so that the rela- 
tive values among the states become correct. Thus, in 
terms of the semantics of the learning, one can simply 
apply both kinds of error correction to the same eval- 
uation function simultaneously without fear that they 
are incongruous. However, a practical problem that 
can arise is that the expert might be fallible, putting 
the two sources of training information in conflict to 
some degree. This issue is discussed below. 

An Integrated Met hod 
In the same way that TD and SP are each a class 
of methods, there are many combinations of methods 
that would produce an integrated TDSP method. We 

Table 5: 11 as Best-First Search 

1. opent(start), closedtnil 

2. lasterrort 0.0 

3. if training and lasterror > p, 
[stexpertbest(open), do SP adjustments] 

else stcheapest(open) 

4. if solution(s), stop 

5. put s onto closed, ctsuccessors(s) 

6. if training, lasterrort ltderror], do TD adjustment 

7. open+append(c - closed,open) 

6. re-evaluate all nodes on open 

9. got0 3 

Method 
11 

Table 6: Results for I1 
3 dsks 4 dsks 5 dsks 

adjustments 35 131 409 
trials 1 1 1 

queries 6 14 24 
halt opt opt opt 

expansions 8 16 32 

present one such method here, instantiated in a pro- 
gram that we refer to as Il. As noted above, it is 
permissible to apply a TD method and an SP method 
to the same evaluation function. Thus, the 11 program, 
shown in Table 5, is the union of the Tl and Sl pro- 
grams, with the addition of a dynamic test for when 
to ask the expert for its control decision. 

A TD method can be employed very easily in an 
unsupervised manner whenever a node is expanded. 
An SP method relies on an expert, which can be a 
human or a search procedure. At issue is when to ob- 
tain state preference information from the expert. If 
one can simply observe the expert passively, then there 
is no apparent expense in obtaining such information. 
For 11 however, we assume that one must query the ex- 
pert to obtain state preference information, and that 
one would like make such queries as seldom as pos- 
sible. As an extreme, one could avoid querying the 
expert altogether, and learn only from the TD infor- 
mation. However, expert preferences provide strong 
training information and should be considered when 
available. 

The 11 program queries the expert whenever the 
magnitude of the previous TD error is above /3, with 
p = 0.9. The effect is that the expert exerts great influ- 
ence early in the training, but is progressively ignored 
as the evaluation function becomes more accurate. 

Table 6 shows the same measures for 11 as those 
given for Tl and S 1. 11 learned to solve all three ver- 
sions of the problem optimally, with fewer weight ad- 
justments than Tl, and fewer queries to the expert 
than Sl. For the 4-disk problem, I1 learned the task 

UTGOFF & CLOUSE 599 



in one trial, which is fewer than for either Sl or Tl. 
The 11 program increasingly ignores the expert as 

the evaluation function is learned. This is a desirable 
characteristic in terms of gaining autonomy, but it is 
also desirable if the expert is imperfect, e.g. human. 
One can learn rapidly from the expert, and then let TD 
training correct any flaws that may have crept in from 
believing the expert. However, it may happen that TD 
error might temporarily increase without expert input, 
causing the expert to be drawn back into the training, 
thereby preventing the improvement that might occur 
otherwise. The 11 program illustrates just one scheme 
for integrating TD and SP methods. We are continuing 
to examine the issue of how to integrate these sources 
of training information profitably. 

Conchsion 

We have identified two different kinds of training infor- 
mation for learning evaluation functions, and described 
their relationship. For state preference, we have shown 
that one can convert instances of state preference to 
constraints on an evaluation function, and that one 
can learn an evaluation function from such information 
alone. We have taken the view that one should be able 
to learn from all sources of training information, and 
not be diverted by arguments that one is to be favored 
over another. We have observed that it is semantically 
correct to apply a TD method and an SP method si- 
multaneously to the learning of one evaluation func- 
tion. Finally, we presented a specific method that in- 
tegrates both approaches, and demonstrated that the 
two can indeed work together profitably. 

Although we have chosen a simple problem for il- 
lustration, the issues that motivated this work arose 
while studying the effectiveness of TD and SP meth- 
ods in the game of Othello. The program was able to 
learn from either source of information, but it was un- 
clear whether or how one could learn simultaneously 
from both sources. We are in the process of finishing 
the integration of the methods in Othello, and are in 
the early stages of experimenting with an integrated 
approach in learning to control air traffic. 

Acknowledgments 

This material is based upon work supported by the 
National Aeronautics and Space Administration un- 
der Grant No. NCC 2-658, and by the Office of Naval 
Research through a University Research Initiative Pro- 
gram, under contract number N00014-86-K-0764. We 
thank Rich Sutton, Andy Barto, Sharad Saxena, Jamie 
Callan, Tom Fawcett, Carla Brodley, and Margie Con- 
nell for helpful comments and discussion. 

eferences 
Duda, R. O., & Hart, P. E. (1973). Pattern Classify- 
cation and Scene Analysis. New York: Wiley & Sons. 

600 LEARNING AND EVALUATION FUNCTIONS 

Huberman, B. J. (1968). A program to play chess end 
games. Doctoral dissertation, Department of Com- 
puter Sciences, Stanford University. 
Lee, K. F., & Mahajan, S. (1988). A pattern classifi- 
cation approach to evaluation function learning. Ar- 
tificial Intelligence, 36, l-25. 
Nilsson, N. J. (1965). Learning machines. New York: 
McGraw-Hill. 
Samuel, A. (1963). S ome studies in machine learning 
using the game of checkers. In E. A. Feigenbaum, & J. 
Feldman (Eds.), Computers and Thought. New York: 
McGraw-Hill. 
Samuel, A. (1967). S ome studies in machine learning 
using the game of checkers II: Recent progress. IBM 
Journal of Research and Development, 11, 601-617. 

Sutton, R. S. (1988). L earning to predict by the 
method of temporal differences. Machine Learning, 
3, 9-44. 
Tesauro, G. (1989). Connectionist learning of expert 
preferences by comparison training. In D. S. Touret- 
zky (Ed.), Advances in Neural Information Processing 
Systems. Morgan Kaufmann. 
Utgoff, P. E., & Saxena, S. (1987). Learning a pref- 
erence predicate. Proceedings of the Fourth Interna- 
tional Worircshop on Machine Learning (pp. 115-121). 
Irvine, CA: Morgan Kaufmann. 
Utgoff, P. E., & Heitman, P. S. (1988). Learning and 
generalizing move selection preferences. Proceedings 
of the AAAI Symposium on Computer Game Playing 
(pp. 36-40). Palo Alto, CA. 


